
3D Graphics and OpenGl

First Steps



Rendering of 3D Graphics
Objects defined in (virtual/mathematical) 3D space.

We see surfaces of objects ⇒ define surfaces.

Triangles will be the fundamental element.



Rendering of 3D Graphics
Objects defined in (virtual/mathematical) 3D space.

We see surfaces of objects ⇒ define surfaces.

Triangles will be the fundamental element.



Rendering of 3D Graphics
Objects defined in (virtual/mathematical) 3D space.

We see surfaces of objects ⇒ define surfaces.

Triangles will be the fundamental element.



Rendering of 3D Graphics
Objects defined in (virtual/mathematical) 3D space.

We see surfaces of objects ⇒ define surfaces.

Triangles will be the fundamental element.



Rendering of 3D Graphics
Main objective: transfer (models built of) triangles from 3D space to 2D
screen space. Add colors to the screen pixels covered by triangle
(shading).

Coordinate systems:



Rendering of 3D Graphics
Main objective: transfer (models built of) triangles from 3D space to 2D
screen space. Add colors to the screen pixels covered by triangle
(shading).

Coordinate systems:



Rendering of 3D Graphics
Main objective: transfer (models built of) triangles from 3D space to 2D
screen space. Add colors to the screen pixels covered by triangle
(shading).

Coordinate systems:



Vertices

Core data: vertices of triangles.

glBegin(GL_TRIANGLES);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

.

.

glEnd();



Other OpenGL Primitives



OpenGL Primitives

Polygons and quads are divided into triangles by OpenGL before
rendering. Must be plane and convex

For efficiency, use array lists (single rendering call accessing array of
many points) and display lists (precompiled and stored groups of OpenGL
commands, including declarations of geometry/primitives). See sections
3.1 and 3.2.



OpenGL Primitives

Polygons and quads are divided into triangles by OpenGL before
rendering. Must be plane and convex

For efficiency, use array lists (single rendering call accessing array of
many points) and display lists (precompiled and stored groups of OpenGL
commands, including declarations of geometry/primitives). See sections
3.1 and 3.2.



OpenGL Primitives

Polygons and quads are divided into triangles by OpenGL before
rendering. Must be plane and convex

For efficiency, use array lists (single rendering call accessing array of
many points) and display lists (precompiled and stored groups of OpenGL
commands, including declarations of geometry/primitives). See sections
3.1 and 3.2.



Geometry

Core data: triangles

Triangle vertices and associated data:

I Position

I Color

I Normal vector

I Texture coordinate

Vertex data are interpolated across triangle at rendering time (details of
interpolation and other parts of rendering later).



Geometry

Core data: triangles

Triangle vertices and associated data:

I Position

I Color

I Normal vector

I Texture coordinate

Vertex data are interpolated across triangle at rendering time (details of
interpolation and other parts of rendering later).



Geometry

Core data: triangles

Triangle vertices and associated data:

I Position

I Color

I Normal vector

I Texture coordinate

Vertex data are interpolated across triangle at rendering time (details of
interpolation and other parts of rendering later).



Geometry

Core data: triangles

Triangle vertices and associated data:

I Position

I Color

I Normal vector

I Texture coordinate

Vertex data are interpolated across triangle at rendering time (details of
interpolation and other parts of rendering later).



OpenGL has a state

State machine: Long list of set variables affecting rendering. Value fixed
after initialization until changed. (Alternative would be to give long list
of parameters for all rendering calls).

E.g., setting (foreground/vertex) color using glColor:

glBegin(GL_QUADS);

glColor3f(1.0, 0.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glColor3f(0.0, 1.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glColor3f(0.0, 0.0, 1.0);

glVertex3f(80.0, 80.0, 0.0);

glColor3f(1.0, 1.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd()



OpenGL has a state

State machine: Long list of set variables affecting rendering. Value fixed
after initialization until changed. (Alternative would be to give long list
of parameters for all rendering calls).

E.g., setting (foreground/vertex) color using glColor:

glBegin(GL_QUADS);

glColor3f(1.0, 0.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glColor3f(0.0, 1.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glColor3f(0.0, 0.0, 1.0);

glVertex3f(80.0, 80.0, 0.0);

glColor3f(1.0, 1.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd()



Projections

Transfer (models built of triangles built of vertex) points from 3D space
to 2D screen space.

Two types:

I Orthographic

I Perspective



Projections

Transfer (models built of triangles built of vertex) points from 3D space
to 2D screen space.

Two types:

I Orthographic

I Perspective



Orthographic Projection



Orthographic Projection



Perspective Projection



Perspective Projection



Perspective

Helix curve:

Orthographic:

Projective:



Perspective

Helix curve:

Orthographic:

Projective:



Clipping before Projection

The geometry is clipped against the viewing area planes before
projection. Further clipping planes can be specified manually.



Clipping before Projection

The geometry is clipped against the viewing area planes before
projection. Further clipping planes can be specified manually.



Stretch after Projection

The projected image is stretched to the screen/window size after
projection.



OpenGL Buffers

A buffer is a screensize 2D array of (pixel) data. Several buffers are
available in OpenGL (collectively called the framebuffer).

Two important buffer types:

I Color buffers. Hold the color values to be shown on screen.

I Depth buffer. Resolves hidden surface removal.



OpenGL Buffers

A buffer is a screensize 2D array of (pixel) data. Several buffers are
available in OpenGL (collectively called the framebuffer).

Two important buffer types:

I Color buffers. Hold the color values to be shown on screen.

I Depth buffer. Resolves hidden surface removal.



OpenGL Buffers

A buffer is a screensize 2D array of (pixel) data. Several buffers are
available in OpenGL (collectively called the framebuffer).

Two important buffer types:

I Color buffers. Hold the color values to be shown on screen.

I Depth buffer. Resolves hidden surface removal.



OpenGL and Assisting Libraries

OpenGL

↓
GLU

↓
GLX (X11), WGL (Win), AGL (Mac)

↓
GLUT



GLUT

I Abstracts away OS-specific interface/libraries between OpenGL and
OS (incl. creation of framebuffer and double buffering swaps).

I Handles keyboard/mouse input, windowing management.

I Event loop.

I OpenGL programmer associates callback functions with events.

I Animation through timed callbacks (glutTimerFunc()) or idle time
callback (glutIdleFunc()).

I Commands for triangles for basic models (cube, cone, sphere, torus,
teapot,. . . ).



GLUT

I Abstracts away OS-specific interface/libraries between OpenGL and
OS (incl. creation of framebuffer and double buffering swaps).

I Handles keyboard/mouse input, windowing management.

I Event loop.

I OpenGL programmer associates callback functions with events.

I Animation through timed callbacks (glutTimerFunc()) or idle time
callback (glutIdleFunc()).

I Commands for triangles for basic models (cube, cone, sphere, torus,
teapot,. . . ).



GLUT

I Abstracts away OS-specific interface/libraries between OpenGL and
OS (incl. creation of framebuffer and double buffering swaps).

I Handles keyboard/mouse input, windowing management.

I Event loop.

I OpenGL programmer associates callback functions with events.

I Animation through timed callbacks (glutTimerFunc()) or idle time
callback (glutIdleFunc()).

I Commands for triangles for basic models (cube, cone, sphere, torus,
teapot,. . . ).



GLUT

I Abstracts away OS-specific interface/libraries between OpenGL and
OS (incl. creation of framebuffer and double buffering swaps).

I Handles keyboard/mouse input, windowing management.

I Event loop.

I OpenGL programmer associates callback functions with events.

I Animation through timed callbacks (glutTimerFunc()) or idle time
callback (glutIdleFunc()).

I Commands for triangles for basic models (cube, cone, sphere, torus,
teapot,. . . ).



GLUT

I Abstracts away OS-specific interface/libraries between OpenGL and
OS (incl. creation of framebuffer and double buffering swaps).

I Handles keyboard/mouse input, windowing management.

I Event loop.

I OpenGL programmer associates callback functions with events.

I Animation through timed callbacks (glutTimerFunc()) or idle time
callback (glutIdleFunc()).

I Commands for triangles for basic models (cube, cone, sphere, torus,
teapot,. . . ).



GLUT

I Abstracts away OS-specific interface/libraries between OpenGL and
OS (incl. creation of framebuffer and double buffering swaps).

I Handles keyboard/mouse input, windowing management.

I Event loop.

I OpenGL programmer associates callback functions with events.

I Animation through timed callbacks (glutTimerFunc()) or idle time
callback (glutIdleFunc()).

I Commands for triangles for basic models (cube, cone, sphere, torus,
teapot,. . . ).



OpenGL Command Naming

Example:

glVertex3f(20.0, 5.0, 10.0);

Suffix Data Type C-Language Type OpenGL Type
b 8-bit integer signed char GLbyte
s 16-bit integer short GLshort
i 32-bit integer int GLint, GLsizei
f 32-bit floating-point float GLfloat, GLclampf
d 64-bit floating-point double GLdouble, GLclampd

ub 8-bit unsigned integer unsigned char GLubyte, GLboolean
us 16-bit unsigned integer unsigned short GLushort
ui 32-bit unsigned integer unsigned int GLuint, GLenum, GLbitfield



OpenGL Command Naming

Example:

glVertex3f(20.0, 5.0, 10.0);

Suffix Data Type C-Language Type OpenGL Type
b 8-bit integer signed char GLbyte
s 16-bit integer short GLshort
i 32-bit integer int GLint, GLsizei
f 32-bit floating-point float GLfloat, GLclampf
d 64-bit floating-point double GLdouble, GLclampd

ub 8-bit unsigned integer unsigned char GLubyte, GLboolean
us 16-bit unsigned integer unsigned short GLushort
ui 32-bit unsigned integer unsigned int GLuint, GLenum, GLbitfield


