
Department of Mathematics and Computer Science January 24, 2017
University of Southern Denmark RF

Searching a Sorted Set of Strings

Assume we have a set of n strings in RAM, and know their sorted order in the
form of an array S storing references to the strings in their lexicographically
sorted order. That is, i < j ⇒ S[i] ≤ S[j], where by S[i] we denote the
string referenced by entry i of S (as opposed to the actual numerical value
of the entry—i.e., we use a notation as in Java).

We will later discuss how to actually sort the strings. Here, we first focus
on searching the sorted set of strings. The classical search problem on a set
in the string setting looks like this, where x is a string:

Search(x): return the (reference to the) string x in S, if it exists,
or report that it does not exist.

Clearly, we can use binary search for this. Here is one formulation of it,
which assumes that S[0] references a sentinel string consisting of a single
character $ which is smaller than any other character and that S[n + 1]
references a sentinel string consisting of a single character & which is larger
than any other character.

l = 0

r = n+1

WHILE l+1 < r

m = (l+r)/2 // integer division

IF S[m] < x

l = m

ELSE

r = m

IF S[r] == x

return S[r]

ELSE

report "Does not exist"

The algorithm maintains the invariant S[l] < x ≤ S[r], from which correct-
ness follows, because l + 1 = r at termination of the WHILE-loop and the
array is sorted. More precisely, at termination, S[r] contains the smallest
(wrt. the order) string larger than or equal to x. In case of multiple copies
of x, it will be the left-most of these in the array.

Since comparing x to the string in S[m] may take |x| time, the same applies
to each iteration, so the algorithm above takes O(|x| log n) time.

The main purpose of this set of notes is to describe an improved algo-
rithm running in O(|x| + log n) time. The algorithm assumes access to
lcp(S[l], S[m]) and lcp(S[m], S[r]), where lcp(X,Y) for two strings X and
Y denotes the length of their longest common prefix. We discuss how to get
hold of this information later, and for now assume that it is available.

The algorithm is a variant of the binary search above. It maintains a value
M defined by

M = max{lcp(S[l], x), lcp(S[r], x)}

and a bit b saying whether l (b = 0) or r (b = 1) generates the maximum.
As we will describe now, this extra information allows us to perform all
the comparisons IF S[m] < x by a single scan of x (distributed over all
iterations of the WHILE-loop).

Initially, we set M = 0 and b = 0 (b = 1 would also work). Consider
an iteration in the binary search. Assume b = 0, i.e., M is generated by
l (the other case is symmetric). The algorithm looks up the information
p = lcp(S[l], S[m]) and takes actions as described below.

If p > M : This means lcp(S[l], S[m]) > lcp(S[l], x), that is, S[l] and S[m]
agree past the point where S[l] and x diverge. This case is illustrated as a) in
the figure below. Since S[l] < x, we can deduce S[m] < x without comparing
any characters of x. We can also deduce that lcp(S[m], x) = lcp(S[l], x).
Thus, the algorithm executes l = m and goes to the next iteration, keeping
the values of M and b.

2

If p < M : This means lcp(S[l], S[m]) < lcp(S[l], x), that is, S[l] and x agree
past the point where S[l] and S[m] diverge. This case is illustrated as b)
in the figure above. Since S[l] ≤ S[m], we can deduce x < S[m] without
comparing any characters of x. We can also deduce that lcp(S[m], x) <
lcp(S[l], x). Thus, the algorithm executes r = m and goes to the next itera-
tion, keeping the values of M and b.

If p = M : This means lcp(S[l], S[m]) = lcp(S[l], x) = M . We can conclude
that S[m] and x agree for at least the first M characters. This case is il-
lustrated as c) in the figure above. We find lcp(x, S[m]) by scanning x and
S[m] from position M until a position is found where their characters do
not match (or the end of one string is met). This resolves the IF S[m] < x

comparison, and the algorithm executes either l = m or r = m, as appropri-
ate. If t matching positions were found during the scanning, it increases the
value of M by t, making it equal to lcp(x, S[m]), which is the correct new
value for M . Finally, b set to zero if l = m was executed, and is set to one
if r = m was executed.

Correctness follows from correctness of the basic binary search above, since
the decisions in all iterations are the same. For time complexity, note that
each iteration now takes O(1) time, except for the scanning in the last case.
Let ti be the enlargement of M the i’th time this case is met. Then the
total time is O(

∑
i ti + log n). Since

∑
i ti ≤ |n| (because M never decreases

and at most is |n|), the total time is O(|n|+ log n).

It turns out that with the same tools can solve the following more general
search problem in time O(|x|+ log n + |R|):

3

PrefixSearch(x): return the (references to the) set R of strings
in S which have x as a prefix (including x itself, if present).

To see this, recall that in the binary search (both versions above), at ter-
mination, S[r] contains the smallest (wrt. the order) string larger than or
equal to x, and that in case of multiple copies of x, it will be the left-most
of these in the array. Assume now that R is non-empty. We prove in Corol-
lary 2 below that R forms a consecutive segment S[i..j] of the array. If we
in the binary search consider all y which have x as a prefix to be equal in
order to x (this we can decide by what actions are taken when a scan of x
and y reaches the end of x), r must have the value i at termination. Thus
R is non-empty if and only if S[r] has x as a prefix (which can be checked in
O(|x|) time). If non-empty, we know i. The value j can be found by running
a similar binary search algorithm, only this time maintaining the invariant
S[l] ≤ x < S[r] (that is, equality goes to the IF-case), for which l must have
the value j at termination, by a symmetric argument.1

Hence, we can return R in time O(|x|+ log n + |R|)

We now discuss how the information p = lcp(S[l], S[m]) (and in the sym-
metric case, p = lcp(S[m], S[r])) used in the search algorithm is found and
stored. We first define lcp(k) = lcp(S[k], S[k + 1]) for 0 < k < n (or for
0 ≤ k ≤ n, assuming sentinel strings), for which we prove the following
useful lemma. Corollary 2 was used above. Corollary 3 will be used finding
said information.

Lemma 1 For all i < j we have

lcp(S[i], S[j]) = min
i≤k<j

lcp(k).

Proof: Let l = mini≤k<j lcp(k). Then clearly all the strings S[k], i ≤
k ≤ j agree on the first l characters. In particular, lcp(S[i], S[j]) ≥ l =
mini≤k<j lcp(k). Conversely, let t = lcp(S[i], S[j]). If there exists any k ≥ i
for which lcp(k) < t, let k′ be the smallest such k. Then the strings S[i] and
S[k′] agree on the first t characters, while S[k′] and S[k′ + 1] differ within
the first k characters, with S[k′] < S[k′+1] by the ordering in S[]. Since S[i]
and S[j] also agree on the first t characters, we must have S[j] < S[k′ + 1],

1If the LCP(k) information mentioned below is available, we can also just scan from i
first endpoint until the first time lcp(k) < |x|.

4

hence j < k′ + 1, i.e., j ≤ k′. So in mini≤k<j lcp(k), all values minimized
over are at least t = lcp(S[i], S[j]). �

Corollary 2 For any string x, the set R of strings in S which have x as a
prefix forms a consecutive segment S[i..j] of the array S[].

Proof: Let S[i] be the left-most string having x as a prefix, and let S[j] the
the right-most. Clearly, R ⊆ S[i..j]. As lcp(S[i], S[j]) = |x|, Lemma 1 shows
that all strings in S[i..j] agree on the first |x| characters, hence R ⊇ S[i..j].
�

Corollary 3 For all i < k < j we have

lcp(S[i], S[j]) = min{lcp(S[i], S[k]), lcp(S[k], S[j])}.

Proof: This is clear from Lemma 1 by the way minimization works. �

To find and store the information lcp(S[l], S[m]) and lcp(S[m], S[r])) used
in the search algorithm, we note that possible query pairs (l and m, m and
r) used in all possible binary searches can be represented by a binary tree
over the array S[]. In the figure on the left below, the initial values of l and
r are shown by x’s, and all possible later values of m (and hence later values
of l and r) are shown by o’s. The corresponding query pairs are shown in
the figure on the right as red, horizontal lines.

This means that there are only O(n) such pairs used (not Θ(n2)). It also
means that assuming that the lcp(k) = lcp(S[k], S[k+ 1]) values are known,
the answers to the used queries can be precomputed from them in O(n)
time by Corollary 3: just merge the answers for neighboring segments in

5

a bottom-up fashion (using Corollary 3), with the lcp(k) values being the
answers to the size two segments at the bottom.

For storing the values, the array of the lcp(k) values already stores the
answers for the cases l + 1 = r. When l + 1 < r, we can uniquely store
the answer in another array, at position b(l + r)/2c, as can be seen in the
following picture (green arrows indicate the array entry where the answer
to the query represented by the corresponding red line is stored):

For sorting the strings to begin with, standard sorting algorithms like Quick-
sort or Mergesort are not well suited, as comparisons between two strings
may take time proportional to their length. One algorithm designed for
strings is Radixsort. The Least Significant Digit (LSD) version of it known
from the course Algoritms and Data Structures is designed for strings of
equal length. More general is the Most Significant Digit (MSD), a top-down
distribution sort deriving very naturally from the definition of lexicographi-
cal order. It can be described as follows, where S is the set of strings (given
as an array of references to the strings).

Radixsort(S):

n = |S|

RETURN Rsort(0,n-1,1,S)

Rsort(l,r,d,S)

if l < r

k = ShiftShortToFront(l,r,d-1,A)

sort the strings in S[k,r] in their d’th character

FOR all d-level bucket segments S[i..j] in S[k..r]:

RSort(i,j,d+1,S)

The core idea of the algorithm is captured by the following invariant:

6

At a call Rsort(l,r,d,S), the strings with representatives in
S[l..r] all have length at least d−1, and their first d−1 characters
are the same.

The call k = ShiftShortToFront(l,r,d-1,S) is a linear time scan of S[l..r]
which partitions it such that all strings of length d−1 appears first (leftmost)
and returns the left border k of the segment of S with the remaining longer
strings:

A d-level bucket segment S[i..j] is a maximal contiguous segment of S where
the strings agree on their d’th character (and this character is present). In
the FOR-loop above, these buckets segments are found by a scan of S[k..r].

Correctness follows from the definition of lexicographical order. The time
depends on the sorting algorithm used in the third last line. If the alphabet
is considered of size O(1) and we use Countingsort, the sorting of the r−k+1
characters in the third last line takes O(r − k) time, hence each character
of each string of incurs O(1) time. Thus, the total time is O(L), where L is
the sum of the lengths of the strings.

If the alphabet is considered infinite (is comparison based) and we use an
optimal comparison based sorting algorithm (such as Mergesort), the sorting
of the r − k + 1 characters in the third last line takes O((r − k) log(r − k))
time, hence each character of each string of incurs O(log n) time. Thus, the
total time is O(L log n), where L is the sum of the lengths of the strings.

The recursion tree of MSD Radixsort is actually the trie of the strings (see
the later handout from the Goodrich and Tamassia book for tries). This
trie can of course be generated during the algorithm. By a DFS-traversal of
this trie, we can then easily generate the lcp(k) values (see details in note
on suffix trees and suffix arrays).

7

