Elastic Collisions

Algebraic Derivation of Post-Collision Velocities (1D)

Patrick Rutkowski (rutski89@gmail.com)
TeX Source: http://www.rutski89.com/static/ec.tex

Our goal is to find the new velocities $(v_1 \text{ and } v_2)$ of two masses after they have collided in 1D space with full elasticity. We start by noting that the very definition of a "fully elastic" collision is one in which the sums of the objects' momentums and kinetic energies remain unchanged after impact:

$$\left(\frac{m_1 o_1^2}{2} + \frac{m_2 o_2^2}{2}\right) = \left(\frac{m_1 v_1^2}{2} + \frac{m_2 v_2^2}{2}\right)$$
and
$$(m_1 o_1 + m_2 o_2) = (m_1 v_1 + m_2 v_2)$$

 o_1 and o_2 in the above denote the *original* velocities, as before impact.

We can find v_1 by solving these simultaneous equations algebraically. But first, it would do us good to establish a notation without those messy sub-scripts:

$$m_1 = s$$

$$m_2 = t$$

$$o_1 = x$$

$$o_2 = y$$

$$v_1 = w$$

$$v_2 = z$$

So then, to restate for the new notation: we are trying to find w given

$$\left(\frac{sx^2}{2} + \frac{ty^2}{2}\right) = \left(\frac{sw^2}{2} + \frac{tz^2}{2}\right)$$
and
$$(sx + ty) = (sw + tz)$$

Our first problem is that we have two unknowns, w and z. This won't do, we want w to be the single unknown; we must eliminate z. This can be done by stating both equations in terms of z^2 , and then setting them equal to each other:

firstly, kinetic energy

$$\left(\frac{sx^2}{2} + \frac{ty^2}{2}\right) = \left(\frac{sw^2}{2} + \frac{tz^2}{2}\right)$$
$$\left(sx^2 + ty^2\right) = \left(sw^2 + tz^2\right)$$
$$\left(sx^2 + ty^2\right) - sw^2 = tz^2$$
$$\frac{\left(sx^2 + ty^2\right) - sw^2}{t} = z^2$$

and secondly, momentum

$$(sx + ty) = sw + tz$$
$$(sx + ty) - sw = tz$$
$$\frac{(sx + ty) - sw}{t} = z$$
$$\left(\frac{(sx + ty) - sw}{t}\right)^{2} = z^{2}$$

Setting these two equal to each other now gives

$$\left(\frac{sx + ty - sw}{t}\right)^2 = \frac{sx^2 + ty^2 - sw^2}{t}$$

which has the desired attribute of having only a single unknown, w. Take note that we have both w and w^2 terms here. The next logical step is thus to rearrange to the quadratic form $aw^2 + bw + c = 0$.

Let's first expand $\left(\frac{sx+ty-sw}{t}\right)^2$. We quickly see that it's $\frac{(sx+ty-sw)^{\frac{1}{2}}}{t^2}$, so we can just expand $(sx+ty-sw)^2$ on its own:

$$(sx + ty - sw)^{2}$$

$$(sx + ty - sw)(sx + ty - sw)$$

$$sx(sx + ty - sw) + ty(sx + ty - sw) - sw(sx + ty - sw)$$

$$(s^{2}x^{2} + stxy - s^{2}xw) + (stxy + t^{2}y^{2} - styw) + (-s^{2}xw - styw + s^{2}w^{2})$$

$$(s^{2}x^{2} + t^{2}y^{2} + s^{2}w^{2}) + (stxy + stxy) + (-s^{2}xw - s^{2}xw) + (-styw - styw)$$

$$(s^{2}x^{2} + t^{2}y^{2} + s^{2}w^{2}) + (2stxy - 2s^{2}xw - 2styw)$$

and so we have

$$\left(\frac{sx + ty - sw}{t}\right)^2 = \frac{(s^2x^2 + t^2y^2 + s^2w^2) + (2stxy - 2s^2xw - 2styw)}{t^2}$$

and we can now replace the $\left(\frac{sx+ty-sw}{t}\right)^2$ with our new definition

$$\left(\frac{sx + ty - sw}{t}\right)^2 = \frac{sx^2 + ty^2 - sw^2}{t}$$
$$\frac{(s^2x^2 + t^2y^2 + s^2w^2) + (2stxy - 2s^2xw - 2styw)}{t^2} = \frac{sx^2 + ty^2 - sw^2}{t}$$

Next, let's multiply both sides by t^2 (to get rid of the big horizontal lines)

$$(s^2x^2 + t^2y^2 + s^2w^2) + (2stxy - 2s^2xw - 2styw) = stx^2 + t^2y^2 - stw^2$$

now drop the t^2y^2 from both sides

$$(s^{2}x^{2} + \mathbf{t^{2}y^{2}} + s^{2}w^{2}) + (2stxy - 2s^{2}xw - 2styw) = stx^{2} + \mathbf{t^{2}y^{2}} - stw^{2}$$
$$(s^{2}x^{2} + s^{2}w^{2}) + (2stxy - 2s^{2}xw - 2styw) = stx^{2} - stw^{2}$$

then set equal to 0

$$(s^2x^2 + s^2w^2) + (2stxy - 2s^2xw - 2styw) = (\mathbf{stx^2} - \mathbf{stw^2})$$
$$(s^2x^2 + s^2w^2) + (2stxy - 2s^2xw - 2styw) - (\mathbf{stx^2} - \mathbf{stw^2}) = 0$$

then get rid of the parens, taking note that $-(stx^2 - stw^2)$ will become $-stx^2 + stw^2$

$$s^{2}x^{2} + s^{2}w^{2} + 2stxy - 2s^{2}xw - 2styw - stx^{2} + stw^{2} = 0$$

and finally, rearrange into the $aw^2 + bw + c = 0$ quadratic form

$$w^{2}(s^{2} + st) + w(-2s^{2}x - 2sty) + (s^{2}x^{2} + 2stxy - stx^{2}) = 0$$

and thus we have

$$a = (s^2 + st)$$

$$b = (-2s^2x - 2sty)$$

$$c = (s^2x^2 + 2stxy - stx^2)$$

To find w (a.k.a v_1), we can now simply use $w = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$; though the algebra, as usual, will be a bit cumbersome.

Let's find -b, b^2 , 4ac, and $b^2 - 4ac$ in steps on their own.

$$-b = -(-2s^2x - 2sty) = 2s^2x + 2sty$$

At least that one was easy. b^2 is slightly more involved

$$\begin{aligned} b^2 \\ &= (-2s^2x - 2sty)^2 \\ &= (-2s^2x - 2sty)(-2s^2x - 2sty) \\ &= -2s^2x(-2s^2x - 2sty) - 2sty(-2s^2x - 2sty) \\ &= (4s^4x^2 + 4\mathbf{s^3txy}) + (4\mathbf{s^3txy} + 4s^2t^2y^2) \\ &= 4s^4x^2 + 8\mathbf{s^3txy} + 4s^2t^2y^2 \end{aligned}$$

Now for 4ac

$$4ac$$

$$= 4(s^{2} + st)(s^{2}x^{2} + 2stxy - stx^{2})$$

$$= 4(s^{2}(s^{2}x^{2} + 2stxy - stx^{2}) + st(s^{2}x^{2} + 2stxy - stx^{2}))$$

$$= 4(s^{4}x^{2} + 2s^{3}txy - s^{3}tx^{2}) + (s^{3}tx^{2} + 2s^{2}t^{2}xy - s^{2}t^{2}x^{2})$$

$$= 4s^{4}x^{2} + 8s^{3}txy - 4s^{3}tx^{2} + 4s^{3}tx^{2} + 8s^{2}t^{2}xy - 4s^{2}t^{2}x^{2}$$

$$= 4s^{4}x^{2} + 8s^{3}txy + 0 + 8s^{2}t^{2}xy - 4s^{2}t^{2}x^{2}$$

$$= 4s^{4}x^{2} + 8s^{3}txy + 8s^{2}t^{2}xy - 4s^{2}t^{2}x^{2}$$

$$= 4s^{4}x^{2} + 8s^{3}txy + 8s^{2}t^{2}xy - 4s^{2}t^{2}x^{2}$$

Lastly, the rather large $b^2 - 4ac$, which (thank goodness!), actually reduces to something very small.

$$\begin{aligned} b^2 - 4ac \\ &= (4s^4x^2 + 8s^3txy + 4s^2t^2y^2) - (4s^4x^2 + 8s^3txy + 8s^2t^2xy - 4s^2t^2x^2) \\ &= (\mathbf{4s^4x^2} - \mathbf{4s^4x^2}) + (\mathbf{8s^3txy} - \mathbf{8s^3txy}) + 4s^2t^2y^2 - 8s^2t^2xy + 4s^2t^2x^2 \\ &= (\mathbf{0}) + (\mathbf{0}) + 4s^2t^2y^2 - 8s^2t^2xy + 4s^2t^2x^2 \\ &= 4\mathbf{s^2t^2}y^2 - 8\mathbf{s^2t^2}xy + 4\mathbf{s^2t^2}x^2 \\ &= s^2t^2(4y^2 - 8xy + 4x^2) \\ &= s^2t^2(2y - 2x)^2 \end{aligned}$$

The quadratic formula can now be tackled in proper

$$= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{(2s^2x + 2sty) \pm \sqrt{s^2t^2(2y - 2x)^2}}{2(s^2 + st)}$$

$$= \frac{(2s^2x + 2sty) \pm (\mathbf{st}(2\mathbf{y} - 2\mathbf{x}))}{2(s^2 + st)}$$

$$= \frac{(2s^2x + 2sty) \pm (st(2y - 2x))}{2(\mathbf{s}(\mathbf{s} + \mathbf{t}))}$$

$$= \frac{(2s^2x + 2sty) \pm (st(2y - 2x))}{2\mathbf{s}(\mathbf{s} + \mathbf{t})}$$

$$= \frac{(2s^2x + 2sty) \pm (st(2y - 2x))}{2\mathbf{s}(\mathbf{s} + \mathbf{t})}$$

$$= \frac{(2s^2x + 2sty) + (st(2y - 2x))}{2s(s + t)}$$

$$= \frac{(2s^2x + 2sty) + 2\mathbf{st}(\mathbf{y} - \mathbf{x})}{2s(s + t)}$$

$$= \frac{(sx + ty) + t(y - x)}{(s + t)}$$

So there we at long last have it! Our final solution

$$w = \frac{(sx + ty) + t(y - x)}{(s + t)}$$

or

$$v_1 = \frac{(m_1o_1 + m_2o_2) + m_2(o_2 - o_1)}{(m_1 + m_2)}$$

 v_2 is then but a simple mirror image

$$v_2 = \frac{(m_2 o_2 + m_1 o_1) + m_1 (o_1 - o_2)}{(m_2 + m_1)}$$