
Department of Mathematics and Computer Science January 19, 2017
University of Southern Denmark RF

RadixQuicksort

RadixQuicksort is an algorithm for sorting strings, proposed by Bentley
and Sedgewick in 1997 (based in earlier ideas by others). It can be said to
be a mix of Quicksort and MSD Radixsort, hence the naming here. The
authors used the name Multikey Quicksort, which fits with their focus on
equal length strings (they are isomorphic to tuples), but not so well with
the setting of general strings which we consider here.

The algorithms makes no assumptions on the size of the alphabet (i.e., it
works for unbounded/comparison-based alphabets). The input to the al-
gorithm is an array A, whose elements are representatives of n strings to
be sorted. The strings themselves reside in RAM (each string consecutively
laid out), and each string representative is a pair (p, l), where p is a pointer
to the position in RAM of the first character of the string and l is the length
of the string.

The output is the array A with the string representatives appearing in the
sorted order given by the strings.

Recall Quicksort:

Quicksort(A)

n = |A|

Qsort(0,n-1,A)

Qsort(l,r,A)

if l < r

x = ChoosePivot(l,r,A)

(i,j) = Partition(l,r,x,A)

QSort(l,i,A)

// no call QSort(i+1,j-1,A) needed

QSort(j,r,A)

Here, Partition(l,r,x,A) makes a three-way partitioning of A[l..r] into
segments of the elements less than, equal to, and larger than x:

It uses O(r − l) time and returns the indices of the borders created around
the middle segment. The method works similarly to the two-way Partition

method you have learnt in a previous course, by maintaining the invariant
illustrated below during its execution. At the end, the elements equal to x
are swapped to the right of the elements larger than x.

The call x = ChoosePivot(l,r,A) is some method of choosing a pivot ele-
ment from A[l..r] to partition on. It may for instance be the element A[r],
the median of A[l], A[r], and A[b(l + r)/2c], a random element in A[l..r],
or the actual median of A[l..r]. The first options take O(1) time, the last
option can be be performed in O(r − l) time (as you have learnt in a previ-
ous course). The last option is not competitive in practice, but gives a good
worst case analysis, and we will assume that option here.

2

The algorithm RadixQuicksort is quite similar to Quicksort, except that the
comparisons are between characters of some depth d in the strings. Each
such character can be found from the first entry of the string representative
and the value of d.

RadixQuicksort(A)

n = |A|

RQsort(0,n-1,1,A)

RQsort(l,r,d,A)

if l < r

k = ShiftShortToFront(l,r,d-1,A)

x = ChoosePivot(k,r,d,A)

(i,j) = Partition(k,r,x,d,A)

RQSort(k,i,d,A)

RQSort(i+1,j-1,d+1,A)

RQSort(j,r,d,A)

The core idea of the algorithm is captured by the following invariant:

At a call RQsort(l,r,d,A), the strings with representatives in
A[l..r] all have length at least d−1, and their first d−1 characters
are the same.

The call k = ShiftShortToFront(l,r,d-1,A) is a linear time scan of A[l..r]
which partitions it such that all strings of length d − 1 appears first (left-
most) and returns the left border k of the segment of A with the remaining
longer strings:

The calls x = ChoosePivot(k,r,d,A) and (i,j) = Partition(k,r,x,d,A)

are similar to those of Quicksort, except that the comparisons are between
characters of depth d in the strings.

Correctness of the algorithm follows directly from observing that it main-
tains the invariant. For analysis of the time complexity, we consider the

3

recursion tree of the algorithm. For each node in the recursion tree, we
color blue the edges of recursive calls which increase the value of d and we
color red the edges of recursive calls which do not increase the value of d:

Each string leaves the recursion either in an internal node due to having no
more characters (and being shifted to front by ShiftEndedToFront), or by
being the single string left (in the case l = r). The local work in each node
of the recursion tree is linear in the input size r− l. Hence, all work is paid
for if every string s pays O(1) for each node on the path in the recursion
tree from the root to the node where the string leaves the recursion. On
such a path, there can be at most |s| blue edges, since the string depth d
of the recursion increase by one for each such string. Also, there can be at
most log n red edges, since for each traversal of a red edge, the size r − l of
the array segment decreases by at least a factor of two by our choice of the
median as pivot element. In conclusion, the time complexity is

O(n log n + S),

where S is the total length of the strings. A bit stronger, S can be taken to be
the sum of the distinguishing prefixes of the string, where the distinguishing
prefix of a string is one more than its longest common prefix with any
of the other strings. An easy adversary argument shows that this is best
possible for comparison based alphabets (a lower bound of n log n follows
from sorting strings of length one, and a lower bound of S follows from
the need to examine all characters of all distinguishing prefixes unless an
adversary can prove the sorting wrong).

Note that the algorithm can be seen as an elegant and coherent way to
implement MSD Radixsort using Quicksort for sorting buckets.

Finally, note that if the recursion tree is physically created and stored during
the recursion, it can afterwards be used as a search tree over the strings.
For a query string q, we consider characters of q at increasing depths while

4

searching the tree from the root. If the current character c matches the
character x of the current node (which is the pivot element chosen at the
node during the execution of RadixQuicksort), we follow the blue edge from
the node, and advances to the next character of q. Else, we follow the left
or right red edge, based on whether c < x or c > x.

The correctness of the search algorithm is clear from the working of the al-
gorithm. Its running time is O(log n+ |q|), by essentially the same argument
as before: each time a blue edge is followed, we advance in q, and each time
a red edge is followed, the number of strings stored below the current node
is at least halved.

The recursion tree used in that manner is termed a ternary search tree by
the authors.

We note that when implementing a trie for a set of strings, each trie node
will always be implemented by a dictionary of some form (linked list, array,
hash table, binary search tree). The data of each dictionary are trie edges
of the corresponding trie node, and the search keys of the dictionary are the
characters of these edges.

Ternary search trees can be seen as an elegant and coherent way to con-
struct tries in which each trie node is implemented as a binary search tree.
Blue edges of the ternary search tree correspond to trie edges (data in the
dictionary, stored in the nodes of the binary tree along with the character
search key of the node). Red edges of the ternary search tree correspond
to binary tree edges in the dictionaries, each binary tree/trie node being a
maximal subset of ternary search tree nodes connected by red edges. This
correspondence is illustrated below for one such connected set (i.e., for one
binary tree/trie node).

5

