
Department of Mathematics and Computer Science January 24, 2017
University of Southern Denmark RF

Suffix Trees and Suffix Arrays.

One specific set S of strings to store is all the suffixes of a base string X. That
is, S = {X[i..(n − 1)] | 0 ≤ i ≤ n}, where n = |X|. If we run the methods
from the note on searching in a sorted set, we can in O(|x| + log n + |R|)
find the set R of all suffixes in X which has the pattern x as a prefix. Since

x occurs as a pattern at position i in X
m

x is a prefix of the suffix X[i..(n− 1)]

we have an efficient way of doing exact pattern matching in X. Note that
here, the string X is preprocessed, and can answer queries for many pat-
terns. In the KMP and BM algorithms, the pattern x is preprocessed, and
could conceptually be used with many strings X without repeating the pre-
processing (although this matters less there, as the prepocessing takes O(|x|)
time, which is smaller than the subsequent search time).

The array S[] of the sorted suffixes is called the suffix array of X. It uses
space O(n), as does the array with lcp(k) values. This is important here,
since the set S of strings is efficiently represented by just the string X (and
S[] simply contains the starting indices in X of the suffixes, referenced in
their lexicographically sorted order). This is just n characters, not Θ(n2),
which would be the combined length of the suffixes if they were stored
explicitly and separately.

How do we generate the sorted array for S? Even with a size O(1) alphabet,
using MSD Radixsort could take Θ(n2) time, as the total length L of the
strings sorted is Θ(n2). However, the strings have lots of overlap, which
conceivably could be exploited. Indeed, a landmark result by Weiner from
1973 showed that suffix arrays can be built in O(n) time (for O(1) alpha-
bets). The original algorithm is complex. Subsequent work by McCreight
(1976), Ukkonen (1995) and Farach (1997) provided alternative algorithms
with additional features, but none of these are simple, either. Recent work

has given many further alternatives, of which we later in this course cover the
algorithm by Kärkkäinen and Sanders (2003), as this is particularly clean
and simple. Its running time is O(n) plus the time to sort the characters in
the string (which is O(n) for alphabets polynomial in n, by LSD Radixsort,
and O(n log n) for comparison based alphabets, by e.g. Mergesort). Also the
array LCP of lcp(k) values (needed for the search time stated above) can be
found in O(n) time in the suffix array setting. We cover later an algorithm
for this by Kasai, Lee, Arimura, Arikawa, and Park (2001).

Actually, the 1970-90 work in this area did not deal with the suffix array as
such, but rather with the trie built on S. In its plain form, this structure can
have Θ(n2) nodes. However, if we collapse all paths of unary nodes to single
tree edges, all internal nodes of the resulting tree will be at least binary. The
(possibly many) characters of such a path constitute a consecutive segment
of X, so these characters can be represented by the starting and ending
index of the segment (assuming X is stored with the trie), which is O(1)
space per edge. As there are at most n leaves, this means that there are at
most n− 1 internal nodes (the value if all internal nodes are binary). A tree
of 2n− 1 nodes has 2n− 2 edges, so the entire structure (including X) now
uses O(n) space. Such a trie is called a compressed trie. Often, we end the
string X in a character $ smaller than any other character. Then no suffix is
a prefix of another suffix, meaning that all the suffixes in S end in a leaf in
the trie. Hence the trie has exactly n leaves, which are in 1-1 correspondence
with the suffixes of X—a normalization which is often convenient. Such a
compressed trie built on the suffixes of X$ is called the suffix tree for X.

The suffix tree is a very versatile structure, which allows a surprising number
of structural questions and search questions on the string X to be answered
efficiently. However, being a tree with explicit nodes, the exact space usage
in terms of bytes is often kn for k ≈ 40, whereas the suffix array has k ≈ 4.
Since the string itself has k ≈ 1, the size of the data structure may be the
limiting factor for large strings (of, say, DNA). Surprisingly, the idea of using
the simple suffix array was not introduced until around 1990 by Manber and
Meyers (and, independently, Gonnet).

In terms of construction (and disregarding the space usage during this), the
suffix array and the suffix tree methods are equivalent, though:

Lemma 1 From a suffix tree for X we can in O(n) time construct the suffix
array and the LCP array for X. Conversely, from the suffix array and the
LCP array for X we can in O(n) time construct suffix tree for X.

2

Proof: The first conversion can be performed during a DFS-traversal of
the suffix tree: By the annotation of the edges, we can maintain the depth
(distance from the root) in terms of characters during the traversal, and
from this and the annotation of the edge above a leaf, we can find the
starting index of the suffix of represented by the leaf. The leaves will be
met in lexicographical order (if we recurse on the edges below an internal
node in the order given by their first character). Hence, the suffix array
can be constructed during the DFS traversal. When we meet leaf number k
(except for the first), we will know lcs(k − 1) if we always store the depth
in terms of characters of the most recently visited internal node where the
DFS-traversal changed direction from “coming up” (finishing the recursion
on one child of the node) to “going down” (starting the recursion on the
next child of the node). Hence, the LCP array can be constructed during
the DFS traversal, which takes (n) time.

The second conversion can be done by adding the leaves of the compressed
trie in increasing order (available via the suffix array). All insertions work
on the right-most path of the current trie. An insertion if necessary climbs
upward on this path until the depth (in characters) of the next LCP value
is met. At this point a new edge with the new right-most leaf should be
inserted. This depth may be at an existing internal node, in which case
the new edge is put below that node. Else this depth is in the middle of an
existing edge in the compressed trie. In the latter case, this edge is “broken”
and one new internal node is inserted at the breakpoint, a node which has
two edges below it (the lower part of the existing edge, and the new edge).
There are n insertions, each of which introduces at most one new internal
node on the right-most path. We may in insertion k move upwards past tk
internal nodes on the right-most path. However, these internal nodes then
leave the right-most path, so the total climbing work

∑
tk cannot be more

than the total number of internal nodes created, which is n. Besides the
climbing, each insertion takes O(1) time. Hence, the total time is O(n). �

3

