
Introduction to Haskell II

Rolf Fagerberg

Spring 2005

1

Operators

Operators = built-in set of functions with short non-letter names.

Examples: � (addition), � (subtraction), � � (list concatenation).

Most have two parameters and are written using infix notation:

� � �

← infix

� � � � �

← usual prefix notation for functions

We can convert between “operator” and “standard” version of
two parameter functions

Def:

� � � � � � � � �

� � � � �

;

	

 � � � �

;

	

� �

� � � � �

;

	

2

Associativity and Binding Power

To save on parentheses, operators (along with function
application) are given diffent binding powers:

� � � � � � � �

=

 � � � � �

 � � � � � � �

To resolve evaluation order of sequences of operators of equal
binding power, they have an associativity assigned:

� � � � � � �

=

 � � � � � � � � � �

�

�

�

�

�

�

�

=

 �

�

� �

�

� �

�

� �

� � � � � � �

=

 � �
 � �
 � � � � � �

So � and � are left associative, whereas

�

is right associative.

3

Do-it-yourself operators

You can define new operators (see Appendix C for rules).

Example: Minimum operator:

(??) :: Int -> Int -> Int

x ?? y

| x > y = y

| otherwise = x

Now:

� � � �

;

�

Define associativiy and binding power:

� � � � � � � � �

4

Pattern Matching

Definitions may use pattern matching on the parameters:

� �� � � �

� �� � � � ��

� �
� � � �

� � � � ��� � ���

�	� �

�

�

�	� �

�

 � � ��
 � � �
�

� �� � �

 � � ��

�	� � �

� �� � �

 � � ��

�	� �

�

� � � ��� �

 � � ��
 � � �
�

� �� � �

 � � ��

� �

� �

� �� � �

 � � ��

� � �

�

� � � ��� �

 � � � � � �� � �

 �
�� � � � �� � �

 � � � � � �� �

� � � � � �� � � �
�

� � � �

� � � � �

� �

� � �

� � �� �

� � � � � � ��

� � � � � � � � � �

;

�

� � � � �

;

�

5

Pattern Matching

A pattern is made of:

• Literals

� �

,

�� � � ,

� � �

,

� �

• Identifiers �, � (wild card � is a nameless variable)

• Tuple constructor

�	� �	� � �

• List constructor

� � �� �

• More constructors later. . .

A pattern can be hierarchical:

� � �� �

� �

� � � �� �
�

 � � � � � �

A pattern can match or fail. To match, all sub-patterns must
recursively match. When a match occurs, any matched
identifiers are bound to the value matched.

6

Polymorphism
Types can be parametric

�
 � � � � � � � � � � � � �
�

� �� � � �

�
 � � � � � �

�

� �

�
 � � � �

� � �� �

� � � � �
 � � � � ��

�
 � � � � � � � � � �
�

� � � 	 � � � �

;

� � � � � � � 	 � � �

�
 � � � � � � � �
�

� �
�

� �
�

�

�
 � � � � � �

�

� �

�
 � � � �

� � �� �

� � � � �
 � � � � ��

� � � � � �
�

�
�

� �� �
�

� �

�� � � �

� � �

� � �� �

� � �� �

�

�	� �
� � � � � �� ��

� � �

� � �� � � �

�

� �

� � � � � �� �

� �

� � � � � � � � � � � � � � � � � � �

;

�
 � � � � � �
�

 � � � � � � �

7

Functions as parameters and results

In Haskell, functions are values (value ∼ expression trees with
empty leaves).

Can be passed to and from functions (then called high-order
functions).

Very useful high-order functions:

� � �,

� � � � � , � � � � � � �

,

�
 � � �

,

�
 � � ,
�
 � � � �

,

�
 � � �

� � � � �

� �
� � �

�
� �

�
�

�
� �� �

� � � � � �
�

� �

� � � �

� � �� �

� � � � � � � � ��

8

Functions as parameters and results

Generating functions as results:

• Composition:

� � � � �

��� � � � � � � � �

• Partial application (currying):

� � � � � � � �
�

� � � �
�

� � � �

� � � � � � � � �

� � � � �� � � � � �
�

� � � �

� � � � �� � � � � �

or

� � � � �� �

 � � �

� � � � �� � � � � � �� � � �
�

� �� � � �

� � � � �� � � � � � � �

� � � � �

9

Some Library Functions in Prelude

Check A Tour of the Haskell Prelude
See

� � � � � � �� �� �� � � � �
�
 � � � �� �� � � � � �

10

http://www.cs.uu.nl/~afie/haskell/tourofprelude.html

	Operators
	Associativity and Binding Power
	Do-it-yourself operators
	Pattern Matching
	Pattern Matching
	Polymorphism
	Functions as parameters and results
	Functions as parameters and results
	Some Library Functions in Prelude

