DM207 1/O-Efficient Algorithms and Data

Structures

Fall 2015
Project 1

Department of Mathematics and Computer Science
University of Southern Denmark

October 7, 2015 (with correction October 20, 2015).

Introduction

The goal of this project is to get a feeling for the possible impact of differ-
ences in memory access patterns on the running time of programs.

The project is to be done in groups of size two (although single person
projects are allowed).

General remarks

The programming language should be Java (unless something else is agreed
upon with the lecturer). The tasks below should each be solved by a simple
programs. Each program should time its own core activity, excluding cre-
ating and filling arrays, writing results, etc. The timing should be done
using two calls to http://docs.oracle.com/javase/7/docs/api/java/
lang/System.html#currentTimeMillis (), one just before the core activity
and one just after.

Each program is to be run for many values of the input parameter (usually
input size n), and plots of this are to be made, with the parameter along
the z-axis and time divided by expected running time (often n or nlogn)
along the y-axis. For better stability of plots, each run should be repeated 5
times, smallest and largest value discarded and the average of the remaining
three should be used.

It will be beneficial to create scripts (possibly in another language such as
Python) executing all runs of each Java program for all parameter values,


http://docs.oracle.com/javase/7/docs/api/java/lang/System.html#currentTimeMillis()
http://docs.oracle.com/javase/7/docs/api/java/lang/System.html#currentTimeMillis()

finding the averages of the measurements as described above, and making
the plots.

Make sure that you during development test that the output of each pro-
gram is correct. Measuring algorithms not working correctly will teach you
nothing.

It is legal to base your programs on existing code from the web. In particular,
explicit references are given below to Java code by Sedgewick and Wayne.
For each reference, grab the essential part of the code, and if necessary
rewrite it slightly to suit your needs, and to avoid reliance on helper methods
and libraries by the two authors.

In order to let the Java runtime utilize more of the RAM on your machine,
it may be necessary to increase the “heap size” at invocation using the
-Xmx option (see e.g. http://stackoverflow.com/questions/1565388/
increase-heap-size-in-java)).

In order to better discuss your plots, it may be beneficial to investigate the
amount of cache (L1, L2, possibly L3) and RAM, as well as cache line sizes,
on your computer. Use the Web to find info on how to do this on your
platform.

Tasks

1. Implement Quicksort and Heapsort on ints. For the former, you can
base your code on the core parts of http://algs4.cs.princeton.
edu/23quicksort/Quick. java.html, and for the latter on http://
algs4.cs.princeton.edu/24pq/Heap. java.html. In both cases, you
will need to change the type Comparable to int. It is also important
to remove the line with the shuffle operation (which is essentially
random memory accesses, and which will perturb the measurements).

Each program should start by creating an array of size n, filled with
random int’s (use for instance http://docs.oracle.com/javase/7/
docs/api/java/util/Random.html). The core part (to be timed) of
the program is only the sorting itself.

Run each program for values of n between approximately 1.000 (4 Kb)
and 500.000.000 (2 Gb), increasing by a factor of 1.7 each time. Plot
for each program the running time divided by nlogn as a function
of n

Discuss your plots.


http://stackoverflow.com/questions/1565388/increase-heap-size-in-java
http://stackoverflow.com/questions/1565388/increase-heap-size-in-java
http://algs4.cs.princeton.edu/23quicksort/Quick.java.html
http://algs4.cs.princeton.edu/23quicksort/Quick.java.html
http://algs4.cs.princeton.edu/24pq/Heap.java.html
http://algs4.cs.princeton.edu/24pq/Heap.java.html
http://docs.oracle.com/javase/7/docs/api/java/util/Random.html
http://docs.oracle.com/javase/7/docs/api/java/util/Random.html

2. Make a copy of your Quicksort program which sorts an array of Integer
objects (again initialised to random integer values) instead of an array
of int’s (a Java primitive type, i.e., not an object). The core part is
again only the sorting itself.

Run the int program for values of n between approximately 1.000
(4 Kb) and 500.000.000 (2 Gb) and the Integer program for values
of n between approximately 1.000 and 30.000.000 (Integer’s use much
more space than int’s), in both cases increasing by a factor of 1.7 each
time. Plot for each program the running time divided by nlogn as a
function of n.

Discuss your plots (hint: how are objects in Java stored in memory,
what is an array of objects?). For a slightly more pronounced effect,
shuffle each array before sorting (outside of the timing), for instance
using Sattolo’s algorithm (see next task). Why will this make the
effect more pronounced?

3. An array A of length n containing the integers 0,1,...,n — 1 can be
viewed as a set of cyclic linked lists of array cells: if Afi] is equal to
j, then array cell i points to (has as successor in list) array cell j. In
particular, if there is only one linked list in total, the array is called
an n-cycle.

Create a program which allocates an array of ints of length n, and
makes it into the specific n-cycle given by Afi] =i+ 1 (and A[n—1] =
0).

Create another program which allocates an array of ints of length
n, and makes it into a random n-cycle by using Sattolo’s algorithm,
which can be found at http://algs4.cs.princeton.edu/11model/
Sattolo.java.

Each program should then start at A[0] and follow the cycle (reading
the contents of an array cell to find the next array cell) for m steps.
Only this is the core part of the program to be timed.

For values of n between approximately 1.000 and 500.000.000, run each
program for m = 1.000.000.000 steps of the cycle. Plot the running
time divided by m as a function of n.

Discuss your plots.

4. Create a program which allocates an array of ints of length n, and
fills it with random int’s.


http://algs4.cs.princeton.edu/11model/Sattolo.java
http://algs4.cs.princeton.edu/11model/Sattolo.java

The program should then touch array cells with indices 0, d, 2d, 3d, . ..
for a parameter d, in a circular fashion, returning to index 0 when
the end of the array is reached. This should done for m steps in total
(suggestion: create a double for-loop, with the inner loop being a single
pass of the array, and the outer loop repeating this m/(n/d) = dm/n
times). The touching can be adding the contents of the array cell to a
global variable.

Only the circular touching of the array is the core part of the program
to be timed.

Run the program for n = 22 (1 Gb), m = 2% and d = 2! for i =
0,1,2,3,...,28. Plot running time divided by m as a function of .

Discuss your plots (hint: what is the L1, L2 (and L3, if available)
cache line size and cache size of your machine)?

5. Boot the machine (or another machine, such as one in the IMADA
Computer Lab) with 1 Gb of RAM [see below how]. Run the experi-
ments from Task 1-3 again with values of n from 10.000 to 400.000.000
(except for the Integer sorting, where you should stop around 20-
30.000.000). You should also set the java “heap size” to 4 Gb by using
the -Xmx option. Note: some experiments (Heapsort and the random
cycle) may not terminate in reasonable time (such as one hour) for
large n. If so, then stop the progranﬂ and just report this observa-
tion. It is for time reasons OK just do each run once (not averaging
over three out of five). Also run the experiment from Task 4 again,
but for time reasons set m = max(230/d, 219), as larger d will mean a
significantly larger time per touch (don’t forget that you should plot
running time divided by m, where m is now varying).

Formalities

Make a report of 810 pages describing your experiments and the charac-
teristics (such as disk, RAM, and cache sizes) of the machine used for these.
Any further details from the implementation besides those from the task de-
scription above should be mentioned. Use plots of your experimental data
(not tables), and make sure it is explained what they show. Draw conclu-
sions based on the observed data. Source code should not be included in
the report, but the source files should be part of the hand-in.

!Command kill -9 ProcessID is useful here, where ProcessID can be found using the
command top.



You should hand in your report (in pdf) and your source files as one zip-file
using SDU Assignment at the Blackboard page of the course.

The project will be evaluated by pass/fail grading. The grading will be
based on:

e The clarity of the writing and of the structure of the report.

e The thoroughness of the experiments—execution as well as discussion.

Deadline:
Monday, October 19, 2015, at 23:59.

Booting with less RAM

The following can be done on machines in the terminal room (and proba-
bly in a similar way on any Ubuntu Linux installation). It will make the
operating system only see the specified amount (1 Gb in the example) of
RAM. In the terminal room, don’t use any of the machines marked “don’t
shut down”, and don’t use any machine with a running batch job from an-
other user (check first few lines of output of the top command for other
(non-system) user names).

1. Push briefly the physical power button on the machine.

2. Choose “Shut down” from the appearing menu on the screen, and wait
for the shut-down to complete.

3. Then press press the power button again to start up the machine.
Just after the HP splash screen goes away in the beginning of the
boot process, press down the Esc key. The ASCII-based GRUB menu
appears after some time.

4. Press e for edit, move (with arrow keys) to the long line starting with
linux, and move to the end of this line with Ctrl-e (or arrow keys).

5. Write (append) the string ” mem=1024M” to end of line. (The character
'=" will be on the key just left of the backspace key.)

6. Press Ctrl-x, and wait for the boot to complete (note: less RAM means
slower Ubuntu interface).



7. Perform the experiments.

8. Shut down and start the machine again as usual (with no editing of
the GRUB menu). This will make the machine return to its default
Settingsﬂ

2] experienced that keyboard input was based on US keyboard layout until yet another
reboot—if the same happens to you, reboot twice.



