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Sample Applications

* Gene Expression Analysis

Data:

Expression level of genes under

different samples such as

= different individuals (patients)
= different time slots after treatment

= different tissues

= different experimental environments

Data matrix:

genes
(usually
several

thousands)

<

samples (usually

N

~

2

\ expression level of
the ith gene under

the jth sample



Sample Applications

« Task 1: Cluster the rows (i.e. genes) to find groups of genes with similar

expression profiles indicating homogeneous functions

- Challenge:
genes usually have
different functions
under varying
(combinations of) conditions

Gene1
Gene2
Gene3
Gene4
Geneb
Geneb
Gene7
Gene8
Gene9
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Cluster 1: {G1, G2, G6, G8}
Cluster 2: {G4, G5, G6}
Cluster 3: {G5, G6, G7, G9}

» Task 2: Cluster the columns (e.g. patients) to find groups with similar

expression profiles indicating homogeneous phenotypes

- Challenge:
different phenotypes
depend on different
(combinations of)

subsets of genes
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Cluster 1: {P1, P4, P8, P10}
Cluster 2: {P4, P5, P6}
Cluster 3: {P2, P4, P8, P10}



Sample Applications

* Metabolic Screening S Ve —
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in the blood of different test persons
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N-Acetyl-O-demethyl-

Bavarian Newborn Screening RN

N-Acetyl-Mo, O-dide methyl-
puromzcin-5-phosphate

- Data matrix:

metabolites (usually ten to hundreds)

N
4 N
(
test persons - —
(usually several < _
thousands) \ concentration of
the ith metabolite
9 in the blood of the

Jth test person



Sample Applications

« Task: Cluster test persons to find groups of individuals with similar
correlation among the concentrations of metabolites indicating homogeneous
metabolic behavior (e.g. disorder)

- Challenge:

different metabolic disorders appear through different correlations of
(subsets of) metabolites
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General Problems & Challenges

The “curse of dimensionality”: one buzzword for many problems

 First aspect: Optimization Problem (Bellman).

“[The] curse of dimensionality [... is] a malediction that has plagued the
scientists from earliest days.” [Bel61]

« The difficulty of any global optimization approach increases exponentially
with an increasing number of variables (dimensions).

« General relation to clustering: fitting of functions (each function explaining
one cluster) becomes more difficult with more degrees of freedom.

« Direct relation to subs 1g: number of possible subs

increases dramatically with increasing number of dimensions.
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General Problems & Challenges

* Second aspect: Concentration effect of L ,-norms

* In [BGRS99,HAKO00,AHKOI] it is reported that the ratio of (Dmax, —
Dmin,) to Dmin, converges to zero with increasing dimensionality d

- Dmin, = distance to the nearest neighbor in d dimensions

- Dmax, = distance to the farthest neighbor in d dimensions

Formally:

: D — Dmi
Ve>0:lim, P distdE mar, — ,oj <e|=1
Dmin

- This holds true for a wide range of data distributions and distance
functions



General Problems & Challenges

1 2 3 4 5 6 7 8 9 10 10 20 30 40 50 60 70 80 90 100
dimension dimension

From bottom to top: minimum observed value, average minus standard deviation, average value, average plus standard deviation,
maximum observed value, and maximum possible value of the Euclidean norm of a random vector. The expectation grows, but the
variance remains constant. A small subinterval of the domain of the norm is reached in practice. (Figure and caption: [FWV07])

» The observations stated in [BGRS99,HAKO00,AHKO01] are valid within
clusters but not between different clusters as long as the clusters are well
separated [BFG99,FWV07 HKK+10].

 This i1s not the main problem for subspace clustering, although it should be
kept in mind for range queries.

10



General Problems & Challenges

» Third aspect: Relevant and Irrelevant attributes
« A subset of the features may be relevant for clustering

* Groups of similar (““dense”) points may be identified when considering these
features only

A

irrelevant attribute

<__'._.___T___'.___'.__'__._
4__...._..____._..___..__.._.._

v

relevant attribute/
relevant subspace

 Different subsets of attributes may be relevant for different clusters

» Separation of clusters relates to relevant attributes (helpful to discern
between clusters) as opposed to irrelevant attributes (indistinguishable
distribution of attribute values for different clusters).
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General Problems & Challenges

« Effect on clustering:
- Usually the distance functions used give equal weight to all dimensions
- However, not all dimensions are of equal importance

- Adding irrelevant dimensions ruins any clustering based on a distance
function that equally weights all dimensions
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different attributes are relevant for different clusters
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General Problems & Challenges
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General Problems & Challenges

* Fourth aspect: Correlation among attributes
» A subset of features may be correlated

* Groups of similar (“‘dense”) points may be identified when considering this
correlation of features only
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 Different correlations of attributes may be relevant for different clusters
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General Problems & Challenges

Other strange things happen: Shrinking volume of hyperspheres
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General Problems & Challenges

* Why not feature selection?
* (Unsupervised) feature selection is global (e.g. PCA)

« We face a local feature relevance/correlation: some features (or combinations
of them) may be relevant for one cluster, but may be irrelevant for a second
one

N
@Q}
Disorder 3 Q\%O o

16



General Problems & Challenges

» Use feature selection before clustering
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General Problems & Challenges

 Cluster first and then apply PCA
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General Problems & Challenges

* Problem Summary

* Curse of dimensionality/Feature relevance and correlation
- Usually, no clusters in the full dimensional space

- Often, clusters are hidden in subspaces of the data, i.e. only a subset of features
is relevant for the clustering

- E.g. a gene plays a certain role in a subset of experimental conditions
» Local feature relevance/correlation

- For each cluster, a different subset of features or a different correlation of
features may be relevant

- E.g. different genes are responsible for different phenotypes
* Overlapping clusters

- Clusters may overlap, 1.e. an object may be clustered differently in varying
subspaces

- E.g. a gene plays different functional roles depending on the environment

19



General Problems & Challenges

* General problem setting of clustering high dimensional data

Search for clusters in
(in general arbitrarily oriented) subspaces

of the original feature space

* Challenges:

 Find the correct subspace of each cluster
- Search space:

= all possible arbitrarily oriented subspaces of a feature space
" infinite
« Find the correct cluster in each relevant subspace

- Search space:

= “Best” partitioning of points (see: minimal cut of the similarity graph)
= NP-complete [SCH75]

20



General Problems & Challenges

* Even worse: Circular Dependency
« Both challenges depend on each other

* In order to determine the correct subspace of a cluster, we need to know (at
least some) cluster members

* In order to determine the correct cluster memberships, we need to know the
subspaces of all clusters

* How to solve the circular dependency problem?
 Integrate subspace search into the clustering process

» Thus, we need heuristics to solve
- the clustering problem
- the subspace search problem

simultaneously

21



General Problems & Challenges

* Solution: integrate variance / covariance analysis into the clustering

process

e Variance analysis:
- Find clusters in axis-parallel subspaces

- Cluster members exhibit low variance
along the relevant dimensions

« (Covariance/correlation analysis:

- Find clusters in arbitrarily oriented
subspaces

- Cluster members exhibit a low covariance
w.r.t. a given combination of the relevant
dimensions (i.e. a low variance along the
dimensions of the arbitrarily oriented
subspace corresponding to the given
combination of relevant attributes)
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Taxonomy of Approaches

* So far, we can distinguish between

» Clusters in axis-parallel subspaces

»
>

o .
(common assumption to restrict the search space) é “
Approaches are usually called g
- “subspace clustering algorithms” é i

- “projected clustering algorithms” ,e,evantattribute, g

R relevant subspace

- “bi-clustering or co-clustering algorithms’

* Clusters in arbitrarily oriented subspaces A

Q
Approaches are usually called Q\;;»\‘:/’
. . . . Oé ’/
- “bi-clustering or co-clustering algorithms” \ &7
. . "O/ \QA .
- “pattern-based clustering algorithms” °be,,,\‘°<“

v

- “correlation clustering algorithms™ Bs%e
o\



Taxonomy of Approaches

* A first big picture

« We have two problems to solve

* For both problems we need heuristics that have huge influence on the

properties of the algorithms

- Subspace search

Algorithm

Assumptions
(e.g. axis-parallel only)

Original search space

search space
(infinite) '

- Cluster search

(e.g. top-down)

Assumption specific

Algorithm

» FINAL SUBSPACES

Cluster model
(e.g. k-partitioning

clustering)
Model specific

Original search space search space

(NP-complete)

(e.g. k-Means)

» FINAL CLUSTERING

25



Taxonomy of Approaches

Restricted on axis-parallel subspaces — what are we searching for?

« Overlapping clusters: points may be grouped differently in different
subspaces

=> “subspace clustering”
 Disjoint partitioning: assign points uniquely to clusters (or noise)

=> “projected clustering”

Notes:

« The terms subspace clustering and projected clustering are not (yet) used in
a unified or consistent way in the literature
« These two problem definitions are products of the presented algorithms:

- The first “projected clustering algorithm” integrates a distance function
accounting for clusters in subspaces into a “flat” clustering algorithm (k-medoid)
=> DISJOINT PARTITION

- The first “subspace clustering algorithm” is an application of the APRIORI
algorithm => ALL CLUSTERS IN ALL SUBSPACES

26



Taxonomy of Approaches

* Restricted on axis-parallel subspaces —how are we searching?

« Basically, there are two different ways to efficiently navigate
through the search space of possible subspaces

Bottom-up:
If the cluster criterion implements the downward closure, one can use any
bottom-up frequent itemset mining algorithm (e.g. APRIORI [AS94])

Key: downward-closure property OR merging-procedure
Example approaches:

[AGGRI98, CFZ99, NGCO01, KKK04, KKRW05, MSE06, ABK+07a]

Top-down:

The search starts in the full d-dimensional space and iteratively learns for
each point or each cluster the correct subspace

Key: procedure to learn the correct subspace

Example approaches: [APW+99, BKKK04, FM04, WLKL04]

27



Taxonomy: Bottom-up Algorithms

« Rational:
 Start with 1-dimensional subspaces and merge them to compute higher
dimensional ones
« Most approaches transfer the problem of subspace search into frequent
1tem set mining
- The cluster criterion must implement the downward closure property

= [f the criterion holds for any A-dimensional subspace S, then it also holds for any
(k—1)-dimensional projection of §
= Use the reverse implication for pruning:

If the criterion does not hold for a (k—1)-dimensional projection of S, then the
A~ng + 1
L

At nrinm alon A~ ~1A FAqee
LIL1LC11VU11 A1dV UJUUOD 11Ul 11VIU 1Vl O

- Apply any frequent itemset mining algorithm (e.g. APRIORI)

« Some approaches use other search heuristics like best-first-search, greedy-
search, etc.

- Better average and worst-case performance

- No guaranty on the completeness of results

28



Taxonomy: Bottom-up Algorithms

* Downward-closure property

if C 1s a dense set of points in subspace S,

then C 1s also a dense set of points in any subspace 7' S

Ay MinPts = 4 Ay

p and g density-connected in {A,B}, {A} and {B} p and g not density-connected in {B} and {A,B}
29
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Taxonomy: Bottom-up Algorithms

* Downward-closure property

the reverse implication does not hold necessarily
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Taxonomy: Top-down Algorithms

The key problem: How should we learn the subspace preference of
a cluster or a point?
« Most approaches rely on a “locality assumption”

- The subspace is usually learned from the local neighborhood of cluster
representatives/cluster members in the entire feature space:

= Cluster-based approach: the local neighborhood of each cluster representative is
evaluated in the d-dimensional space to learn the “correct” subspace of the cluster

» [Instance-based approach: the local neighborhood of each point is evaluated in the d-
dimensional space to learn the “correct” subspace preference of each point

- The locality assumption: the subspace preference can be learned from the
local neighborhood in the d-dimensional space

« Other approaches learn the subspace preference of a cluster or a point from
randomly sampled points

32



Taxonomy: Top-down Algorithms

« Example:

 learn weights based on attribute wise variances for a weighted Euclidean
distance function

. 2
dist (p,q) = \/Z w-(p=q) Wrtp

« Caveat: ensure symmetry, e.g. . :.
dist(p,q) = max {dist,(p,q), dist (q.p)} LB

v




Taxonomy: Pattern-based

Pattern-based clustering relies on patterns in the data matrix.

* Simultaneous clustering of rows and columns of the data matrix
(hence biclustering).
e Data matrix 4 = (X,Y) with set of rows X and set of columns Y
* a,,1s the element in row x and column y.

* submatrix 4,; = (I,J) with subset of rows I € X and subset of columnsJ Y
contains those elements a; withi € Tundj € J

Y
1
Ayy ' Yy ] ‘J:{y,j}

34



Taxonomy: Pattern-based

General aim of biclustering approaches:
Find a set of submatrices {(1,,J,),(1,,J>),....,({,,J,)} of the matrix
A=(XY) (with [, c Xand J. c Y fori= I,...,k) where each
submatrix (= bicluster) meets a given homogeneity criterion.

Sounds similar to subspace clustering but:
the homogeneity criterion 1s 1n some cases completely different!

35



Taxonomy: Pattern-based

* Some values often used by
bicluster models:
* mean of row i:

¥,

jeJ

\J

* mean of column j:

=3,

el

\1

* mean of all elements

2.4,

i€l,jeJ

Zalj

jeJ

Z ay

el

\1 HJ

\J

|1
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Taxonomy: Pattern-based

Different types of biclusters (cf. [MO04]):
* constant biclusters
* biclusters with
* constant values on columns
* constant values on rows
* biclusters with coherent values (aka. pattern-based clustering)

 biclusters with coherent evolutions

37



Taxonomy: Pattern-based

Constant biclusters

all points share identical value in selected attributes

the constant value U 1s a typical value for the cluster

Cluster model:

Obviously a special case of an axis-parallel subspace cluster.

al a2 a3
P1 1 1 3.5
P2 1 1 2.3
P4 1 1 0.7

if

38



Taxonomy: Pattern-based

al

a2

F1

P2

P4

« example — 2-dimensional subspace:

a2

al

=> points located on the bisecting line of participating attributes

39



Taxonomy: Pattern-based

« example — parallel coordinates:

a1 a2 a3
1 1 1 3.5
P2 1 1 2.3
P4 1 1 0.7

val ue

i

YA

=> pattern: identical constant lines

|
al

|

a2

aJ

PO e attribute

40



Taxonomy: Pattern-based

Biclusters with constant values on columns
* Cluster model for A;; = (1J):

ay. :,U+Cj

Viel,jeJ

* adjustment value ¢; for columnj € J

 results in axis-parallel subspace clusters

41



Taxonomy: Pattern-based

« example — 3-dimensional embedding space:

al

a2

a3

F1

35

P2

23

P4

0.7

42



Taxonomy: Pattern-based

« example — 2-dimensional subspace:

al

F1

P2

P4

-4

43



Taxonomy: Pattern-based

« example — parallel coordinates:

val ue
al Az ad =a
P1 1 2 3.5 3 -
P2 1 2 23 F2
| 2 N
P4 | 2 | 07 1 A /\
P4

Fo e attribute

N E—
al a2 a3

=> pattern: identical lines



Taxonomy: Pattern-based

Biclusters with constant values on rows
* Cluster model for A;; = (1J):

a; =+,

Viel,jeJ

* adjustment value r; for row i € I

45



Taxonomy: Pattern-based

« example — 3-dimensional embedding space:

al a2 a3
P1 1 1 35
P2 i 2 2.3

F4 4 4 0.7

=> 1n the embedding space, points build a sparse hyperplane parallel
to 1rrelevant axes



Taxonomy: Pattern-based

« example — 2-dimensional subspace:

a2
al =P 4 — ;jf/

P 1 1 d
= 2 2 3

2 — &
P4 4 4 ;

14 o

T I | - a’

=> points are accommodated on the bisecting line of participating
attributes



Taxonomy: Pattern-based

« example — parallel coordinates:

val ue
a1 a2 a3 4 _
P1 1 1 35 P1
P2 i 2 2.3 3 - —_—
- _ m
2 )
P4 4 4 a.7
1 P4
- Fl3 §
| — - attribute
al £ a3

=> pattern: parallel constant lines



Taxonomy: Pattern-based

most common model (following Cheng & Church [CCO00]):
biclusters with coherent values

* based on a particular form of covariance between rows and

columns
a, =U+T1,+c, H
Viel, jeJ

 special cases:

* ¢;=0 forall j > constant values on rows

« r;=0 for all i = constant values on columns




Taxonomy: Pattern-based

« embedding space: sparse hyperplane parallel to axes of irrelevant

attributes N 2
% 1
6 —-- - 6 — *
al Az an ‘. ' &
P11 2 | 35 . 4
F 2 3 4.3 i [e— 3 o
: 2 s 294 =
P4 | & B | 07 1 "
T T T T T T »- a1
1. 2 3 4 5 6 2 & & B B
value
* subspace: increasing one-dimensional line 4
 pattern (parallel coordinates): °
5 —
parallel lines A S
P1
3 _|
9 F2
1oy P4
T P3  attribute




Taxonomy: Pattern-based

Biclusters with coherent evolutions

 for all rows, all pairs of attributes change simultaneously
- discretized attribute space: coherent state-transitions

- change 1n same direction irrespective of the quantity

NN
"4
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Taxonomy: Pattern-based

* Approaches with coherent state-transitions: [TSS02,MKO03]

 reduces the problem to grid-based axis-parallel approach:

al a2 a3
P1 05 1.5 3.5
P2 0y 33 23
P4 0.8 2.1 a.7

52



Taxonomy: Pattern-based

al a2 a1 a2 a3
B | | Pl | s |15 | a5
B 0| = B | 0z | .43 | 23
P41 D |+ P4 | 08 | 21 | 07
a2 value
A i
FFI
3 - 3 _
+ + -
24 * 2 —
" 1
1 ) T &
0 { 0 i |
——» 2l ————— = aftribute
1 2 3 al a2 a3
“Erh—“f—J pattern: all lines cross border between

states (in the same direction)
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Taxonomy: Pattern-based

change 1n same direction — general 1dea: find a subset of rows and
columns, where a permutation of the set of columns exists such that
the values in every row are increasing

clusters do not form a subspace but rather half-spaces

related approaches:
 quantitative association rule mining [Web01,RRK04,GRRKO05]

 adaptation of formal concept analysis [GW99] to numeric data [Pfa07]
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Taxonomy: Pattern-based

« example — 3-dimensional embedding space

a1 a2 a3

F1 05 | 15 38
P2 [ | k3 2

F4 LR | 2 0.7




Taxonomy: Pattern-based

« example — 2-dimensional subspace

al

a2

F1

0.5

145

P2

0.7

1.3

P4

1.8

2.1

al
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Taxonomy: Pattern-based

« example — parallel coordinates:

al a2 a3
P1 05 1.5 3.5
P2 0y 33 23
P4 18 2.1 a.7

=> pattern: all lines increasing

val ue
i
P
3 _|
2 - F2
1 4 P4
T v ra, atfribute
al a2 a3
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Taxonomy of Approaches

« Pattern-based approaches find simple positive correlations

* negative correlations: no additive pattern

value
a2 A
A

6 - P1
64 =

= P2
b - °

4 -
4 -

3 - P3
3
2 . 2 P4
1 1 —

— 71— 21 | — - attribute

1 2 3 4 5 6 al a2



Taxonomy of Approaches

e more complex correlations: out of scope of pattern-based

approaches  * . value
A
al —2-a2+a3=0
5 —  meh i
al az a3
4 _
Pt | 3 | 2 | 1 o
F2 4 3 -

P2

P4 3 4 5

/ P4
L attribute

al a2 a3

 1nteresting subspace 1s arbitrarily oriented, related to complex
correlations among attributes = Correlation Clustering
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Taxonomy of Approaches

val
¥

3
2

1

Matrix-Pattern

ue

]

=Y

a2 a

value

6 |

5

4 -

3

2 4

1

al a2 a3

A

w

g
3

a

=
F2

3 2

1

attribute

p— attribute

Constant values
in columns,
change of values
only on rows

From constant
values in rows
and columns (no
change of values)
to arbitrary
change of values
in common
direction

No particular
pattern

Problem

Subspace / Projected
Clustering

Pattern-based / Bi-
Clustering

Correlation
Clustering

Spatial Pattern

a2
j‘
a2

Axis-parallel
hyperplanes

= N W £y

Special cases
of axis-parallel
to special
cases of
arbitrarily
oriented
hyperplanes

Arbitrarily
oriented
hyperplanes

al

T T T T T T T T
1.2 3 4 5 6 7 8

60



Taxonomy of Approaches

* Note: this taxonomy considers only the subspace search space
* the clustering search space 1s equally important

« other important aspects for classifying existing approaches are e.g.
* The underlying cluster model that usually involves
- Input parameters
- Assumptions on number, size, and shape of clusters
- Noise (outlier) robustness
* Determinism

« Assumptions on overlap/non-overlap of clusters/subspaces
« Efficiency

Extensive survey: [KKZ09]
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Outline

.

2.

3.

4.

Sample Applications

General Problems and Challenges: the Curse of Dimensionality

Taxonomy of Approaches

Arbitrarily-oriented Subspace Clustering

1.
2.

PCA-Based Approaches

Correlation Clustering Based on the Hough-Transform
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PCA-based Approaches

Pattern-based approaches find pairwise positive correlations

More general approach: oriented clustering aka. generalized
subspace/projected clustering aka. correlation clustering

Assumption: any cluster 1s located in an arbitrarily oriented affine
subspace S+a of R?
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PCA-based Approaches

* Directions of high/low variance: PCA (local application)

* locality assumption: local selection of points sufficiently reflects
the hyperplane accommodating the points

 general approach: build covariance matrix X, for a selection D of
points (e.g. k nearest neighbors of a point)

1

2, :—Z(X_XD)(X_XD)T

‘D xeD

O .. edxd
% @ * symmetric

* positive semidefinite

* Op (value at row i, column j) = covariance
O 7 . . :
O between dimensions i and j

* 0, = variance in ith dimension
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PCA-based Approaches

model for correlation clusters [ABK+06]:

« A-dimensional hyperplane accommodating the points of a
correlation cluster Cc R¢ is defined by an equation system of d-A
equations for d variables (based on the small eigenvalues I}C) and
the affinity (e.g. the mean point x of all cluster members):

5T .. 1T

* equation system approximately fulfilled for all points xe C

» quantitative model for the cluster allowing for probabilistic
prediction (classification)

* Note: correlations are observable, linear dependencies are merely
an assumption to explain the observations — predictive model
allows for evaluation of assumptions and experimental refinements
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PCA-based Approaches

« Examples of PCA based correlation clustering:
[AY00, BKKZ04, ABK+07¢, ABK+07b]

* Learning the distance top-down (similar to axis-parallel, but
covariance instead of variance):

« E.g.,pandq are

max-

correlation-neighbors 1f

Jp=a)V,-E, VT -(p—q)",

g=p)v, E, -V} (g-p)

N

J
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Outline

1. Sample Applications

2. General Problems and Challenges: the Curse of Dimensionality

3. Taxonomy of Approaches

4. Arbitrarily-oriented Subspace Clustering

1. PCA-Based Approaches
2. Correlation Clustering Based on the Hough-Transform
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Correlation Clustering Based on the Hough-Transform

different correlation primitive: Hough-transform

e problems of PCA based approaches: locality assumption

* characteristic neighborhood?

 PCA sensitive for outliers in local
neighborhoods

e choice of A?

e “locality assumption” questionable in view
of the “curse of dimensionality” o
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Correlation Clustering Based on the Hough-Transform

* Hough-transform:
» developed in computer-graphics
e 2-dimensional (image procesing)
 CASH: Clustering in Arbitrary Subspaces based on the Hough-
Transform [ABD+08]
 generalization to d-dimensional spaces

« transfer of the clustering to a new space (‘“Parameter-space” of the Hough-
transform)

* restriction of the search space
(from innumerable infinite to O(n/))
« common search heuristic for Hough-transform: O(29)

— efficient search heuristic
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Correlation Clustering Based on the Hough-Transform

« given: DcR?

 find linear subspaces accommodating many points

» Idea: map points from data space (picture space) onto functions in
parameter space

¥

e W

o5

‘fFJ..

.sz
I,

R

ol
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Correlation Clustering Based on the Hough-Transform

e, 1 <i <d: orthonormal-basis

x = (x,,...,x)!: d-dimensional vector onto hypersphere around the
origin with radius r

u;: unit-vector in direction of projection of x onto subspace
span(e, ...,e, )
o, ..., 0, ;. o angle between u; and e;
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Correlation Clustering Based on the Hough-Transform

Length O of the normal vector O - 7 WithHﬁH =1 and angles «,, ..., 0,
for the line through point p:

fp(ala---aad—l):<p»n> :Zpi' lljsm(aj) -cos(;)

1=

vt S
R -
e |
- “ P -’f."'J.!.
F.I f I.”:
- 2 '
o / P :
- LS
-'-'.’.-' _||'-'I_ /
"g’\\‘g ('El:nﬁs)
A ax
(1 ‘-\ - : * -

o

=

picture space parameter space
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Correlation Clustering Based on the Hough-Transform

* Properties of the transformation

Point in the data space = sinusoidal curve in parameter space
Point in parameter space = hyper-plane in data space

Points on a common hyper-plane in data space = sinusoidal curves through a
common point in parameter space

Intersections of sinusoidal curves in parameter space = hyper-plane through the
corresponding points in data space

P

.

”. - ‘. - a -
TR g i : e ey
Vo #hc = o ) i ot
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Correlation Clustering Based on the Hough-Transform

47

dense regions 1n parameter space
& linear structures 1n data space
(hyperplanes with 4 <d-1)

exact solution: find all intersection
points
* 1infeasible

* to exact

approximative solution: grid-based

~ 4

LCT Space

1. 4 e~ o

clustering in para
— find grid cells intersected by at
least m sinusoids

« search space bounded but in O(9)

 pure clusters require large value for r
(grid solution)

lire 1 H
lire ¥ @

o I

dense region
cluster C1

denseregion EEEE

cluster C2




Correlation Clustering Based on the Hough-Transform

efficient search heuristic for dense regions in parameter space

« construct a grid by recursively splitting the parameter space (best-
first-search)

 1dentify dense grid cells as intersected by many parametrization
functions

* dense grid cell represents (d-1)-dimensional linear structure

 transform corresponding data objects in corresponding (d-1)-
dimensional space and repeat the search recursively

aaaaaa
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Correlation Clustering Based on the Hough-Transform

 grid cell representing less than m points can be excluded
— early pruning of a search path

+ grid cell intersected by at least m sinusoids after s recursive splits
represents a correlation cluster (with A <d-1)

« remove points of the cluster (and corr. sinusoids) from remaining cells
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Correlation Clustering Based on the Hough-Transform

properties:

 finds arbitrary number of clusters

« requires specification of depth of search (number of splits per axis)
* requires minimum density threshold for a grid cell

* Note: this minimum density does not relate to the locality
assumption: CASH is a global approach to correlation clustering
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Correlation Clustering Based on the Hough-Transform

 search heuristic: linear in number of points, but ~ O(d?)

depth of search s, number ¢ of pursued paths (ideally: ¢ cluster):

P
=
-]
=

runtime [sec]
[y
[
(]

priority search: O(s )

determination of curves intersecting a cell: O(n-d°)

overall: O(scn-d’)
(note: PCA generally in O(d°))

= CASH
/ = 4C
;‘ -+ ORCLUS

10 20 30 40 50 60 70 80 90 10C

size * 1000

1000 000 ~

100 000 -

10 000

runtime [sec]

10

1

1 000 -

100 -

I slope = 3.14
\ corresponding to O (d?)

1

10 100
dimensionality
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Correlation Clustering Based on the Hough-Transform

(a) Data set

- _.,.-"--
15 | / T
w | % -
e -

E )

(c) 4C: Cluster 1-8 (d) ORCLUS: Cluster 1-5
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Correlation Clustering Based on the Hough-Transform

« stability with increasing number of noise objects

F-Measure [%]

100% -
90% -
80% -
70% -
60% -
20% -

40%
30%
20%
10%

0%

i i i i i i l\.

—a = CASH
- 4C
-+ ORCLUS

N\

0

10

20 30 40 50 60 70 80 <0

level of noise objects []
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Summary and Perspectives

PCA.: mature technique, allows construction of a broad range of
similarity measures for local correlation of attributes

drawback: all approaches suffer from locality assumption

successfully employing PCA 1n correlation clustering in “really”
high-dimensional data requires more effort henceforth

new approach based on Hough-transform:

* does not rely on locality assumption

* but worst case again complete enumeration
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Summary and Perspectives

* some preliminary approaches base on concept of self-similarity
(intrinsic dimensionality, fractal dimension):
[BCOO,PTTF02,GHPTO5]

 1nteresting 1dea, provides quite a different basis to grasp
correlations in addition to PCA

» drawback: self-similarity assumes locality of patterns even by
definition
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