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Sample Applications

• Gene Expression Analysis
• Data:

- Expression level of genes under
diff t l h

DNA mRNA protein
different samples such as

different individuals (patients)
different time slots after treatment
different tissues
different experimental environments

- Data matrix: samples (usually ten to hundreds)samples (usually ten to hundreds)

genes
(usually 
several 

thousands)
expression level of 
the ith gene under 
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Sample Applications

• Task 1: Cluster the rows (i.e. genes) to find groups of genes with similar 
expression profiles indicating homogeneous functionsexpression profiles indicating homogeneous functions

- Challenge:
genes usually have

Gene1 
Gene2 
Gene3 
Gene4 

Cluster 1: {G1, G2, G6, G8}

different functions
under varying
( bi i f) di i

Gene5
Gene6 
Gene7 
Gene8 
Gene9

Cluster 2: {G4, G5, G6}

Cluster 3: {G5, G6, G7, G9}

(combinations of) conditions
• Task 2: Cluster the columns (e.g. patients) to find groups with similar 

expression profiles indicating homogeneous phenotypesp p g g p yp
- Challenge:

different phenotypes Pe
rs
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1 

Pe
rs

on
2 

Pe
rs

on
3 

Pe
rs

on
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Pe
rs

on
5

Pe
rs

on
6 
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on
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Pe
rs

on
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Pe
rs

on
9

Pe
rs

on
10

depend on different
(combinations of)
subsets of genes

Cluster 1: {P1, P4, P8, P10}

Cluster 2: {P4, P5, P6}

Cluster 3: {P2, P4, P8, P10}
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Sample Applications

• Metabolic Screening
• Data

- Concentration of different metabolites
in the blood of different test personsin the blood of different test persons

- Example:
Bavarian Newborn Screening

- Data matrix:

metabolites (usually ten to hundreds)

t t

concentration of 
the ith metabolite 
in the blood of the 

test persons
(usually several 

thousands)
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Sample Applications

• Task: Cluster test persons to find groups of individuals with similar 
correlation among the concentrations of metabolites indicating homogeneouscorrelation among the concentrations of metabolites indicating homogeneous 
metabolic behavior (e.g. disorder)

- Challenge:
different metabolic disorders appear through different correlations of 
(subsets of) metabolites

healthyhealthy
Concentration 
of Metabolite 2

6
Concentration of Metabolite 1
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General Problems & Challenges

The “curse of dimensionality”: one buzzword for many problems
• First aspect: Optimization Problem (Bellman).

“[The] curse of dimensionality [… is] a malediction that has plagued the 
scientists from earliest days ” [Bel61]scientists from earliest days.  [Bel61]

• The difficulty of any global optimization approach increases exponentially 
with an increasing number of variables (dimensions).

• General relation to clustering: fitting of functions (each function explaining 
one cluster) becomes more difficult with more degrees of freedom.

• Direct relation to subspace clustering: number of possible subspacesDirect relation to subspace clustering: number of possible subspaces 
increases dramatically with increasing number of dimensions.
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General Problems & Challenges

• Second aspect: Concentration effect of Lp-norms
[ G S99 A 00 A 01] i i d h h i f (• In [BGRS99,HAK00,AHK01] it is reported that the ratio of (Dmaxd –

Dmind) to Dmind converges to zero with increasing dimensionality d
- Dmind = distance to the nearest neighbor in d dimensionsd g
- Dmaxd = distance to the farthest neighbor in d dimensions

Formally:
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- This holds true for a wide range of data distributions and distance 
functions
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General Problems & Challenges

From bottom to top: minimum observed value, average minus standard deviation, average value, average plus standard deviation,
maximum observed value, and maximum possible value of the Euclidean norm of a random vector. The expectation grows, but the 

i i t t A ll bi t l f th d i f th i h d i ti (Fi d ti [FWV07])variance remains constant. A small subinterval of the domain of the norm is reached in practice. (Figure and caption: [FWV07])

• The observations stated in [BGRS99,HAK00,AHK01] are valid within
clusters but not between different clusters as long as the clusters are well 
separated [BFG99,FWV07,HKK+10].

• This is not the main problem for subspace clustering, although it should be 
kept in mind for range queries.
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General Problems & Challenges

• Third aspect: Relevant and Irrelevant attributes
• A subset of the features may be relevant for clusteringy g
• Groups of similar (“dense”) points may be identified when considering these 

features only

at
tr
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ut

e
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el
ev

an
t a

Diff b f ib b l f diff l

relevant attribute/
relevant subspace

• Different subsets of attributes may be relevant for different clusters
• Separation of clusters relates to relevant attributes (helpful to discern 

between clusters) as opposed to irrelevant attributes (indistinguishable 
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General Problems & Challenges
• Effect on clustering:

- Usually the distance functions used give equal weight to all dimensions
- However, not all dimensions are of equal importance
- Adding irrelevant dimensions ruins any clustering based on a distance 

function that equally weights all dimensionsfunction that equally weights all dimensions
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General Problems & Challenges
• again: different attributes are relevant for different clusters
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General Problems & Challenges

• Fourth aspect: Correlation among attributes
A b f f b l d• A subset of features may be correlated

• Groups of similar (“dense”) points may be identified when considering this 
correlation of features onlyy

• Different correlations of attributes may be relevant for different clusters
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General Problems & Challenges

• Other strange things happen: Shrinking volume of hyperspheres
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General Problems & Challenges

• Why not feature selection?
( i d) f l i i l b l ( CA)• (Unsupervised) feature selection is global (e.g. PCA)

• We face a local feature relevance/correlation: some features (or combinations 
of them) may be relevant for one cluster, but may be irrelevant for a second ) y , y
one

Disorder 3
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General Problems & Challenges

• Use feature selection before clustering

PCA

Projection on j
first principal 
component

DBSCAN
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General Problems & Challenges

• Cluster first and then apply PCA

DBSCAN

PCA of the

Projection on 
first principal 
component

PCA of the 
cluster points

18
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General Problems & Challenges

• Problem Summary
• Curse of dimensionality/Feature relevance and correlationy

- Usually, no clusters in the full dimensional space
- Often, clusters are hidden in subspaces of the data, i.e. only a subset of features 

is relevant for the clusteringis relevant for the clustering
- E.g. a gene plays a certain role in a subset of experimental conditions

• Local feature relevance/correlation
- For each cluster, a different subset of features or a different correlation of 

features may be relevant
- E g different genes are responsible for different phenotypesE.g. different genes are responsible for different phenotypes

• Overlapping clusters
- Clusters may overlap, i.e. an object may be clustered differently in varying 

bsubspaces
- E.g. a gene plays different functional roles depending on the environment
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General Problems & Challenges

• General problem setting of clustering high dimensional data

Search for clusters in
(in general arbitrarily oriented) subspaces

f h i i l fof the original feature space

• Challenges:Challenges:
• Find the correct subspace of each cluster

- Search space:
all possible arbitrarily oriented subspaces of a feature space
infinite

• Find the correct cluster in each relevant subspacep
- Search space:

“Best” partitioning of points (see: minimal cut of the similarity graph)
NP-complete [SCH75]

20
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General Problems & Challenges

• Even worse: Circular Dependency
• Both challenges depend on each other
• In order to determine the correct subspace of a cluster, we need to know (at 

least some) cluster members
• In order to determine the correct cluster memberships we need to know the• In order to determine the correct cluster memberships, we need to know the 

subspaces of all clusters

• How to solve the circular dependency problem?
• Integrate subspace search into the clustering process
• Thus, we need heuristics to solve

- the clustering problem
- the subspace search problemthe subspace search problem

simultaneously

21



General Problems & Challenges

• Solution: integrate variance / covariance analysis into the clustering 
process

• Variance analysis:
Fi d l t i i ll l b- Find clusters in axis-parallel subspaces

- Cluster members exhibit low variance 
along the relevant dimensions

Cluster 3
• Covariance/correlation analysis:

- Find clusters in arbitrarily oriented 
subspacesp

- Cluster members exhibit a low covariance 
w.r.t. a given combination of the relevant 
dimensions (i.e. a low variance along the ( g
dimensions of the arbitrarily oriented 
subspace corresponding to the given 
combination of relevant attributes)

22
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Taxonomy of Approaches

• So far, we can distinguish between
Cl i i ll l b• Clusters in axis-parallel subspaces
(common assumption to restrict the search space)
Approaches are usually called nt

 a
ttr

ib
ut

e

Approaches are usually called
- “subspace clustering algorithms”
- “projected clustering algorithms” relevant attribute/

irr
el

ev
an

- “bi-clustering or co-clustering algorithms”

Cl t i bit il i t d b

relevant subspace

• Clusters in arbitrarily oriented subspaces
Approaches are usually called

- “bi-clustering or co-clustering algorithms”b c us e g o co c us e g a go s
- “pattern-based clustering algorithms”
- “correlation clustering algorithms”
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Taxonomy of Approaches

• A first big picture
• We have two problems to solve
• For both problems we need heuristics that have huge influence on the 

properties of the algorithmsproperties of the algorithms
- Subspace search

Assumptions Algorithm

Original search space
(i fi it )

Assumption specific
search space

FINAL SUBSPACES
Assumptions Algorithm

(e.g. axis-parallel only) (e.g. top-down)

- Cluster search
(infinite)

search space

O i i l h
Model specific

FINAL CLUSTERING
Cluster model Algorithm

(e.g. k-partitioning 
clustering)

(e.g. k-Means)

25
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Taxonomy of Approaches

• Restricted on axis-parallel subspaces – what are we searching for?
• Overlapping clusters: points may be grouped differently in different 

subspaces
=> “subspace clustering”

• Disjoint partitioning: assign points uniquely to clusters (or noise)• Disjoint partitioning: assign points uniquely to clusters (or noise)
=> “projected clustering”

Notes:Notes:
• The terms subspace clustering and projected clustering are not (yet) used in 

a unified or consistent way in the literature
• These two problem definitions are products of the presented algorithms:

- The first “projected clustering algorithm” integrates a distance function 
accounting for clusters in subspaces into a “flat” clustering algorithm (k-medoid) g p g g ( )
=> DISJOINT PARTITION

- The first “subspace clustering algorithm” is an application of the APRIORI 
algorithm => ALL CLUSTERS IN ALL SUBSPACES

26
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Taxonomy of Approaches

• Restricted on axis-parallel subspaces – how are we searching?
• Basically, there are two different ways to efficiently navigate y, y y g

through the search space of possible subspaces

Bottom up:Bottom-up:
If the cluster criterion implements the downward closure, one can use any 
bottom-up frequent itemset mining algorithm (e.g. APRIORI [AS94])
K d d l OR i dKey: downward-closure property OR merging-procedure
Example approaches:
[AGGR98, CFZ99, NGC01, KKK04, KKRW05, MSE06, ABK+07a]

Top-down:
The search starts in the full d-dimensional space and iteratively learns for p y
each point or each cluster the correct subspace
Key: procedure to learn the correct subspace
Example approaches: [APW+99 BKKK04 FM04 WLKL04]

27
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Taxonomy: Bottom-up Algorithms

• Rational:
• Start with 1-dimensional subspaces and merge them to compute higher 

dimensional ones
• Most approaches transfer the problem of subspace search into frequent 

item set miningitem set mining
- The cluster criterion must implement the downward closure property

If the criterion holds for any k-dimensional subspace S, then it also holds for any 
(k 1) dimensional projection of S(k–1)-dimensional projection of S
Use the reverse implication for pruning:
If the criterion does not hold for a (k–1)-dimensional projection of S, then the 
criterion also does not hold for Scriterion also does not hold for S

- Apply any frequent itemset mining algorithm (e.g. APRIORI)
• Some approaches use other search heuristics like best-first-search, greedy-

search, etc.
- Better average and worst-case performance

No guaranty on the completeness of results

28
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Taxonomy: Bottom-up Algorithms

• Downward-closure property
if C is a dense set of points in s bspace Sif C is a dense set of points in subspace S,

then C is also a dense set of points in any subspace T ⊂ S

A AMinPts = 4
ε

A A

o
q

q

p
p

B B

29
p and q density-connected in {A,B}, {A} and {B} p and q not density-connected in {B} and {A,B}



Taxonomy: Bottom-up Algorithms

• Downward-closure property: search space

30



Taxonomy: Bottom-up Algorithms

• Downward-closure property

the reverse implication does not hold necessarily

A

A2A2

A1

BB1 B2 B3

31
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Taxonomy: Top-down Algorithms

• The key problem: How should we learn the subspace preference of 
l t i t?a cluster or a point?

• Most approaches rely on a “locality assumption”
- The subspace is usually learned from the local neighborhood of clusterThe subspace is usually learned from the local neighborhood of cluster 

representatives/cluster members in the entire feature space:
Cluster-based approach: the local neighborhood of each cluster representative is 
evaluated in the d-dimensional space to learn the “correct” subspace of the clusterevaluated in the d-dimensional space to learn the correct  subspace of the cluster
Instance-based approach: the local neighborhood of each point is evaluated in the d-
dimensional space to learn the “correct” subspace preference of each point

The locality assumption: the subspace preference can be learned from the- The locality assumption: the subspace preference can be learned from the 
local neighborhood in the d-dimensional space

Oth h l th b f f l t i t f• Other approaches learn the subspace preference of a cluster or a point from 
randomly sampled points
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Taxonomy: Top-down Algorithms

• Example:
• learn weights based on attribute wise variances for a weighted Euclidean• learn weights based on attribute wise variances for a weighted Euclidean 

distance function

2 w.r.t. p

C t t

2)(),( ∑ −⋅=
i

iiip qpwqpdist

• Caveat: ensure symmetry, e.g.
dist(p,q) = max {distp(p,q), distq(q,p)}
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Taxonomy: Pattern-based

Pattern-based clustering relies on patterns in the data matrix.
• Simultaneous clustering of rows and columns of the data matrix 

(hence biclustering).
D t t i A (X Y) ith t f X d t f l Y• Data matrix A = (X,Y) with set of rows X and set of columns Y

• axy is the element in row x and column y.
• submatrix AIJ = (I,J) with subset of rows I ⊆ X and subset of columns J ⊆ Y IJ ( , ) ⊆ ⊆

contains those elements aij with i ∈ I und j ∈ J

Y

X

y j
i

AXY

A

J = {y,j}

X x AIJ

34
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Taxonomy: Pattern-based

General aim of biclustering approaches:
Find a set of submatrices {(I1 J1) (I2 J2) (Ik Jk)} of the matrixFind a set of submatrices {(I1,J1),(I2,J2),...,(Ik,Jk)} of the matrix 
A=(X,Y) (with Ii ⊆ X and Ji ⊆ Y for i = 1,...,k)  where each 
submatrix (= bicluster) meets a given homogeneity criterion.

Sounds similar to subspace clustering but:
the homogeneity criterion is in some cases completely different!
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Taxonomy: Pattern-based

• Some values often used by 
bi l d lbicluster models:
• mean of row i:

1
• mean of all elements:

∑1
∑
∈

=
Jj

ijiJ a
J

a 1 ∑
∈∈

=
JjIi

ijIJ a
JI

a

1

1
,

• mean of column j:

1

∑
∈

=
Jj

Ija
J
1

∑
∈

=
Ii

ijIj a
I

a 1
∑
∈

=
Ii

iJa
I
1
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Taxonomy: Pattern-based

Different types of biclusters (cf. [MO04]):

• constant biclusters

• biclusters with

• constant values on columns

• constant values on rows

• biclusters with coherent values (aka. pattern-based clustering)

• biclusters with coherent evolutions
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Taxonomy: Pattern-based

• Constant biclusters
• all points share identical value in selected attributes
• the constant value μ is a typical value for the cluster
• Cluster model:• Cluster model:

• Obviously a special case of an axis-parallel subspace cluster.

μ=ija
y p p p
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Taxonomy: Pattern-based

• example – 2-dimensional subspace:

=> points located on the bisecting line of participating attributes

39



Taxonomy: Pattern-based

• example – parallel coordinates:

=> pattern: identical constant lines
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Taxonomy: Pattern-based

• Biclusters with constant values on columns
• Cluster model for AIJ = (I,J):

ca jij += μ
JjIi

jij

∈∈∀ ,

μ

• adjustment value cj for column j ∈ J

• results in axis-parallel subspace clusters
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Taxonomy: Pattern-based

• example – 3-dimensional embedding space:

42



Taxonomy: Pattern-based

• example – 2-dimensional subspace:
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Taxonomy: Pattern-based

• example – parallel coordinates:

=> pattern: identical lines
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Taxonomy: Pattern-based

• Biclusters with constant values on rows
• Cluster model for AIJ = (I,J):

ra iij += μ
JjIi

iij

∈∈∀ ,

μ

• adjustment value ri for row i ∈ I
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Taxonomy: Pattern-based

• example – 3-dimensional embedding space:

=> in the embedding space, points build a sparse hyperplane parallel 
to irrelevant axes

46
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Taxonomy: Pattern-based

• example – 2-dimensional subspace:

=> points are accommodated on the bisecting line of participating 
attributes

47
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Taxonomy: Pattern-based

• example – parallel coordinates:

=> pattern: parallel constant lines
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Taxonomy: Pattern-based

most common model (following Cheng & Church [CC00]): 
bi l t ith h t lbiclusters with coherent values

• based on a particular form of covariance between rows and 
columnscolumns

cra jiij ++= μ
JjIi ∈∈∀ ,

i l• special cases:
• cj = 0 for all j constant values on rows
• r = 0 for all i constant values on columns

49
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Taxonomy: Pattern-based

• embedding space: sparse hyperplane parallel to axes of irrelevant 
attributes

• subspace: increasing one-dimensional linep g
• pattern (parallel coordinates):

parallel linesp

50



Taxonomy: Pattern-based

• Biclusters with coherent evolutions
• for all rows, all pairs of attributes change simultaneously

- discretized attribute space: coherent state-transitions
- change in same direction irrespective of the quantity
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Taxonomy: Pattern-based

• Approaches with coherent state-transitions: [TSS02,MK03]
d h bl id b d i ll l h• reduces the problem to grid-based axis-parallel approach:
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Taxonomy: Pattern-based

pattern: all lines cross border between 

53

states (in the same direction)



Taxonomy: Pattern-based

• change in same direction – general idea: find a subset of rows and 
l h t ti f th t f l i t h th tcolumns, where a permutation of the set of columns exists such that 

the values in every row are increasing
• clusters do not form a subspace but rather half spaces• clusters do not form a subspace but rather half-spaces
• related approaches:

• quantitative association rule mining [Web01 RRK04 GRRK05]• quantitative association rule mining [Web01,RRK04,GRRK05]
• adaptation of formal concept analysis [GW99] to numeric data [Pfa07]
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Taxonomy: Pattern-based

• example – 3-dimensional embedding space
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Taxonomy: Pattern-based

• example – 2-dimensional subspace
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Taxonomy: Pattern-based

• example – parallel coordinates:

=> pattern: all lines increasing
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Taxonomy of Approaches

• Pattern-based approaches find simple positive correlations
• negative correlations: no additive pattern
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Taxonomy of Approaches

• more complex correlations: out of scope of pattern-based 
happroaches

a1 – 2·a2 + a3 = 0

• interesting subspace is arbitrarily oriented, related to complex 
correlations among attributes Correlation Clustering
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Taxonomy of Approaches

Matrix-Pattern Spatial Pattern
Constant values

Problem

Subspace / Projected
Clustering

Constant values 
in columns, 
change of values 
only on rows

Axis-parallel 
hyperplanes

Pattern based / Bi

From constant 
values in rows 
and columns (no 
h f l )

Special cases 
of axis-parallel 
to specialPattern-based / Bi-

Clustering
change of values)
to arbitrary 
change of values 
in common 
di i

to special 
cases of 
arbitrarily 
oriented 
hyperplanes

C l i

direction hyperplanes

ArbitrarilyCorrelation
Clustering

No particular 
pattern

Arbitrarily 
oriented 
hyperplanes
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Taxonomy of Approaches

• Note: this taxonomy considers only the subspace search space
• the clustering search space is equally importantg p q y p
• other important aspects for classifying existing approaches are e.g.

• The underlying cluster model that usually involves
- Input parameters
- Assumptions on number, size, and shape of clusters
- Noise (outlier) robustness

• Determinism
• Independence w r t the order of objects/attributesIndependence w.r.t. the order of objects/attributes
• Assumptions on overlap/non-overlap of clusters/subspaces
• Efficiency

Extensive survey: [KKZ09] 
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PCA-based Approaches

• Pattern-based approaches find pairwise positive correlations
• More general approach: oriented clustering aka. generalized 

subspace/projected clustering aka. correlation clustering
A ti l t i l t d i bit il i t d ffi• Assumption: any cluster is located in an arbitrarily oriented affine 
subspace S+a of Rd

a a
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PCA-based Approaches

• Directions of high/low variance: PCA (local application)
• locality assumption: local selection of points sufficiently reflects 

the hyperplane accommodating the points
l h b ild i i Σ f l i D f• general approach: build covariance matrix ΣD for a selection D of 

points (e.g. k nearest neighbors of a point)
1 ( ) ( )T 1

D
Dx

DD xxxx
D

−−=Σ ∑
∈

xD: centroid of D properties of ΣD:D properties of ΣD:
• d x d
• symmetric
• positive semidefinite• positive semidefinite
• (value at row i, column j) = covariance
between dimensions i and j

i i i h di i

ijDσ

64
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PCA-based Approaches

model for correlation clusters [ABK+06]:
• λ-dimensional hyperplane accommodating the points of a yp p g p

correlation cluster C⊂ Rd is defined by an equation system of d-λ
equations for d variables (based on the small eigenvalues      ) and CV̂
the affinity (e.g. the mean point xC of all cluster members):

CCC xVxV TT ˆˆ =

• equation system approximately fulfilled for all points x∈C

CCC xVxV

• quantitative model for the cluster allowing for probabilistic 
prediction (classification)

l i b bl li d d i l• Note: correlations are observable, linear dependencies are merely 
an assumption to explain the observations – predictive model 
allows for evaluation of assumptions and experimental refinements
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PCA-based Approaches

• Examples of PCA based correlation clustering:
[AY00, BKKZ04, ABK+07c, ABK+07b][ , , , ]

• Learning the distance top-down (similar to axis-parallel, but 
covariance instead of variance):

p
q

p
q

• E.g., p and q are correlation-neighbors if

( ) ( ) ⎫⎧ T( ) ( )
( ) ( )

ε≤
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

′

−⋅⋅′⋅⋅−
TT

TT ,
max

pqVEVpq

qpVEVqp ppp
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Correlation Clustering Based on the Hough-Transform

different correlation primitive: Hough-transform
• problems of PCA based approaches: locality assumptionp pp y p

• characteristic neighborhood?characteristic neighborhood?

• PCA sensitive for outliers in local 
neighborhoods

• choice of λ?• choice of λ?

• “locality assumption” questionable in view 
of the “curse of dimensionality”
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Correlation Clustering Based on the Hough-Transform

• Hough-transform:
• developed in computer-graphics
• 2-dimensional (image procesing)

• CASH: Clustering in Arbitrary Subspaces based on the Hough-
Transform [ABD+08]
• generalization to d-dimensional spaces
• transfer of the clustering to a new space (“Parameter space” of the Hough• transfer of the clustering to a new space ( Parameter-space  of the Hough-

transform)
• restriction of the search space

(from innumerable infinite to O(n!))
• common search heuristic for Hough-transform: O(2d)

ffi i h h i i→ efficient search heuristic
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Correlation Clustering Based on the Hough-Transform

• given: 
• find linear subspaces accommodating many points

dD ℜ⊆
p g y p

• Idea: map points from data space (picture space) onto functions in 
parameter space

y δ

p1

xpicture space parameter space α
δ
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Correlation Clustering Based on the Hough-Transform

• ei, 1 ≤ i ≤ d: orthonormal-basis
• x = (x1,…,xd)T: d-dimensional vector onto hypersphere around the ( 1, , d) yp p

origin with radius r
• ui: unit-vector in direction of projection of x onto subspace i

span(ei,…,ed)
• α1,…,αd-1: αi angle between ui and ei
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Correlation Clustering Based on the Hough-Transform

Length     of the normal vector with             and angles α1,…,αd-1 
for the line through point p:

δ nr⋅δ 1=nr

( ) ( ) ( )i

i

j

d

idp pnpf αααα cossin,,,
1

11 ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅== ∏∑

−

−K
ji 11

⎟
⎠

⎜
⎝ ==

72



Correlation Clustering Based on the Hough-Transform

• Properties of the transformation
• Point in the data space = sinusoidal curve in parameter space
• Point in parameter space = hyper-plane in data space
• Points on a common hyper-plane in data space = sinusoidal curves through a 

common point in parameter spacep p p
• Intersections of sinusoidal curves in parameter space = hyper-plane through the 

corresponding points in data space
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Correlation Clustering Based on the Hough-Transform

• dense regions in parameter space      
⇔ linear structures in data space p
(hyperplanes with λ ≤ d-1)

• exact solution: find all intersection 
points
• infeasible
• to exact

• approximative solution: grid-based 
clustering in parameter spaceclustering in parameter space
→ find grid cells intersected by at 
least m sinusoidsleast m sinusoids
• search space bounded but in O(rd)
• pure clusters require large value for r  
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Correlation Clustering Based on the Hough-Transform

efficient search heuristic for dense regions in parameter space
• construct a grid by recursively splitting the parameter space (best-g y y p g p p (

first-search)
• identify dense grid cells as intersected by many parametrization 

functions
• dense grid cell represents (d-1)-dimensional linear structure
• transform corresponding data objects in corresponding (d-1)-

dimensional space and repeat the search recursively
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Correlation Clustering Based on the Hough-Transform

• grid cell representing less than m points can be excluded               
→ early pruning of a search path

• grid cell intersected by at least  m sinusoids after s recursive splits 
represents a correlation cluster (with λ ≤ d-1)
• remove points of the cluster (and corr. sinusoids) from remaining cells
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Correlation Clustering Based on the Hough-Transform

properties:
• finds arbitrary number of clustersy
• requires specification of depth of search (number of splits per axis)
• requires minimum density threshold for a grid cellequ es u de s ty t es o d o a g d ce
• Note: this minimum density does not relate to the locality 

assumption: CASH is a global approach to correlation clusteringp g pp g
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Correlation Clustering Based on the Hough-Transform

• search heuristic: linear in number of points, but ~ O(d3)
depth of search s, number c of pursued paths (ideally: c cluster):
• priority search: O(s⋅c)
• determination of curves intersecting a cell: O(n⋅d3)

ll O( d3)• overall: O(s⋅c⋅n⋅d3)
(note: PCA generally in O(d3))
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Correlation Clustering Based on the Hough-Transform

(a) Data set (b) CASH: Cluster 1-5
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(c) 4C: Cluster 1-8 (d) ORCLUS: Cluster 1-5



Correlation Clustering Based on the Hough-Transform

• stability with increasing number of noise objects
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Summary and Perspectives

• PCA: mature technique, allows construction of a broad range of 
i il it f l l l ti f tt ib tsimilarity measures for local correlation of attributes

• drawback: all approaches suffer from locality assumption
f ll l i PCA i l ti l t i i “ ll ”• successfully employing PCA in correlation clustering in “really” 

high-dimensional data requires more effort henceforth
• new approach based on Hough transform:• new approach based on Hough-transform:

• does not rely on locality assumption
• but worst case again complete enumerationbut worst case again complete enumeration
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Summary and Perspectives

• some preliminary approaches base on concept of self-similarity 
(i t i i di i lit f t l di i )(intrinsic dimensionality, fractal dimension): 
[BC00,PTTF02,GHPT05]

• interesting idea provides quite a different basis to grasp• interesting idea, provides quite a different basis to grasp 
correlations in addition to PCA

• drawback: self-similarity assumes locality of patterns even bydrawback: self similarity assumes locality of patterns even by 
definition
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