
Introduction to Haskell II

Rolf Fagerberg

Spring 2007

1

Type Synonyms and Copies

Type Synonymstype String = [Char℄type Name = Stringtype Address = Stringtype Age = Inttype Coordinate2D = (Float,Float)
Not a new type, just another (more informative) name.

Type Copyingnewtype MyString = MString String

A new type–a copy of the old. Class memberships (see later)
may be independent from old type.

2

Algebraic Types

Besides simple type synonymes (using type and newtype), more
advanced (and very useful) user defined types - denoted
algebraic types - can be created with the data keyword.

The general syntax is:data Typename zero_or_more_type-variables= Construtor1 zero_or_more_type_expr |= Construtor2 zero_or_more_types_expr |...= ConstrutorN zero_or_more_typesderiving (list_of_ertain_lasses)

The identifiers for the type name and the constructor names
must be capitalized.

3

Examples
Enumerated types:data Bool = False | Truedata Ordering = LT | EQ | GTdata Seasons = Winter | Spring | Summer | Falldata WeekDays= Mon | Tue | Wed | Thu | Fri | Sat | SunworkDays = [Mon, Tue, Wed, Thu, Fri℄
Product types (alias tuples, alias records):data DBReord = DBRe Name Address Agetype Name = Stringtype Address = Stringtype Age = Intperson1 = DBRe "Joe Dole" "Main Street 10" 42

4

Examples
Alternatives:data Shape= Cirle Float | Retangle Float Float
Note: constructors are functions:Cirle :: Float -> Shapeshape1 = Cirle 3.0Retangle :: Float -> Float -> Shapeshape2 = Retangle 45.9 87.6
Additionally, they can (like the built-in constructors [℄, :, etc.) be
used as patterns in pattern matching:area :: Shape -> Floatarea (Cirle r) = pi*r*rarea (Retangle w h) = w*h

5

Examples
Algebraic types can be recursive:data IntList = EmptyList | Cons Int IntListdata IntExpr = Literal Int |Add IntExpr IntExpr |Sub IntExpr IntExprdata IntTree = IntLeaf |IntNode Int IntTree IntTreetree = IntNode 7 IntLeaf (IntNode 13 IntLeaf IntLeaf)

Constructors can be infix operators (identifier must then start
with ´:´):data IntList = EmptyList | Int ::: IntList

6

Examples

Algebraic types can be parametric:data List a = EmptyList | Cons a (List a)data Tree a = Leaf |Node a (Tree a) (Tree a)
Example functions on trees:depth :: Tree a -> Intdepth Leaf = 0depth (Node _ l r) = 1 + max (depth l) (depth r)inorder :: Tree a -> [a℄inorder Leaf = [℄inorder (Node x l r) = inorder l ++ [x℄ ++ inorder r

7

Haskell Classes

Class = a specified set of functions (to be overloaded among
several types).

Classes created by giving their signature = the types of the set
of functions (so class ≈ interface in Java).lass Eq a where(==) :: a -> a -> Bool
Existing types can be made instances of a class by providing
definitions of the functions:instane Eq MyBool where(==) MyTrue MyTrue = True(==) MyFalse MyFalse = True(==) _ _ = False

8

Context
Classes can be used as context, i.e. constraints on type
variables in parametric types:elem :: Eq a => a -> [a℄ -> Boolelem x [℄ = Falseelem x (y:ys) = (x == y) || (elem x ys)
Can also be used in instance declarations:instane Eq a => Eq [a℄ where(==) [℄ [℄ = True(==) (x:xs) (y:yx) = (x == y) && (xs == ys)(==) _ _ = False

Note: not all types are in the (built-in) class Eq. E.g. function
types are not (it seems difficult to give an operational feasible
definition of function equality).

9

Overloading vs. Polymorphism

Polymorphism

One definition of function works for many types.

Overloading

Several definitions of the same function (i.e. same
identifier), one for each type.

OO languages like Java normally have overloading but not
polymorphism.

In Haskell, overloading eases coding (imagine naming a version
of == for each type) and makes the notion of polymorphism
stronger (more functions can be defined with the same code).

10

Default Definitions

Class declarations can contain default definitions:lass Eq a where(==), (/=) :: a -> a -> Boolx /= y = not (x==y)x == y = not (x/=y)
Now, instance declarations only need to define /= or ==.
Defining (overriding) both is OK.

11

Derived Classes

Classes can be derived from other classes (again using the
context notation):lass (Eq a) => Ord a where(<), (<=), (>), (>=) :: a -> a -> Boolmax, min :: a -> a -> aompare :: a -> a -> Ordering

When declaring a type an instance of Ord, the methods of Eq are
inherited.

Thus, type classes form a hierarchy rather like the class
hierarchy in OO languages.

12

Some Built-In Classes and Types

The standard prelude contains many predefined type classes.

E.g. for equality (Eq), ordering (Ord), enumeration(Enum),
serialization (Show, Read), and a collection of classes for
structuring the standard numeric types.

Literals may be overloaded, which can lead to ambiguities for
Haskell. Of what type is e.g. 2+3? It may be necessary to
resolve explicitly:(2+3)::Int

13

All Built-In Classes

See www.haskell.org/onlinereport/

14

www.haskell.org/onlinereport/

Deriving Membership of Classes

Membership of certain standard type classes can be generated
automatically in Haskell:data WeekDays= Mon | Tue | Wed | Thu | Fri | Sat | Sunderiving (Eq, Ord, Enum, Show, Read)
The operations of the classes are automatically defined using
obvious (recursive) definitions (with ordering of constructors
going from left to right, and using analogy with lexicographic
ordering for non-nullary constructors). The derivation of Enum

can only be done for enumeration types (nullary constructors
only). More on Enum in later slides.[Mon,Wed .. Sat℄ ; [Mon,Wed,Fri℄

15

More Haskell Syntax

List comprehensions

Math: {x ∈ S |x ≥ 1, x even}

Haskell: [x | x <- S, x >= 1, isEven x ℄
General form: [exp | generators, guards℄
Examples:[x+y | (x,y) <- [(1,2),(7,8)℄, y > 5 ℄ ; [15℄[(i,j) | i<-[1,2,3,4℄, j<-[8,9℄, isEven i ℄

; [(2,8),(2,9),(4,8),(4,9)℄[j�2 | i<-[[1,2℄,[10,20℄℄, j<-i ℄ ; [1,4,100,400℄[[j�2|j<-i℄ | i<-[[1,2℄,[10,20℄℄ ℄ ; [[1,4℄,[100,400℄℄

16

More Haskell Syntax
Lambda definitions

Nameless functions defined inline:zipWith (\x y -> x�2 + y�2) [1,2,3℄ [2,3,4℄
; [5,13,25℄ompose2 f g = \x y -> g (f x) (f y)

Enumeration expression

Easy generation of lists of certain types (types in the Enum class).[3 .. 10℄ ; [3,4,5,6,7,8,9,10℄[3, 3.3 .. 4℄ ; [3.0,3.3,3.6,3.9℄['a', '' .. 'i'℄ ; "aegi"[False ..℄ ; [False,True℄

17

More Haskell Syntax

Local definitionswhere: (often used)f x y| x < 0 = -(sqx*sqy + sqx + sqy) + g y| x >= 0 = sqx*sqy + sqx + sqywheresqx = x*xsqy = y*yg z = (max x z) + twhere t = x*y*zlet: (rarely used)f x = let y=x�3; z=log x in y*z + z�2

18

More Haskell Syntax

Choicease: (rarely used)isOdd x= ase (x `mod` 2) of0 -> False1 -> True

or (not using “layout”):isOdd x = ase (x `mod` 2) of {0 -> False; 1 -> True}if then else: (somewhat used, especially in textbook)isOdd x = if (x `mod` 2)==0 then "Even" else "Odd"

19

Lists
A very useful type. Many powerful and generic functions in
standard Prelude for working with lists, including (see
Section 8.1 in the Haskell Report):map, ++, filter, onat, onatMap, head, last,tail, init, null, length, !!, foldl, foldl1,sanl, sanl1, foldr, foldr1, sanr, sanr1,iterate, repeat, repliate, yle, take, drop,splitAt, takeWhile, dropWhile, span, break,lines, words, unlines, unwords, reverse, and,or, any, all, elem, notElem, lookup, sum,produt, maximum, minimum, zip, zip3, zipWith,zipWith3, unzip, unzip3
Textbook covers the most important of these in Chapter 4 (not
necessarily with the same implementations). Even more
functions can be found in the standard library List.

20

	Type Synonyms and Copies
	Algebraic Types
	Examples
	Examples
	Examples
	Examples
	Haskell Classes
	Context
	Overloading vs. Polymorphism
	Default Definitions
	Derived Classes
	Some Built-In Classes and Types
	All Built-In Classes
	Deriving Membership of Classes
	More Haskell Syntax
	More Haskell Syntax
	More Haskell Syntax
	More Haskell Syntax
	Lists

