Introduction to Haskell Il

Rolf Fagerberg

Spring 2005



Operators

Operators = built-in set of functions with short non-letter names.
Examples: + (addition), - (subtraction), ++ (list concatenation).

Most have two parameters and are written using infix notation:

2 + 3 — infix
add 2 3 «— usual prefix notation for functions

We can convert between “operator” and “standard” version of
two parameter functions

add 2 3 ~» 5
(+) 2 3 ~ 5
2 ‘add‘ 3 ~ 5

Def:
add x y = X + ¥y



Associativity and Binding Power

To save on parentheses, operators (along with function
application) are given diffent binding powers:

2 x 3 +f 4 " 2 ((2 x 3) + ((f 4) ~ 2))

To resolve evaluation order of sequences of operators of equal
binding power, they have an associativity assigned:

(((4 +3) +2) +1)
((4 - 3 -2 -1)
4" (3" (2" 1)))

e
1

So + and - are left associative, whereas ~ Is right associative.



Do-I1t-yourself operators

You can define new operators (see Appendix C for rules).

Example: Minimum operator:

(??) :: Int -> Int -> Int
X 77y
|X>y =
| otherwise = x

<

Now:
3774 ~ 3
Define associativiy and binding power:

infixl 7 77



Pattern Matching

Definitions may use pattern matching on the parameters:

fac O
fac n

fliptuple (x,y) = (y,x)

onAxe
onAxe
onAxe

onAxe
onAxe
onAxe

=1

= fac (n-1) * n

(0,y)
(x,0)
(x,y)

True

True
Fals®©

True
True
Fals®©

or True _ = True
or _ True = True

or

sum «° .

Sum
Sum

Su

Sum

= False

[Int] -> Int

[] = 0

(x:xs8) = x + sum XS
[1,2,3] ., &

[] ~ O



Pattern Matching

A pattern is made of:

e Literals 24, True, ’s’, []

e Identifiers x, y (wild card _ Is a nhameless variable)
e Tuple constructor (x,y,z)

e List constructor (x:xs)

e More constructors later. ..

A pattern can be hierarchical: ("hi", (x:(x’:xs),(2,0)))

A pattern can match or fail. To match, all sub-patterns must
recursively match. When a match occurs, any matched
Identifiers are bound to the value matched.



Polymorphism

Types can be parametric

concat :: [[Int]] -> [Int]

concat [] = []
concat (x:xs) = x ++

concat Xs

concat [[1,2],[4,5,6]] ~ [1,2,4,5,6]

concat :: [[al]l -> [al

concat [] = [
concat (x:xs) = x ++
z1lp ::
zip (x:xs) (y:ys)
zip (x:xs) []
zip [] A

zip [1,2,3] [’a’,’b’]

concat xs

[a]l -> [b] -> [(a,b)]

(x,y) : zip xs ys
]
]

~ [(1,%a?),(2,°b?)]



Functions as parameters and results

In Haskell, functions are values (value ~ expression trees with
empty leaves).

Can be passed to and from functions (then called high-order
functions).

Very useful high-order functions:
map, filter, zipWith, foldl, foldr, foldll, foldrl

map :: (a ->b) -> [a] -> [b]
map £ [1 = []
map f (x:xs) = f x : map f xs



Functions as parameters and results

Generating functions as results:

e Composition:

f=g . h
twice £f = f . £

e Partial application (currying):

add :: Int -> Int -> Int
add x y =x +y

addOne :: Int -> Int
addOne = add 1 oOfr
addOne = (1+)

addOneAll :: [Int] -> [Int]
addOneAll = map (add 1)



Some Library Functions in Prelude

Check A Tour of the Haskell Prelude
See
http://www.cs.uu.nl/"afie/haskell/tourofprelude.html

10


http://www.cs.uu.nl/~afie/haskell/tourofprelude.html

	Operators
	Associativity and Binding Power
	Do-it-yourself operators
	Pattern Matching
	Pattern Matching
	Polymorphism
	Functions as parameters and results
	Functions as parameters and results
	Some Library Functions in Prelude

