Chapter
Basic Primitives

Elementary, my dear Watson.
—Sherlock Holmes

In this chapter we discuss intersection tests for a number of basic primi-
tives. The primitives we consider are spheres, boxes, line segments (rays),
triangles, and general polygons. These are the most commonly used
primitives in interactive 3D applications. Spheres and boxes are popular
bounding-volume types, whereas triangles and polygons are in general the
components from which complex models are built. This chapter provides
intersection tests for any combination of these primitives.

3.1 Spheres

1.

Spheres are probably the simplest type of primitives for geometric
modeling. A sphere can be represented using only four scalars (three for
the center point and one for the radius), so they are quite cheap to store.
Furthermore, spheres are invariant under rotations, which makes them a
good candidate as a bounding volume for rigid bodies. In many applica-
tions, spheres are also used as active areas in which events are triggered.
For instance, a sliding door that opens when an avatar approaches the
door can be simulated by detecting whether the avatar intersects a sphere
that represents the active area of the door. An avatar is an object in a 3D
world that represents the user who is viewing the world from the location
of the object. Both the avatar itself as well as the area of the world that is
visible/audible by the user are often represented as spheres.

Sphere-Sphere Test

Due to their simplicity, collision detection of spheres is not that hard. Two
spheres A and B intersect iff the distance between their centers ¢4 and cp

67




68 Chapter 3 Basic Primitives

3.1.2

is at most the sum of their radii p4 and pp:
ANB#B=|ca—cpl =patps

We want to avoid the evaluation of square roots as much as possible, since
square roots take more time to compute than primitive arithmetic opera-
tions such as additions and multiplications. So, for our implementations
we rewrite the expression as

ANB #0 = |lca —epl® < (pa + pr)%,

which uses only primitive arithmetic operations. The distance between
a pair of spheres is the distance between their centers minus the sum
of their radii—that is, if the spheres do not intersect, because then the
distance is of course zero:

d(A, B) = max(|ca — egll — (pa + pB), 0).

We find a similar expression for the penetration depth, which is zero
for nonintersecting objects:

p(A, B) =max(ps + pp — lca — cgll, 0).

The witness points for both a nonzero distance and a nonzero pene-
tration depth are computed in the same way. Let v = ¢4 — cg, the vector
from B's center to A's center. Then, the points

Y and 5 + pp—
PA=Cp—pAy—r and PB =Cg+ £B T~
[vll lvll
are the witness points for either the distance or the penetration depth, as
can be verified by computing the distance between these points. Note that
these expressions are valid only for nonconcentric spheres. For a pair of
concentric spheres, v is the zero vector, and thus the expressions result
in division by zero. For concentric spheres, choose an arbitrary nonzero
vector v, preferably one of unit length, since this saves normalization, and
compute the witness points for the penetration depth using this vector.

Ray-Sphere Test

In Section 2.4, we saw that a four-dimensional space-time collision test
on a pair of spheres can be done by performing a ray cast on the CSO
of the spheres in local coordinates. A ray is a line segment connecting a
source point s and a target point t. For the four-dimensional intersection

test, the points s and t are the differences cg — ca of the centers att =0

3.1 Spheres 69

and t = 1, respectively. If the ray intersects the CSO, then the ray cast
returns the smallest A ¢ [0, 1] for which the point x = s+ A(t — s) is
contained in the CSO. The CSO of a pair of spheres is itself a sphere
centered at ¢4 — cg and with a radius p equal to pa + pp, the sum of the
radii of the spheres. For the ray cast we use the CSO of the spheres in
local coordinates (i.e., centered at the origin); thus the CSO is centered at
the origin as well. The ray cast is performed in the following way.

Let the direction of the ray be given by the vector r = t — s, First,
we comptte the intersection of the unbounded line x = s -4 Ar and the
sphere. The points of intersection of the line and the sphere’s boundary
are given by

x=s+Ar and |x]=p.

We substitute the first expression in the second and square out the square
root,

lls + Ax|* = p.
This quadratic equation needs some rewriting in order to find the roots:

lIs +ar]? = p? = [[s+Ax[* — p* =0
= [Is|? + 2A(s - x) + A2 |x)® — p* =0
= [r)222 + 2(s - A + |Is|* — p* = 0.

Thus,

N CR i (C )
L= MR '

A solution exists only if’
(s — Iel?(Isi® - p%) = 0.

This should not be too much of a surprise, since after rewriting this

expression as
2
2_ (8% 2
st (50) <o
fixl '

we see that the left-hand side is the squared distance of the origin to the
line, as can be verified in Figure 3.1. The line intersects the sphere iff the
distance between the origin and the line is at most the sphere’s radius.




70 Chapter 3 Basic Primitives

Figure 3.1

Algorithm
3.1

|

|

The distance  of the origin to the line st is found using the Pythagorean theorem,
o? +p2 = y2. Here, f = —s -r/\|rﬂ and y = ||s||. Thus, we find o2 = |Is|? = (s-
r/ ||r|i)2. The line intersects the sphere only if a? < p?, in which case the closest
cgmrngn pc;lint of the ray apd the sphere lies at a distance of § — § from s, where
85 =p° —a“

The ray itself intersects the sphere iff [A1, 221N [0, 1] # @. This is the case
iffA; < 1 and Az = 0. If &1 > 1, then the ray did not reach far enough to
hit the sphere. If A < 0, then the ray is pointing away from the sphere. In
the case where the ray intersects the sphere, the parameter for the point
where the ray enters the sphere is Agyer = max(iy,0). The value Aeaer
can be used as the time of collision of the spheres in the four-dimensional
intersection test. The interval of time where the spheres are intersecting is
[Menters Mesit], where Aggr = min(da, 1). Note that if A,y does not need to be
returned, the value A, is used only for testing whether it is at least zero. In
that case, we can leave out the division by [x||> in the computation of A.

If0 < Ay < 1, then the point x = s + Ayr is the point where the ray
enters the sphere. The normal to the boundary at this point is %, regarded
as the vector from the origin to x. If Ay < 0 < A3, then the point s is an
internal point of the sphere, and thus the ray does not enter the sphere.
Algorithm 3.1 summarizes the operations that are performed for a ray
cast.

A ray cast for a ray st and a sphere centered at the origin having radius p.
The intersection of the ray and the sphere is represented by the interval
[Aenters Aexit]. The point where the ray enters the sphere is returned as x.

r=t—s;
o= (s-1)% — rl?(lIsl* — p*);

3.1.3

3.1 Spheres 71

if & > 0 then
{(Line x = s + Ar infersects the sphere. )
begin

M= (=81 = o)/ llrl?;
Azi=(-s.-r+ «/E)/lll'llzi
ifA1 <1 and Ay > 0 then
{The ray intersects the sphere, since [A, 221N [0,11 # 8. }
begin
Aenter :=max(ry, 0);
hexi :=min(Az, 1);
X =8+ AenterY;
return true
end
end;
return false

For a ray of infinite length, we can use almost the same computation.
An infinite ray is represented by a source point s and a unit vector r. The
ray is the set of points x = s + Ar, where A > 0, Algorithm 3.1 is greatly
simplified for infinite rays, since the condition A1 < 1 does not have to be
checked and all occurrences of |r||? can be removed.

Let us explore the potential numerical problems in Algorithm 3.1.
Suppose that the length of s is orders of magnitude greater that p, ||s|| 3> p,
and that the ray is pointing at the sphere. Then, (s - r)? & |r||?|s||%, and
thus, the relative error in &, the computed value of o, can become quite
large. So, the computed value & may be negative when the theoretical
value o is nonnegative or vice versa. Furthermore, suppose that & = 0
and that the ray is long enough to hit the sphere, X; < 1. Then, the com-
puted value % for the point where the ray enters the sphere may not lie
exactly on the sphere's boundary. We see that the long-range accuracy of
the ray cast is limited. Using an infinite ray, ||lr|| = 1, for long-range ray
casts does not make a dramatic difference, since this will reduce the rel-
ative error in & only by a small factor. So, in practical applications of the
ray cast, it is best to use relatively short rays, or, for infinite rays, ignore
hits with distant spheres.

Line Segment-Sphere Test

For cases where the points of intersection of the ray with the sphere’s
boundary are of no interest, a simpler test can be used. A line segment
intersects a sphere iff the point on the segment closest to the sphere’s
center is contained by the sphere. A point on the line segment is a point
x = § + Ar, for some A € [0, 1]. We first solve this problem without the




72 Chapter 3 Basic Primitives

Algorithm
3.2

constraint A € [0, 1] and compute the parameter A for the closest point
on the unbounded line through the segment. This is the point x = s + Ar
for which the vector from the sphere’s center to x is orthogonal to the
direction of the line. Thus, for the closest point we have x . r = 0. We
substitute x = s + Ar in the latter equation and find

(s+ir) - r=0.

This equation gives us the parameter A = —s - /|2 If A < 0, then s is
the closest point of the line segment. If A > 1, then t is the closest point.
Otherwise, if 0 < A < 1, then the closest point is an internal point of the
line segment. Algorithm 3.2 describes this intersection test.

An intersection test for a line segment st and a sphere centered at the
origin having radius p. The point x is the point of the line segment closest
to the sphere’s center.

ri=1t—s;

8 =—8'T;

if 6§ <0 then x:=s

else if § > ||lx|? then x:=t

else

hegin
x:=5/lr)%;
f0<r<1}
X =8+ Ar

end;

return [|x)12 < p?

The closest point x is also the witness point on the line segment for the
distance and the penetration depth. The distance is max(||x|| — p,0), and
the penetration depth is max(p — ||x||, 0). As witness on the sphere we can
use the point px/|x||—that s, if x is not the zero vector. In the degenerate
case where the line segment contains the origin, we may use any point
oy / llyll, for which y L r, as the witness point on the sphere. A good choice
is y = r x e;, where e; is the coordinate axis on which r has the smallest
absolute coordinate (|v-e;| is the smallest). In this way, ¥ can never be
Zero.

3.2 RAxis-Aligned Boxes

Axis-aligned boxes are the most widely used type of bounding volumes
because they are easy to compute, cheap to store, and fast to test for

3.2.1

3.2 Axis-Aligned Boxes 73

intersection. For axis-aligned boxes represented using min-max rep-
resentation, testing the intersection is simply done by comparing the
extrema:

prqilN(p2,q21#% = p1=<q2and p; <qj.

Testing the intersection of a pair of boxes in center-extent representation
is not much harder:

[c1 —hi,er+hilnfe; —ha,c2+hpl#8 =  |ep —cz2| =hg +hy,

The center-extent test uses a few arithmetic operations but performs
three scalar comparisons and branch instructions fewer than the min-max
test. On a platform that has parallel hardware for performing arithmetic
operations, the difference in performance is negligible.

Ray-Box Test

For performing a ray cast on an axis-aligned box we enter the realm of line
segment clipping. If we merely need to test a line segment for intersection
with an axis-aligned box, then the separating-axes test, discussed in Sec-
tion 3.3, is likely to be faster. There is a considerable amount of literature
available on line segments [11, 32, 33, 43, 78]. We borrow techniques from
two popular line clippers, Cohen-Sutherland (CS) [43] and Liang-Barsky
(LB) [78]. Originally, CS and LB were presented for clipping in 2D; how-
ever, both algorithms can be readily generalized to 3D. We will give brief
descriptions of the algorithms.

CS uses a classification of points with respect to the six planes sup-
porting the facets of the box. The classification is represented by a 6-bit
outecode, in which each bit corresponds with a plane. A bit in the outcode
is 1 iff the point lies “outside” the corresponding plane—in the positive
open halfspace of the plane for plane normals pointing cutward. We see
that a point that is contained by the box is classified as 000000. If the out-
codes of the ray’s endpoints contain the same bit (i.e., their bitwise AND
is nonzero), then the ray does not hit the box, since the corresponding
plane separates the ray from the box. If the bitwise AND of the outcodes
of the ray's endpoints is zero, the ray may still miss the box, as illustrated
in Figure 3.2 for the 2D case.

We need to compute the parameters of the intersection points of the
ray and the planes, and, for this purpose, we use a technique from the LB
parametric line clipping algorithm. Let s be the source point and t be the
target point of the ray. Then, an intersection point can be expressed as
s+A{t—s), where A € [0, 1] isits parameter., By classifying the intersection




74 Chapter 3 Basic Primitives

Figure 3.2

1001 1000 1010

t

0001 0000 od10 it

ﬁ exiting
0110

0101 0100

s’ entering

A ray cast for axis-aligned boxes using techniques from Cohen-Sutherland and
Liang-Barsky line clipping. The ray intersects the box iff the largest parameter
of an entering intersection point is at most the smallest parameter of an exiting
intersection point.

point as enfering or exiting, we can decide whether the ray hits the box.
An intersection point is classified as entering if moving from s to t we go
from the positive to the negative halfspace of the corresponding plane,
and exiting otherwise. It can be seen that a ray intersects the box iff the
largest parameter of an entering intersection point is at most the smallest
parameter of an exiting intersection point.

We will now explain why CS and LB make such a good team. First of
all, under the assumption that the bitwise AND of the outcodes of the end-
points is zero, the 1 bits in either of the two outcodes correspond with the
planes for which intersection points need to be computed, since the ray
crosses only the planes that correspond with these bits. Moreover, each
intersection point corresponding with a 1 bit in the outcode of s is enter-
ing, and each intersection point corresponding with a 1 bit in t's outcode
is exiting. Hence, the ray intersects the box iff the largest parameter cor-
responding with a 1 bit in §'s outcode is at most the smallest parameter
corresponding with a 1 bit in t's outcode. We see how neatly LB benefits
from the outcodes computed by CS. Considering the long history of line
clipping, it is remarkable that a hybrid of CS and LB got published only
recently [11]. !

For a box centered at the origin the parameters are computed in the
following way. Let o; and 7; be the ith components of the ray’s source s and
target t, respectively, and let 7; be the ith component of the box’s extent
h. Then, the parameters of the intersection points on the lower and upper
plane orthogonal to the ith coordinate axis are, respectively,

—%i — i —0i +7ni
—— and Ay = i
Ti — O T — 0

Nz

Algorithm
33

3.2 Axis-Aligned Boxes 75

Since we compute these parameters only for planes for which s and t lie
on different sides, each computed parameter lies in the interval [0, 1], and
thus represents an intersection point of the ray and the plane. Pseudocode
for the ray cast on boxes is presented in Algorithm 3.3.

A ray cast for a ray st, where s = (01, 02, 03) and t = (71, 12, 73), and a box
centered at the origin having extent (11, 72, 73). The intersection of the ray
and the box is represented by the interval [Aeprer, Aexit]. The point where
the ray enters the box is returned as x.

bitss 1= outcode(s);
bitsy :=outcode(t);
if bitss & bitsy =0 then
{{None of the side planes separate the ray from the box. )}
begin

denter 1=0;

Aexit i=1;
bit:=1;
fori:=1,2,3 do
begin

if bitsg & bit # 0 then
{{Point of intersection is entering. }}
Aenter :=max(Aenter, (—o1 — ﬂi)/(fi —ai));
else if bitsy & bit # 0 then
{{Point of intersection is exiting.}
Aexie '=mmin(Aeysr, (—o7 — ??i)/(l'i —ai));
bit :=bit < 1;
if bitss & bit # 0 then
{{Point of intersection is entering. })
Aenter =m08X(Aepter, (—o7 + UE)/(fi —ai));
else if bitsy & bit # 0 then
{{Point of intersection is exiting. }}
Aexir 1= min(Aeyir, (—0; + ﬁi)/(fi —a1));
bit :=bit < 1
end;
if Aenter < Aexit then
((The ray intersects the box, since [Aenters hexit] 7 9. }
hegin
X:=8 + Aenter(t — 8);
return true
end
end;
return false




76 Chapter 3 Basic Primitives

3.2.2

Sphere-Box Test

We conclude this section with a discussion of how a sphere and an axis-
aligned box are tested for intersection. This is done by computing the
point in the box closest to the sphere’s center, and testing whether this
point is contained in the sphere. Lel the box be centered at the ori-
gin with extent h = (91, 52,13), and let the sphere’s center be given
by ¢ = (y1, 72, ¥3). Then, the point in the box closest to ¢ is the point
x = (clamp(y1, —n1, 1), clamp(ys, —nz, 72), clamp(ys, =13, 13)), where

aify <o
clamp(y, o, B) = B if y > B
y otherwise.

The sphere intersects the box iff the point x is contained in the sphere;
that is, the squared distance |x — c|? is at most the squared radius P2,

The witness points for a nonzero distance are found in the following
way. We take the point x closest to the sphere’s center as the witness point
on the boundary of the box. The witness point on the sphere’s boundary
is the point

r=e-t :
v
where v = x — ¢. The distance between the sphere and the box is ||x — x| =
lv]l = p—that is, if the sphere and the box do not intersect (|[v]| > p), since
otherwise the distance is zero.

If the sphere and the box intersect and the center of the sphere is not
contained by the box, then the points r and x are witness points of a
nonzero penetration depth as well, In that case, the penetration depth is
p — |lv|l. However, if the center is contained by the box, then the poinls
¢ and x coincide. In that case, the witness point for the box is given by
the point y on the boundary of the box closest to the sphere’s center. The
point y is found in the following way. First, we select the coordinate axis
on which ¢’s component lies closest to the boundary, as illustrated in
Figure 3.3. This is the axis e; for which §; = n; —[y:| has the smallest value.
If multiple axes result in a smallest value §;, then simply choose one of
these axes. Given such an axis e;, the point on the boundary of the box
closest to the sphere’s center is )

y =c+ 8 sign(yiei,
where

—1ifee<0
1 otherwise.

sign(e) = {

Figure 3.3

3.3 Separating Axes 77

(=] h

Computing the penetration depth of a sphere A and a box B for the case where
the sphere’s center ¢ is contained by the box. The point y is the point on the
boundary of B closest to ¢. The penetration depth vector y —r is aligned along e;,
the coordinate axis on which ¢'s component lies closest to the boundary.

The witness point on the sphere is the point r = ¢ — psign(y;)e;, and the
penetration depth is |y — x|l = & + p.

3.3 Separating Axes

For simple polytopes, such as line segments, triangles, and boxes, there
exists an easy and fast method for intersection testing. Two objects A
and B are disjoint if for some vector v the projections v+ A and v - B of
the objects onto the vector do not overlap. Such a vector v is called a
separating axis. This property is illustrated in Figure 3.4. For noninter-
secting convex objects a separating axis always exists. A general proof for
this claim is presented in Chapter 4. For now, let’s restrict ourselves to
separating axes for polytopes.

Theorem 3.1 gives us a straightforward method for finding a separating
axis for a pair of polytopes that can successfully be used if the nmuwmber of

y

L[

Figure 3.4 The vector x is a separating axis of A and B, whereas y is not a separating axis. _




