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Abstract. Breadth-first search (BFS) is a basic graph exploration technique. We
give the first external memory algorithm for sparse undirected graphs with sub-
linear I/O. The best previous algorithm requires�(n +

n+m

D�B

� log

M=B

n+m
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)

I/Os on a graph withn nodes andm edges and a machine with main-memory of
sizeM ,D parallel disks, and block sizeB. We present a new approach which re-

quires onlyO(

q

n�(n+m)

D�B

+

n+m

D�B

� log
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) I/Os. Hence, form = O(n)

and all realistic values oflog
M=B

n+m

B

, it improves upon the I/O-performance

of the best previous algorithm by a factor
(

p

D �B). Our approach is fairly
simple and we conjecture it to be practical. We also give improved algorithms for
undirected single-source shortest-paths with small integer edge weights and for
semi-external BFS on directed Eulerian graphs.

1 Introduction

Breadth-First Search (BFS) is a basic graph-traversal method. It decomposes the input
graphG of n nodes andm edges into at mostn levels where leveli comprises all
nodes that can be reached from a designated sources via a path ofi edges. BFS is
used as a subroutine in many graph algorithms; the paradigm of breadth-first search
also underlies shortest-paths computations. In this paperwe focus on BFS for general
undirected graphs and sparse directed Eulerian graphs; Eulerian graphs contain a cycle
that traverses every edge of the graph precisely once.

External-memory (EM) computation is concerned with problems that are too large
to fit into main memory (internal memory,IM). The central issue ofEM computation
is that accessing the secondary memory takes several ordersof magnitude longer than
performing an internal operation. We use the standard modelof EM computation [16].
There is a main memory of sizeM and an external memory consisting ofD disks. Data
is moved in blocks of sizeB consecutive words. An I/O-operation can move up toD

blocks, one from each disk. For graphs withn nodes andm edges the semi-external
memory (SEM) setting assumes � n �M < m for some appropriate constant � 1.

A number of basic computational problems can be solved I/O-efficiently. The most
prominent example isEM sorting [2, 15]: sortingx items of constant size takessort(x) =
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) I/Os. BFS, however, seems to be hard for external-memory com-
putation (and also parallel computation). Even the bestSEM BFS algorithms known
require
(n) I/Os.

Recall the standardO(n + m)-time internal-memory BFS algorithm. It visits the
vertices of the input graphG in a one-by-one fashion; appropriate candidate nodes for
the next vertex to be visited are kept in a FIFO queueQ. After a vertexv is extracted
fromQ, theadjacency list of v, i.e., the set of neighbors ofv in G, is examined in order
to updateQ: unvisited neighboring nodes are inserted intoQ. Running this algorithm
in external memory will result in�(n +m) I/Os. In this bound the�(n)-term results
from the unstructured accesses to the adjacency lists; the�(m)-term is caused bym
unstructured queries to find out whether neighboring nodes have already been unvisited.

The bestEM BFS algorithm known (Munagala and Ranade [14]) overcomes the
latter problem; it requires�(n + sort(n + m)) I/Os on general undirected graphs.
However, the Munagala/Ranade algorithm still pays one I/O for each node.

In this paper we show how to overcome the first problem as well:the new algorithm

for undirected graphs needs justO(

q

n�(n+m)

D�B

+ sort(n + m)) I/Os. Our approach
is simple and has a chance to be practical. We also discuss extensions to undirected
single-source shortest-paths (SSSP) with small integer edge weights and semi-external
BFS on directed Eulerian graphs.

This paper is organized as follows. In Section 2 we review previous work and put
our work into context. In Section 3 we outline a randomized version of our new ap-
proach. The details are the subject of Section 5. We start with a review of the algorithm
of Munagala and Ranade (Section 4) and then discuss our improvement (Sections 5.1
and 5.2). Section 6 presents a deterministic version of our new approach. In Section 7
we sketch an extension to some single-source shortest-paths problem. Another modi-
fication yields an improved semi-external BFS algorithm forsparse directed Eulerian
graphs (Section 8). Finally, Section 9 provides some concluding remarks and open prob-
lems.

2 Previous Work and New Results

Previous Work. I/O-efficient algorithms for graph-traversal have been considered in,
e.g., [1, 3, 4, 7–14]. In the following we will only discuss results related to BFS.

The currently fastest BFS algorithm for general undirectedgraphs [14] requires
�(n+ sort(m)) I/Os. The best bound known for directedEM BFS isO(minfn+

n

M
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m
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; (n+

m

D�B

)�log
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n

D�B

g) I/Os [7–9]. This also yields anO(n+

m

D�B

)-I/O algorithm
for SEM BFS.

Faster algorithms are only known for special types of graphs: O(sort(n)) I/Os are
sufficient to solveEM BFS on trees [7], grid graphs [5], outer-planar graphs [10],and
graphs of bounded tree width [11]. Slightly sublinear I/O was known for undirected
graphs with bounded maximum node degreed: the algorithm [13] needsO(

n

�log

d

(D�B)

+

sort(n � (D �B)



)) I/Os andO(n � (D �B)



) external space for an arbitrary parameter
0 <  � 1=2. Maheshwari and Zeh [12] proposed I/O-optimal algorithms for a number
of fundamental problems on planar graphs; in particular, they show how to compute
BFS on planar graphs usingO(sort(n)) I/Os.



SSSP can be seen as the weighted version of BFS. Consequently, all knownEM
SSSP algorithms do not perform better than the respectiveEM BFS algorithms listed
above. The best known lower bound for BFS is
(minfn; sort(n)g +

n+m

D�B

) I/Os. It
follows from the respective lower bound for the list-ranking problem [8].

New Results. We present a newEM BFS algorithm for undirected graphs. It comes

in two versions (randomized and deterministic) and requires only O(

q

n�(n+m)

D�B

+

sort(n+m)) I/Os (expected or worst-case, respectively). For sparse graphs withm =

O(n) and realistic machine parameters, theO(

q

n�(n+m)

D�B

)-term in the I/O-bound will
be dominant. In that case our approach improves upon the I/O-performance of the best
previous algorithm [14] by a factor of
(

p

D � B). More generally, the new algorithm is
asymptotically superior to the old algorithm form = o(

D�B�n

log

M=B

n=B

); on denser graphs

both approaches requireO(sort(n+m)) I/Os.
A simple extension of our new BFS algorithm solves the SSSP problem on undi-

rected graphs with integer edge-weights inf1; : : : ;Wg for small W : it requires

O(

q

W �n�(n+m)

D�B

+W � sort(n+m)) I/Os. After another modification we obtain an im-
proved algorithm forSEM BFS on sparse directed Eulerian graphs: it achieves
O(

n+m

(D�B)

1=3

+ sort(n+m) � logn) I/Os. A performance comparison for our BFS algo-
rithms is depicted in Figure 1.
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Fig. 1. Comparison: I/O-performance of the new BFS algorithms.

3 High-Level Description of the New BFS Algorithm

Our algorithm refines the algorithm of Munagala and Ranade [14] which constructs the
BFS tree level-by-level. It operates in two phases. In a firstphase it preprocesses the
graph and in the second phase it performs BFS using the information gathered in the
first phase.



The preprocessing partitions the graph into disjoint subgraphsS
i

, 0 � i � K

with small average internal shortest-path distances. It also partitions the adjacency lists
accordingly, i.e., it constructs an external fileF = F

0

F

1

: : :F

i

: : :F

K�1

whereF
i

contains the adjacency lists of all nodes inS
i

. The randomized partition is created by
choosing seed nodes independently and uniformly at random with probability� and
running a BFS starting from all seed nodes. Then the expectednumber of seed nodes
is K = O(� � n) and the expected shortest-path distance between any two nodes of a
subgraph is at mostO(1=�). The expected I/O-bound for constructing the partition is
O(

n+m

��D�B

+ sort(n+m)).
In the second phase we perform BFS as described by Munagala and Ranade with

one crucial difference. We maintain an external fileH (= hot adjacency lists) which
is essentially the union of allF

i

such that the current level of the BFS-tree contains a
node inS

i

. Thus it suffices to scanH (i.e., to access the disk blocks ofH in consecutive
fashion) in order to construct the next level of the tree. Each subfileF

i

is added toH
at most once; this involves at mostO(K + sort(n +m)) I/Os in total. We prove that
after an adjacency list was copied toH, it will be used only forO(1=�) steps on the
average; afterwards the respective list can be discarded fromH. We obtain a bound of
O(� � n+

n+m

��D�B

+sort(n+m)) on the expected number of I/Os for the second phase.

Choosing� = minf1;

q

n+m

n�D�B

g gives our bound.

4 The Algorithm of Munagala and Ranade

We review the BFS algorithm of Munagala and Ranade [14], MRBFS for short. We
restrict attention to computing the BFSlevel of each nodev, i.e., the minimum number
of edges needed to reachv from the source. For undirected graphs, the respective BFS
tree or the BFS numbers can be obtained efficiently: in [7] it is shown that each of the
following transformations can be done usingO(sort(n +m)) I/Os: BFS Numbers!
BFS Tree! BFS Levels! BFS Numbers.

Let L(t) denote the set of nodes in BFS levelt, and letA(t) := N(L(t � 1)) be
the multi-set of neighbors of nodes inL(t� 1). MR BFS buildsL(t) as follows:A(t)
is created byjL(t � 1)j accesses to the adjacency lists of all nodes inL(t � 1). This
causesO(jL(t � 1)j + jA(t)j=(D � B)) I/Os. Observe thatO(1 + x=(DB)) I/Os are
needed to read a list of lengthx. Then the algorithm removes duplicates fromA(t).
This can be done by sortingA(t) according to the node indices, followed by a scan
and compaction phase; hence, the duplicate elimination takesO(sort(jA(t)j) I/Os. The
resulting setA0

(t) is still sorted.
Now MR BFS computesL(t) := A

0

(t)nfL(t�1)[L(t�2)g. Figure 2 provides an
example. Filtering out the nodes already contained in the sorted listsL(t�1) orL(t�2)

is possible by parallel scanning. Therefore, this step can be done usingO((jA(t)j +

jL(t�1)j+jL(t�2)j)=(D �B)) I/Os. Since
P

t

jA(t)j = O(m) and
P

t

jL(t)j = O(n),
MR BFS requiresO(n+sort(n+m)) I/Os. The�(n) I/Os result from the unstructured
accesses to then adjacency lists.

The correctness of this BFS algorithm crucially depends on the input graph being
undirected: assume inductively that levelsL(0); : : : ; L(t � 1) have already been com-
puted correctly and consider a neighborv of a nodeu 2 L(t � 1). Then the distance
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Fig. 2. A phase in the BFS algorithms of Munagala and Ranade [14]. Level L(t) is composed
out of the disjoint neighbor vertices of levelL(t� 1) excluding those vertices already existing in
eitherL(t� 2) orL(t� 1).

from the source nodes to v is at leastt� 2 because otherwise the distance ofu would
be less thant� 1. Thusv 2 L(t� 2)[L(t� 1)[L(t) and hence it is correct to assign
precisely the nodes inA0

(t) n fL(t� 1) [ L(t� 2)g toL(t).

Theorem 1 ([14]). Undirected BFS can be solved using O(n+ sort(n+m)) I/Os.

5 The New Approach

We show how to speed-up the Munagala/Ranade approach (MRBFS) of the previous
section. We refer to the resulting algorithm as FAST BFS. We may assume w.l.o.g. that
the input graph is connected (otherwise we may run the randomizedO(sort(n +m))-
I/O connected-components algorithm of [1] and only keep thenodes and edges of the
componentC

s

that contains the source node; all nodes outside ofC

s

will be assigned
BFS-level infinity, and the BFS computation continues withC

s

). We begin with the
randomized preprocessing part of FAST BFS:

5.1 Partitioning a Graph into Small Distance Subgraphs

As a first step, FAST BFS restructures the adjacency lists of the graph representation:
it grows disjoint connected subgraphsS

i

from randomly selected nodess
i

and stores
the adjacency lists of the nodes inS

i

in an external fileF . The nodes
i

is called the
master node of subgraphS

i

. A node is selected to be a master with probability� =

minf1;

q

n+m

n�D�B

g. This choice of� minimizes the total cost of the algorithm as we will

see later. Additionally, we make sure that the source nodes of the graph will be the
master of partitionS

0

. LetK be the number of master nodes. ThenE[K℄ = 1 + �n.
The partitioning is generated “in parallel”: in each round,each master nodes

i

tries
to capture all unvisited neighbors of its current sub-graphS

i

. If several master nodes
want to include a certain nodev into their partitions then an arbitrary master node
among them succeeds.

At the beginning of a phase, the adjacency lists of the nodes lying on the bound-
aries of the current partitions are active; they carry the label of their master node. A
scan through the set of adjacency lists removes these labeled lists, appends them in no



particular order to the fileF , and forms a set of requests for the involved target nodes.
Subsequently, the requests are sorted. A parallel scan of the sorted requests and the
shrunken representation for the unvisited parts of the graph allows us to identify and
label the new boundary nodes (and their adjacency lists). Each adjacency list is active
during at most one phase. The partitioning procedure stops once there are no active
adjacency lists left.

The expected I/O-performance of the preprocessing step depends on the speed with
which the graph representation shrinks during the partitioning process.

Lemma 1. Let v 2 G be an arbitrary node; then v is assigned to some subgraph (and
hence is removed from the graph representation) after an expected number of at most
1=� rounds.

Proof: Consider a shortest pathP = hs; u

j

; : : : ; u

2

; u

1

; vi from the source nodes to v
in G. Let k, 1 � k � j, be the smallest index such thatu

k

is a master node. Thenv
is assigned to a subgraph in or before thek-th round. Due to the random selection of
master nodes, we haveE[k℄ � 1=�.

The parallel randomized construction of the partitions also implies:

Corollary 1. Consider an arbitrary node v 2 S

i

and let s
i

be the master node of the
subgraph S

i

. The expected shortest-path distance between v and s
i

in S
i

is at most 1=�.

By Lemma 1, the expected total amount of data being processedduring the partitioning
is bounded byX := O(

P

v2V

1=� � (1 + degree(v))) = O((n + m)=�). However,
sorting only occurs for active adjacency lists. Thus the preprocessing requiresO((n +

m)=(� �D � B) + sort(n+m)) expected I/Os.
After the partitioning phase each node knows the (index of the) subgraph to which

it belongs. With a constant number of sort and scan operations we can partition the
adjacency lists into the formatF

0

F

1

: : :F

i

: : :F

jSj�1

, whereF
i

contains the adjacency
lists of the nodes in partitionS

i

; an entry(v; w;S(w); f
S(w)

) from the list ofv 2 F

i

stands for the edge(v; w) and provides the additional information thatw belongs to
subgraphS(w) whose subfileF

S(w)

starts at positionf
S(w)

within F . The edge entries
of eachF

i

are lexicographically sorted. In total,F occupiesO((n + m)=B) blocks
of external storage (spread over theD disks in round-robin fashion).F consists ofK
subfiles withE[K℄ = 1 + � � n. The size of the subfiles may vary widely. Some spread
out over several disk blocks and some may share the same disk block. The following
lemma summarizes the discussion.

Lemma 2. The randomized preprocessing of FAST BFSrequiresO(

n+m

��D�B

+sort(n+

m)) expected I/Os.

5.2 The BFS Phase

We construct the BFS levels one by one as in the algorithm of Munagala and Ranade
(MR BFS). The novel feature of our algorithm is the use of a sortedexternal fileH.
We initializeH with F

0

. Thus, in particular,H contains the adjacency list of the source



nodes of levelL(0). The nodes of each created BFS level will also carry identifiers for
the subfilesF

i

of their respective subgraphsS
i

.
When creating levelL(t) based onL(t � 1) andL(t � 2), FAST BFS does not

access single adjacency lists like MRBFS does. Instead, it performs a parallel scan
of the sorted listsL(t� 1) andH. While doing so, it extracts the adjacency lists of all
nodesv

j

2 L(t�1) that can be found inH. LetV
1

� L(t�1) be the set of nodes whose
adjacency lists could be obtained in that way. In a second step, FAST BFS extracts from
L(t � 1) the partition identifiers of those nodes inV

2

:= L(t � 1) n V

1

. After sorting
these identifiers and eliminating duplicates, FAST BFS knows which subfilesF

i

of
F contain the missing adjacency lists. The respective subfiles are concatenated into a
temporary fileF 0 and then sorted. Afterwards the missing adjacency lists forthe nodes
in V

2

can be extracted with a simple scan-step from the sortedF

0 and the remaining
adjacency lists can be merged with the sorted setH in one pass.

After the adjacency lists of the nodes inL(t�1) have been obtained, the setN(L(t�

1)) of neighbor nodes can be generated with a simple scan. At thispoint the augmented
format of the adjacency lists is used in order to attach the partition information to each
node inN(L(t � 1)). Subsequently, FAST BFS proceeds like MRBFS: it removes
duplicates fromN(L(t � 1)) and also discards those nodes that have already been
assigned to BFS levelsL(t � 1) andL(t � 2). The remaining nodes constituteL(t).
The constructed levels are written to external memory as a consecutive stream of data,
thus occupyingO(n=(D �B)) blocks striped over theD disks.

Since FAST BFS is simply a refined implementation of MRBFS, correctness is
preserved. We only have to reconsider the I/O-bounds:

Lemma 3. The BFS-phase of FAST BFS requires O(� � n +

n+m

��D�B

+ sort(n +m))

expected I/0s.

Proof: Apart from the preprocessing of FAST BFS (Lemma 2) we mainly have to deal
with the amount of I/Os needed to maintain the data structureH. For the construction
of BFS levelL(t), the contents of the sorted setsH, L(t � 2), andL(t � 1) will be
scanned a constant number of times. The firstD �B blocks ofH,L(t�2), andL(t�1)

are always kept in main memory. Hence, scanning these data items does not necessarily
cause I/O for each level. External memory access is only needed if the data volume is

(D � B). In that case, however, the number of I/Os needed to scanx data items over
the whole execution of FAST BFS is bounded byO(x=(D � B)).

Unstructured I/O happens whenH is filled by merging subfilesF
i

with the current
contents ofH. For a certain BFS level, data from several subfilesF

i

may be added to
H. However, the data of each singleF

i

will be merged withH at most once. Hence, the
number of I/Os needed to perform the mergings can be split between

(a) the adjacency lists being loaded fromF and
(b) those already being inH.

The I/O bound for part (a) isO(

P

i

(1+

jF

i

j

D�B

� log

M=B

n+m

B

)) = O(K +sort(n+m))

I/Os, andE[K℄ = 1 + � � n.
With respect to (b) we observe first that the adjacency listA

v

of an arbitrary node
v 2 S

i

stays inH for an expected number at most of2=� rounds. This follows from the



fact that the expected shortest-path distance between any two nodes of a subgraph is at
most2=�: letL(t0) be the BFS level for whichF

i

(and henceA
v

) was merged withH.
Consequently, there must be a nodev

0

2 S

i

that belongs to BFS levelL(t0). Lets
i

be the
master node of subgraphS

i

and letd(x; y) denote the number of edges on the shortest
path between the nodesx andy in S

i

. Since the graph is undirected, the BFS level ofv

will lie betweenL(t0) andL(t0 + d(v

0

; s

i

) + d(s

i

; v)). As soon asv becomes assigned
to a BFS level,A

v

is discarded fromH. By Corollary 1,E[d(v0; s
i

) + d(s

i

; v)℄ � 2=�.
In other words, each adjacency list is part ofH for expectedO(2=�) BFS-levels. Thus,
the expected total data volume for (b) is bounded byO((n + m)=�). This results in
O((n+m)=(� �D �B)) expected I/Os for scanningH during merge operations. By the
same argumentation, each adjacency list inH takes part in at mostO(1=�) scan-steps
for the generation ofN(L(�)) andL(�). Similar to MR BFS, scanning and sorting all
BFS levels and setsN(L(�)) takesO(sort(n+m)) I/Os.

Combining Lemmas 2 and 3 and making the right choice of� yields:

Theorem 2. External memory BFS on arbitrary undirected graphs can be solved using

O(

q

n�(n+m)

D�B

+ sort(n+m)) expected I/Os.

Proof: By our lemmas the expected number of I/0s is bounded byO(� � n+

n+m

��D�B

+

sort(n + m)). The expression is minimized for�2 � n � D � B = n + m. Choosing
� = minf1;

p

n �D � B=(n+m)g the stated bound follows.

6 The Deterministic Variant

In order to obtain the result of Theorem 2 in the worst case, too, it is sufficient to modify
the preprocessing phase of Section 5.1 as follows: instead of growing subgraphs around
randomly selected master nodes, the deterministic variantextracts the subfilesF

i

from
an Euler Tour around the spanning tree for the connected componentC

s

that contains
the source nodes. Observe thatC

s

can be obtained with the deterministic connected-
components algorithm of [14] usingO((1+ log log(D �B �n=m)) � sort(n+m)) I/Os.
The same amount of I/O suffices to compute a (minimum) spanning treeT

s

for C
s

[3].
After T

s

has been built, the preprocessing constructs an Euler Tour aroundT
s

using
a constant number of sort- and scan-steps [8]. Then the tour is broken at the source
nodes; the elements of the resulting list can be stored in consecutive order using the
deterministic list-ranking algorithm of [8]. This causesO(sort(n)) I/Os. Subsequently,
the Euler Tour can be chopped into pieces of size1=� with a simple scan step. These
Euler Tour pieces account for subgraphsS

i

with the property that the distance between
any two nodes ofS

i

in G is at most1=� � 1. Observe that a nodev of degreed may
be part of�(d) different subgraphsS

i

. However, with a constant number of sorting
steps it is possible to remove duplicates and hence make surethat each node ofC

s

is part of exactly one subgraphS
i

, for example of the one with the smallest index;
in particular,s 2 S

0

. Eventually, the reduced subgraphsS
i

are used to create the re-
ordered adjacency-list filesF

i

; this is done as in the old preprocessing and takes another
O(sort(n+m)) I/Os.



The BFS-phase of the algorithm remains unchanged; the modified preprocessing,
however, guarantees that each adjacency list will be part ofthe external setH for at
most1=� BFS levels: if a subfileF

i

is merged withH for BFS levelL(t), then the BFS
level of any nodev in S

i

is at mostL(t) + 1=� � 1. The bound on the total number
of I/Os follows from the fact thatO((1 + log log(D � B � n=m)) � sort(n + m)) =

O(

q

n�(n+m)

D�B

+ sort(n+m)) .

Theorem 3. There is a deterministic algorithm that solves external memory BFS on

undirected graphs using O(

q

n�(n+m)

D�B

+ sort(n+m)) I/Os.

7 Extension to some SSSP Problem

We sketch how to modify FAST BFS in order to solve the Single-Source Shortest-
Paths (SSSP) problem on undirected graphs with integer edge-weights inf1; : : : ;Wg

for smallW . Due to the “BFS-bottleneck” all previous algorithms for SSSP required


(n) I/Os. Our simple extension of FAST BFS needsO(

q

W �n�(n+m)

D�B

+W � sort(n+

m)) I/Os. Thus, for sparse graphs and constantW the resulting algorithm FAST SSSP
requiresO(

n

p

D�B

+ sort(n)) I/Os.

For integer weights inf1; : : : ;Wg, the maximum shortest-path distance of an arbi-
trary reachable node from the source nodes is bounded byW � (n � 1). FAST SSSP
subsequently identifies the set of nodes with shortest-pathdistances1; 2; : : :, denoted
by levelsL(1), L(2), . . . ; forW > 1 some levels will be empty. During the construc-
tion of levelL(t), FAST SSSP keeps the firstD � B blocks of each levelL(t �W �

1); : : : ; L(t+W � 1) in main memory. The neighbor nodesN(L(t� 1)) of L(t� 1)

are put toL(t); : : : ; L(t+W � 1) according to the edge weights. After discarding du-
plicates from the tentative setL(t), it is checked againstL(t �W � 1); : : : ; L(t � 1)

in order to remove previously labeled nodes fromL(t). For the whole algorithm this
causes at mostO(W � sort(n+m)) I/Os.

Using the randomized preprocessing of FAST BFS, the expected length of stay for
an arbitrary adjacency list inH is multiplied by a factor of at mostW (as compared
to FAST BFS): the expected shortest-path distance between any two nodesu, v 2 S

i

is at mostW � E[d(u; s

i

) + d(s

i

; v)℄ � 2 �W=�. Hence, the expected number of I/Os
to handleH is at mostO(W=� � (n +m)=(D � B) +W � sort(n +m)). The choice

� = minf1;

q

W �(n+m)

n�D�B

g balances the costs of the various phases and the stated bound
results.

8 Semi-External BFS on Sparse Directed Eulerian Graphs

The analysis for FAST BFS as presented in the previous sections does not transfer to
directed graphs. There are two main reasons: (i) In order to detect previously labeled
nodes during the construction of BFS levelL(t) it is usually not sufficient to check just
L(t� 1) andL(t� 2); a node inA0

(t) may already have appeared before in any level
L(0); : : : ; L(t� 1). (ii) Unless a subgraphS

i

is strongly connected it is not guaranteed



that once a nodev 2 S

i

is found to be part of BFS levelL(t), all other nodesv0 2 S

i

will belong to BFS some levelsL(t0) havingt0 < t + jS

i

j; in other words, adjacency
lists for nodes inS

i

may stay (too) long in the data structureH.
Problem (i) can be circumvented in theSEM setting by keeping a lookup table in

internal memory. Unfortunately, we do not have a general solution for (ii). Still we ob-
tain an improved I/O-bound forSEM BFS on sparse directedEulerian graphs1. The
preprocessing is quite similar to the deterministic undirected variant of Section 6. How-
ever, instead of grouping the adjacency lists based on an Euler Tour around aspanning
tree, we partition them concerning an Euler Circuit for thewhole graph:

The PRAM algorithm of [6] yields an Euler Circuit inO(logn) time; it applies
O(n+m) processors and usesO(n+m) space. Hence, this parallel algorithm can be
converted into anEM algorithm which requiresO(log n � sort(n +m)) I/Os [8]. Let
hv

0

; v

1

; : : : ; v

m�1

; v

m

i denote the order of the nodes on an Euler Circuit forG, start-
ing from one occurrence of the source node, i.e.,v

0

= s. Let the subgraphS
i

contain
the nodes of the multi-setfv

i�(D�B)

1=3

; : : : ; v

(i+1)�(D�B)

1=3

�1

g. As in the determinis-
tic preprocessing for the undirected case (Section 6), a node v may be part of several
subgraphsS

i

; therefore,v’s adjacency list will only be kept in exactly one subfileF
i

.
We impose another additional restriction: the subfilesF

i

only store adjacency lists of
nodes having outdegree at most(D �B)

1=3; these nodes will be calledlight, nodes with
outdegree larger than(D � B)

1=3 are calledheavy. The adjacency lists for heavy nodes
are kept in a standard representation for adjacency lists.

The BFS-phase of the directedSEM version differs from the fully-external undi-
rected approach in two aspects: (i) The BFS levelL(t) is constructed asA0

(t)nfL(0)[

L(1) [ : : : [ L(t � 1)g, whereL(0); L(1); : : : ; L(t � 1) are kept in internal mem-
ory. (ii) The adjacency list of eachheavy nodev is accessed separately usingO(1 +

outdegree(v)=(D � B)) I/Os at the time the lists needs to be read. Adjacency lists of
heavy nodes arenot inserted into the data structureH. Each such adjacency list will be
accessed at most once. As there are at mostm=(D � B)

1=3 heavy nodes this accounts
for O(m=(D � B)

1=3

) extra I/Os.

Theorem 4. Semi-external memory BFS on directed Eulerian graphs requires
O(

n+m

(D�B)

1=3

+ sort(n+m) � logn) I/Os in the worst case.

Proof: As already discussed before the modified preprocessing can be done using
O(sort(n+m) � logn) I/Os.

The amount of data kept in eachF
i

is bounded byO((D � B)

2=3

). Hence, access-
ing and merging all them=(D � B)

1=3 subfilesF
i

intoH during the BFS-phase takes
O(m=(D �B)

1=3

+ sort(m)) I/Os (excluding I/Os to scan data already stored inH).
A subfileF

i

is calledregular if none of its adjacency lists stays inH for more than
2 � (D �B)

1=3 successive BFS levels; otherwise,F

i

is calleddelayed. The total amount
of data kept and scanned inH from regular subfiles is at mostO(m=(D � B)

1=3

� (D �

B)

2=3

� (D �B)

1=3

) = O(m � (D � B)

2=3

). This causesO(m=(D �B)

1=3

) I/Os.

1 An Euler Circuit of a graph is a cycle that traverses every edge of the graph precisely once. A
graph containing an Euler Circuit is called Eulerian. If a directed graph is connected then it is
Eulerian provided that, for every vertexv, indegree(v) = outdegree(v).



Now we turn to the delayed subfiles: letD := fF

i

0

;F

i

1

; : : : ;F

i

k

g, k � m=(D �

B)

1=3, be the set of all delayed subfiles, wherei
j

< i

j+1

. Furthermore, lett
i

j

be the
time (BFS level) whenF

i

j

is loaded intoH; similarly let t0
i

j

be the time (BFS level)
after which all data fromF

i

j

has been removed fromH again.
Recall that the source nodes is the first node on the Euler Circuit

hv

0

; v

1

; : : : ; v

m�1

; v

m

; v

0

i. Hence, nodev
i

has BFS level at mosti. Furthermore, ifv
i

belongs to BFS levelx � i then the successive nodev
i+1

on the Euler Circuit has BFS
level at mostx+1. AsF

i

0

contains (a subset of) the adjacency lists of the light nodesin
the multi-setfv

i

0

�(D�B)

1=3

; : : : ; v

(i

0

+1)�(D�B)

1=3

�1

g, we findt0
i

0

� (i

0

+1) � (D �B)

1=3.
More generally,

t

0

i

j

� t

i

j�1

+ (i

j

� i

j�1

+ 1) � (D �B)

1=3

:

The formula captures the following observation: once all data ofF
i

has been loaded into
H, the data ofF

i+l

will have been completely processed after the next(l+1)�(D�B)

1=3

BFS levels the latest. As eachF
i

contains at mostO((D �B)

2=3

) data, the total amount
of data scanned inH from delayedF

i

is bounded byZ =

P

k

j=0

(t

0

i

j

� t

i

j

) � (D �B)

2=3

� (i

0

+ 1) � (D �B) +

P

k

j=1

(t

i

j�1

� t

i

j

+ (i

j

� i

j�1

+ 1) � (D �B)

1=3

) � (D �B)

2=3.

The latter sum telescopes, andZ is easily seen to be bounded byt
k

� (D �B)

2=3

+(i

k

+

k + 1) � (D � B). Together withk; i
k

� m=(D � B)

1=3 andt
k

� n this implies another
O((n+m)=(D �B)

1=3

) I/Os.

Note that Theorem 4 still holds under the weaker memory conditionM = 
(n=(D�

B)

2=3

): instead of maintaining anIM boolean array forall n nodes it is sufficient to
remember subsets of size�(M) and adapt the adjacency lists inEM whenever the
IM data structure is full [8]. This can happen at mostO((D � B)

2=3

) times; eachEM
adjustment of the adjacency lists can be done usingO((n+m)=(D �B)) I/Os.

Theorem 4 also holds for graphs that arenearly Eulerian, i.e.,
P

v

jindegree(v)

� outdegree(v)j = O(m=n): a simple preprocessing can connect nodes with unbal-
anced degrees via paths ofn dummy nodes. The resulting graphG0 is Eulerian, has size
O(n +m), and the BFS levels of reachable nodes from the original graph will remain
unchanged.

9 Conclusions

We have provided a new BFS algorithm for external memory. Forgeneral undirected
sparse graphs it is much better than any previous approach. It may facilitate I/O-efficient
solutions for other graph problems like demonstrated for some SSSP problem. However,
it is unclear whether similar I/O-performance can be achieved on arbitrary directed
graphs. Furthermore, it is an interesting open question whether there is a stronger lower-
bound for external-memory BFS. Finally, finding an algorithm for depth-first search
with comparable I/O-performance would be important.
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