
DM22 Programming Languages

Spring 2005

Project 1

Department of Mathematics and Computer Science

University of Southern Denmark

March 7, 2005

The purpose of this project is to implement in Haskell a dictionary structure based on
AVL-trees, and to implement, using this dictionary, an algorithm for a problem in com-
putational geometry. The project is to be done in groups of up to two persons.

Dictionaries

An ordered dictionary is an abstract datatype storing elements of type (k, x), where the key k
is from some ordered set (e.g. the real numbers R) and the data x is from some arbitrary set.

It offers the following operations:

makeDict() Create and return an empty dictionary.
isEmpty(D) Return True iff the dictionary D is empty.
search(k,D) Return the element (k, x) in dictionary D, if present.
insert(k, x,D) Insert element (k, x) in dictionary D. returning the updated

dictionary.
delete(k,D) Delete (if present) the element (k, x), returning (k, x) and

the updated dictionary.
rangeSearch(k1, k2, D) Return the set of (k, x)’s in D where k1 ≤ k ≤ k2.

For simplicity, we assume that each key k is present only once in the dictionary.

AVL-trees

An AVL-tree is a type of balanced binary search tree (in fact, the first type of balanced search
tree, invented in 1962 by Adel’son-Vel’skĭı and Landis). The balance criterion is that for each
node v in the tree, the heights of the two subtrees of v differ by at most one. It can be proven
that the height of such a tree is logarithmic—more precisely, that the height is bounded by
log

ϕ
(n+1) = c · log2(n+1), where n is the number of internal nodes, ϕ = (

√
5+1)/2 ≈ 1.618

is the golden ratio, and c is 1/ log2 ϕ ≈ 1.44. In the following, we let bal(v) denote the height

1

of the right subtree of v minus the height of the left subtree of v. The balance criterion for
AVL-trees can be expressed as |bal(v)| ≤ 1 for all nodes v in the tree. Below are shown
two search trees annotated with balance information. External nodes, i.e. subtrees which are
empty, are not shown. The tree on the left is an AVL-tree, whereas the tree on the right is
not.

8 0

2 0 11 −1 20 0

7 +1 22 −1

15 −1

8 0

2 0 11 −1

7 +1 22 0

15 −2

Searching in any search tree is a well-known recursive process based on the search tree in-
variant that all keys in the left (right) subtree of a node v are smaller (larger) than the key
in v. Range searches are performed by a similar recursive process, but now recursing on both
children of v if the key of v is contained in the search interval.

Insertions and deletions in AVL-trees are performed as usual in search trees (see Section 16.7
in the textbook). After an insertion or deletion, the heights of subtrees rooted at nodes on
the path from the root to the node which was deleted (which may be the node containing the
key mini in the code on page 318 in textbook) have possibly changed by one. Hence, nodes
v in this path may now have |bal(v)| = 2, which will violate the balance criterion. Nodes
outside this path clearly change neither height nor balance.

The balance criterion is restored in a bottom-up fashion along this path. For an unbalanced
node v on this path, one of the two transformations (denoted a single rotation and a double
rotation) shown below is performed.

x +2

y +1 or 0

CB

A →

y

x

A B

C

x +2

z −1

y

D

B C

A →

y

x z

A B C D

The choice between the two transformations depends on the balance of the tallest child of the
unbalanced node v, as indicated on the figure. Symmetric cases (reflected in a vertical line)
of the transformations exist, in which all balance values shown have changed sign.

It can be shown that these transformations will restore the balance at v, given that all
unbalance below it has been handled. After v, the process continues with the parent of v,
etc., until the root is reached.

2

Each node in the AVL-tree will keep an integer containing its height. Note that the height
of a node can be found from the heights of its two children. From this, the new heights of
nodes on the path can be found during the bottom-up rebalancing process, from which the
rebalancing cases (if any) can be recognized.

Task 1

Implement in Haskell a module Dictionary supporting the operations above. The imple-
mentation should be based on AVL-trees. For testing purposes, your module should contain
procedures (not exported) for checking the search tree invariant and for checking the AVL
balance criterion. The first is implemented by doing an in-order traversal of the tree and veri-
fying that the keys are met in sorted order. The second is implemented by doing a post-order
traversal, verifying that for all nodes v, the height stored is correct and |bal(v)| is at most
one.

Orthogonal Line Segment Intersection

The problem of orthogonal line segment intersection finding is for two sets A and B of line
segments, where those in A are horizontal, and those in B are vertical, to find all pairs
(a, b) ∈ A × B for which a and b intersect. For simplicity, we assume that all line segments
are finite and closed (the endpoints are included in segments), and that no two segments in
A touch each other. The figure below shows an instance where the result has size 9.

sweepline

One algorithm for the problem is based on the sweep-line technique: Think of the x-axis as
a time line and consider a vertical line sweeping from left to right. When a left endpoint
of a line segment in A is met, the line segment is inserted into a dictionary D with the
y-value of the line segment as key. When a right endpoint of a line segment in A is met, the
corresponding entry is deleted from D. When a line segment l from B is met, a range search
in D is performed with the y-values of the endpoints of l giving the search interval. The result
of this range search is exactly the line segments of A that intersects l.

The “points in time” (i.e. the x-values) of interest are therefore the x-values of the left and
right endpoints of line segments in A, and the x-values of the line segments in B. The

3

algorithm starts by making a list of these objects, sorted on their x-values. Sweeping the line
from left to right can now be implemented as a traversal of this list.

Task 2

Implement in Haskell a module Intersection which implements the algorithm above. The
module should support a single function which takes as input two lists of line segments
(the first representing A, the second representing B) and returns a list of pairs of segment
identifiers. The following self-explanatory type definitions should be used for A and B:

data HSegment = HSeg SegID MinX MaxX Y

data VSegment = VSeg SegID MinY MaxY X

type SegID = String

type MinX = Float

type MaxX = Float

type MinY = Float

type MaxY = Float

type Y = Float

type X = Float

Formalities

A printed report of around five to seven pages should be handed in. Haskell code and any
test data should be given as appendices. The main aim of the report should be to describe
the modeling and program design choices made during development, the reasoning behind
these choices, and the structure of the final solution. You should state the running time of
all operations exported by your modules. A copy of the Haskell code should be mailed to the
lecturer at rolf@imada.sdu.dk as a .tgz or .zip file. Remember to state the name of the
group members.

You must hand in the report and the code by

Monday, April 11, 2005

4

