
Search Engines for the Web

An Overview

• Brin and Page: The Anatomy of a Large-Scale Hypertextual Web Search

Engine. 7th Int. WWW conference, 1998

1



Information Retrieval

• Process data, build index

• Query the index:
– Find all documents relevant to query
– Rank documents, show most relevant first

Classic Information Retrieval (IR):

Methods developed for small to medium sized
homogeneous collections of text documents.

Examples: Scientific document collections, news
collections, libraries.

2



IR on the Web

Difficulties:

• Documents not local.

• Documents very heterogeneous.

• Documents constantly changing in contents and number.

• Very large document collection (billions of documents, total
size measured in Terabytes).
– Storage and performance are important issues.

Distribution and parallelism necessary.
– Many (e.g. 100.000) relevant documents for most

queries. Good ranking methods are essential.

Advantages:

• Extra structure on document collection: links.

3



Further Challenges of the Web

• Many near-duplicate documents (30%)

• Users heterogeneous and impatient. Advanced search
interfaces not viable.

• How to search and index non-text documents.
– Multimedia contents.
– Database interfaces.

This course: only considers text documents.

4



The Web as a Graph

Note:
WWW = an oriented graph

nodes = pages (URL’s)
edges = links

→

5



Basic Tasks of Search Engines

Gather data:

• Web crawling (traversal of the web graph)

Index data:

• Parse documents

• Lexicon: index (dictionary) over all words encountered.

• Inverted file: for all words in lexicon, list in which documents
they appear.

Search in data:

• Find all relevant documents (those containing the search
phrases).

• Rank the documents.

6



Lexicon

For one billion documents:

Inverted files ∼ total number of words ≥ 100 · 109 Disk

Lexicon ∼ number of different words ∼ 106 RAM

Can reside in RAM ⇒ standard dictionary structures OK.
Examples:

• Binary search in sorted list of words.

• Hash tabels.

• Tries, suffix trees, suffix arrays.

7



Inverted File

• Simple (appearance of word in document):

word1: DocID, DocID, DocID
word2: DocID, DocID
word3: DocID, DocID, DocID, DocID, DocID,. . .
...

• Detailed (all appearances of word in document):

word1: DocID, Position, Position, DocID, Position. . .
...

• Even more detailed:

Appearance annotated with info (heading, boldface, anchor
text,. . . ). Useful during ranking.

8



Constructing index

foreach document D in collection

Parse D and identify words

foreach word w

output (DocID, w)

if w not in lexicon

insert w in lexicon

⇓
(1, 2), (1, 37), . . . , (1, 123) , (2, 34), (2, 37), . . . , (2, 101) , (3, 486), . . .

External Sorting
√

⇓ Hashing ÷

(22, 1), (77, 1), . . . , (198, 1) , (1, 2), (22, 2), . . . , (345, 2) , (67, 3), . . .

≈ inverted file
9



Searching and Ranking

Query: computer AND science:

1. Look up computer and science in lexicon. This gives
positions on disk where their lists start.

2. Scan these lists and merge them (find DocIDs which are
included in both lists by doing simultaneous scans).

computer: 12, 15, 117, 155, 256,. . .
science: 5, 27, 117, 119, 256,. . .

3. Calculate rank of the returned DocIDs. Fetch the 10 highest
ranked from the document collection, and return URL and
some textual context from documents to the user.

OR and NOT works similarly. If lists have word positions,
phrase-searches (“computer science”) and proximity searches
(“computer” close to “science”) can also be done.

10



Text Based Ranking

Add weight to appearance of word in document according to e.g.

• Number of appearances of word in document.

• Typographic emphasis (boldface, headline,. . . )

• Appearance in META-tags.

• Appearance around links pointing to the document

Improves text based ranking, but still not good enough on the
web (where ranking of e.g. 100.000 relevant documents is
common).

Also: too easy to influence (spam) the ranking by adding
keywords to the page.

11



Link Based Ranking

Idea 1: Link to page ≈ recommendation of page.

⇒ Rank of page: its indegree in the web graph.

Still very easy to spam (create lots of links to the page in
question).

12



Linkbaseret ranking
Idea 1: Link to page ≈ recommendation of page.

Idea 2: Recommendations from important pages count more.

PageRank:

Find values rj fulfilling for all j, whererj =
∑

i∈Bj

ri/Ni

rj = PageRank of page j,
Bj = set of pages linking to page j,

Ni = links out of page i (i.e. its outdegree)

I.e. find ~r = (r1, r2, . . . , rn) such that ~r = ~rA,

where A = normalized adjacency matrix for the web graph
(normalized: entries in row i is 1/Ni instead of 1).

13



Calculation of PageRank

In short, the PageRank vector ~r is defined as an eigenvector
for A, i.e. a vector fulfilling:

~r = ~rA

From exising mathematical theory (the Ergodic Theorem on
random walks) we get:

If A fulfills certain conditions, such a vector ~r does exist, and for
any initial vector x we have:

~xAk → ~r for k → ∞

14



Calculation of PageRank

To fulfill the conditions, exchange A by A′ defined as follows:

A′ = 0.85A + 0.15E ,

where E is the normalized adjacency matrix for the graph
containing all possible edges (i.e. the clique on the set of all
nodes). The split 85–15% is not central, but is chosen because
it has proven to work well in practice.

Calculation of PageRank: From some arbitrary start vector r (not
null), repeat

~rnew = ~roldA′

In practice, convergence towards the eigenvector is fast: The
value of ~r typically stabilizes after 20-50 iterations. Then the
process is stopped and the resulting r used as the PageRank.

15



Search Engine, General Structure

them agree that over a billion pages are available. Given that the average size of a Web page is around

5–10K bytes, just the textual data amounts to at least tens of terabytes. The growth rate of the Web

is even more dramatic. According to [41, 42], the size of the Web has doubled in less than two years,

and this growth rate is projected to continue for the next two years.

Aside from these newly created pages, the existing pages are continuously updated [52, 58, 24, 17].

For example, in our own study of over half a million pages over 4 months [17], we found that about 23%

of pages changed daily. In the .com domain 40% of the pages changed daily, and the half-life of pages

is about 10 days (in 10 days half of the pages are gone, i.e., their URLs are no longer valid). In [17], we

also report that a Poisson process is a good model for Web page changes. Later in Section 2, we will

show how some of these results can be used to improve search engine quality.

In addition to size and rapid change, the interlinked nature of the Web sets it apart from many

other collections. Several studies aim to understand how the Web’s linkage is structured and how that

structure can be modeled [11, 5, 2, 36, 17]. One recent study, for example, suggests that the link

structure of the Web is somewhat like a “bow-tie” [11]. That is, about 28% of the pages constitute a

strongly connected core (the center of the bow tie). About 22% form one of the tie’s loops: these are

pages that can be reached from the core but not vice versa. The other loop consists of 22% of the pages

that can reach the core, but cannot be reached from it. (The remaining nodes can neither reach the

core nor can be reached from the core.)

Figure 1: General search engine architecture

Before we describe search engine techniques, it is useful to understand how a Web search engine is

2

[From: Arasu et al.,
Searching the Web]

16



Specific Example

Google:
(1998)

[From:
Brin and Page,
Anatomy of. . . ]

17


	Information Retrieval
	IR on the Web
	Further Challenges of the Web
	The Web as a Graph
	Basic Tasks of Search Engines
	Lexicon
	Inverted File
	Constructing index
	Searching and Ranking
	Text Based Ranking
	Link Based Ranking
	Linkbaseret ranking
	Calculation of PageRank
	Calculation of PageRank
	Search Engine, General Structure
	Specific Example

