
DM22 Exam Summer 2005

Sketch of possible solutions

1a: One straight-forward solution is the following:

selsort [] = []

selsort (x:xs) = m:(selsort rest)

where

m = minimum (x:xs)

rest = remove m (x:xs)

remove x [] = []

remove x (y:ys)

| x == y = ys

| otherwise = y:(remove x ys)

Here, minimum is from the standard prelude. It can be replaced by foldl1 min.
The function remove can also be found in the standard library List as delete.
A variant is to find m and rest simultaneously:

selsort [] = []

selsort xs = m:(selsort rest)

where

(m,rest) = delmin xs

delmin [x] = (x,[])

delmin (x:xs)

| x <= y = (x,xs)

| otherwise = (y,x:ys)

where

(y,ys) = delmin xs

1b: A solution finding strings of a given length directly, using list comprehen-
sions:

binstrN 0 = [""]

binstrN n = [b:bs | b <- "01", bs <- binstrN (n-1)]

binstrings = [bs | len <- [0..], bs <- binstrN len

A solution finding strings of a given length from strings of previous length,
using iterate:

addbits [] = []

addbits (x:xs) = (x++"0"):(x++"1"):addbits xs

binstrings = concat (iterate addbits [""])

1

A variant of this based on ”process networks” (section 17.7 in Thompson) –
note that only last line of definition of addbits is needed:

binstrings = "": addbits binstrings

2a: The predicates append and prefix are built-ins, but also appear in the
textbook. The cut makes frontRep non-resatisfiable, which probably is the
most natural - however, it is not necessary for our use of the predicate.

frontRep(L):-append(Pre,Rest,L),Pre\=[],prefix(Pre,Rest),!.

2b: Here is a version which builds solutions up from shorter solutions. Again,
member is a built-in predicate, but also appears in the textbook. A simpler and
slower version is to generate all strings over S and then check these for being
solutions.

repFree([],0).

repFree([E|Y],N):-

N>0,

N1 is N-1,

repFree(Y,N1),

member(E,[1,2,3]),

\+frontRep([E|Y]).

2c: The version below finds the number of solutions for each N, and then sum
these up. Again, findall and length are built-in predicates, but also appear
in the textbook (length under the name listlen).

count(N,R):- findall(R1,repFree(R1,N),L),length(L,R).

countLessThanEq(0,1).

countLessThanEq(N,R):-

N>=1,

count(N,R1),

N2 is N-1,

countLessThanEq(N2,R2),

R is R1+R2.

Here is a version which uses that each solution of length at most N is generated
exactly once when the version of repFree above is used to generate all solutions
of length N. The code below keeps track of the count using a predicate counter.
Note that repFreeSave essentially is a copy of repFree.

2

countLessThanEq(N,R):-

asserta(counter(0)),

findall(_,repFreeSave(_,N),_),

counter(R),

retract(counter(_)).

repFreeSave([],0):-incCounter.

repFreeSave([E|Y],N):-

N>0,

N1 is N-1,

repFreeSave(Y,N1),

member(E,[1,2,3]),

\+frontRep([E|Y]),

incCounter.

incCounter:-

retract(counter(C)),

C1 is C+1,

asserta(counter(C1)).

3a: Two successful instantiations will be produced as results: X = 1,Y = b

and X = 1,Y = c. The rest of the 2 · 2 · 3 = 12 possible combinations of values
of v, u, and s do not appear because of the cut, and because the two instances
of Y must be the same value.

3b:

∀X(∃Y ((a(X,Y) ∨ b(Y)) ⇒ c(X)))

∀X(∃Y (¬(a(X,Y) ∨ b(Y)) ∨ c(X)))

∀X(∃Y ((¬a(X,Y) ∧ ¬b(Y)) ∨ c(X)))

∀X((¬a(X, f(X)) ∧ ¬b(f(X))) ∨ c(X))

(¬a(X, f(X)) ∧ ¬b(f(X))) ∨ c(X)

(¬a(X, f(X)) ∨ c(X)) ∧ (¬b(f(X)) ∨ c(X))

Clausal form:

c(X):-a(X,f(X)).

c(X):-b(f(X)).

3c:

i) X = t, Y = g(t), Z = t

ii) T = g(g(Z)), X = g(g(g(g(Z)))), Y = g(g(Z))

iii) The two predicates do not unify: X+Y is a structure (not a number) having
X as a subterm, and hence cannot unify with X.

3

3d:

i) map zip :: [[a]] -> [[b] -> [(a,b)]]

ii) map . zip :: [a] -> [[b]] -> [[(a,b)]]

4a: The proof is by induction on the length of xs. The base case is xs = [],
which is easily proved. The induction step is proved by substitution of the
definitions, followed by simple manipulations using the supplied equation in
one of the steps.

4b: Two functions are equal if they have the same value at every argument
(textbook, p. 193). Hence we must prove

(reverse . filter p) xs = reverse (filter p xs)

equal to

(filter p . reverse) xs = filter p (reverse xs)

for all lists xs. For finite lists, this has been done in part a. For fp-lists, we
must prove an additional base case in the induction proof in part a, namely
xs = undef (cf. textbook, p. 377). Since both functions use pattern matching
on xs, they both return undef when xs = undef. Using this fact twice implies
that both sides in the equation of a have the value undef and hence are equal.
This extended induction proof proves the statement for fp-lists. Since we are
dealing with an equation, this is enough to prove the statement for all infinite
lists (textbook, p. 380).

4c: Assume xs = [a,b,c,d,e], and that p happens to return undef on c but
not on the remaining elements of xs. Then it is easy to argue that the left-hand
side in part a is reverse (p a):(p b):undef, which again is undef, whereas
the right-hand side is filter p [e,d,c,b,a], which is (p a):(p b):undef,
and hence different from the left-hand side.

So the equation in part a does not hold, and hence the equation in part b does
not hold either.

4

