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Nested Dichotomies

Nested Dichotomies ([1],[2]) are a standard statistical technique for tack-
ling certain polytomous classification problems with logistic regression.
They can be represented as binary trees that, at each node, divide the
set of classes Ci associated with the internal node i into two disjoint
subsets Ci1 and Ci2 that taken together contain all the classes in Ci.
The nested dichotomies’ root node contains all the classes of the corre-
sponding polytomous classification problem. Each leaf node contains a
single class (i.e. for an n-class problem, there are n leaf nodes and n−1
internal nodes).
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Figure 1: Two different systems of nested dichotomies for a classification problem with four classes (from [2]).

Figure 1 shows two of the 15 possible nested dichotomies for a four-
class classification problem. The probability of class 4 for an instance
x based on these trees is given by

pa(c = 4|x) = pa(c ∈ {3, 4}|x) ×

pa(c ∈ {4}|x, c ∈ {3, 4})

for tree a, and respectively for tree b:

pb(c = 4|x) = pb(c ∈ {2, 3, 4}|x) ×

pb(c ∈ {3, 4}|x, c ∈ {2, 3, 4}) ×

pb(c ∈ {4}|x, c ∈ {3, 4}).

Both trees represent equally valid, albeit different class probability
estimators. In general there is no reason to trust one of the estimates
more than others. Consequently it makes sense to treat all possible
trees as equally likely and form overall class probability estimates by
averaging the estimates obtained from different trees.

Ensembles of Nested Dichotomies

The number of possible trees for an n-class problem grows with the
double-factorial and is given by the following recurrence relation:

T (n) = (2n − 3) × T (n − 1), (1)

T (1) = 1,

since there are (n− 1) + (n− 2) = 2n− 3 distinct possibilities to add a
new class into a tree for n−1 classes, one for each of the n−1 leaf-nodes
and the n − 2 internal nodes.
For an increasing number of classes it becomes therefore infeasible to
consider all possible nested dichotomies. This is true even for problems
with a moderate number of classes, as is illustrated in Figure 2.
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Figure 2: Growth of number of possible binary-trees for a multi-class problem of n classes. Note the logarithmic

scale.

Since there is in general no reason to prefer one nested dichotomy over
another, a method called ‘Ensembles of Nested Dichotomies (ENDs)’
was proposed recently ([2]), which takes a random sample from the
space of all distinct trees for a given n-class problem and forms class
probability estimates for a given instance x by averaging the estimates
obtained from the individual ensemble members. The main motivation
for taking an ensemble approach is that the variance component of the
error can be reduced in this way.

Hierarchical Structure of Classes
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Figure 3: A polytomous classification problem in two-dimensional Euclidean space, consisting of 16 classes, i.e. 4

super-classes each composed of 4 classes.

Not accounting for domain knowledge concerning the 16 classes given
in Figure 3 one would describe the classification problem as illustrated
in Figure 4a: One classifier ought to learn the classification with respect
to all 16 classes.
However, it is obvious that the problem consists of four super-classes,
A, B, C, and D, which are easily separable from each other. Each
of these four super-classes contains four subclasses (subgroup 1 to 4,
respectively), which are not completely separable. But one may expect
any classifier to improve its accuracy for a properly represented task,
as illustrated in Figure 4b.
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Figure 4: The classification problem of the given 16 classes: (a) not taking into account the domain knowledge,

(b) taking into account the domain knowledge about the hierarchical structure.

Also, the size of the space of valid nested dichotomies to choose a ran-
dom sample from can be considerably reduced by introducing a hi-
erarchical restriction: Whilst there are, e.g., (according to Equation
1) T (16) = 6.19 × 1015 possible nested dichotomies for the problem
of Figure 4a, a restriction according to Figure 4b would allow only
T (4)5 = 759, 375 of them.

Ensembles of Hierarchical Nested Dichotomies

Therefore, we suggest to take into account the hierarchical structure
of the data for sampling nested dichotomies. This is straightforward:
Considering Figure 3, the 16 classes are obviously organized by an n-
ary tree with the original 16 classes as leaves, and four super-classes
introduced as internal nodes (see Figure 4b). This n-ary tree can be
represented by several binary-trees in a valid manner. Such a valid
representation (‘binarization’) of an n-ary tree will always contain those
super-classes as internal nodes that are contained by the n-ary tree.
Moreover, it will contain groups of classes that are either super-classes
or subclasses of the super-classes occurring in the originally n-ary tree,
but no groups that fall in neither of those categories.
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Figure 5: Example of the recursive binarization procedure: (a) shows a possible binarization of the four super-

classes, (b) a binarization of the sub-classes of B, and (c) the fully binarized problem.

For the data of Figure 3, which has a pronounced hierarchical structure,
the proposed method of EHNDs improves considerably more on pairwise
coupled support vector machines than ENDs (see Table 1).

Method: SVM ENDs EHNDs

Accuracy (Q): 78.25 82.375 94.75

Table 1: Performance of pairwise coupled Support Vector Machines, ENDs and Ensembles of Hierarchical Nested

Dichotomies (EHNDs) on the data of Figure 3 with the hierarchy defined by: {{A1,A2,A3,A4}, {B1,B2,B3,B4},

{C1,C2,C3,C4}, {D1,D2,D3,D4}}. The numbers are the percentage of correctly classified instances for a 10-fold

stratified cross-validation.

Hierarchical Classification of Proteins

For the hierarchical classification of proteins we used the feature-space
and data of Ding and Dubchak ([3], based on [4],[5], adapted to a more
recent SCOP-classification (SCOP 1.61, [6]) by Tan et al. [7]) – see
Table 2.

Group Method Training Test
TPR FPR PPV F1 TPR FPR PPV F1

All-α PART 0,9359 0,0014 0,9599 0,9478 0,5758 0,0263 0,502 0,5363
EHND (PART) 1 0 1 1 0,7273 0,0071 0,8076 0,7653
SVM 0,9872 0,0022 0,9662 0,9766 0,7273 0,0121 0,6655 0,695

EHND (SVM) 0,9615 0,0028 0,9402 0,9507 0,7576 0,0093 0,8106 0,7832

All-β PART 0,9274 0,0053 0,9107 0,919 0,3774 0,0352 0,3735 0,3754

EHND (PART) 1 0 1 1 0,6226 0,0269 0,5945 0,6082
SVM 0,9355 0,0075 0,8925 0,9135 0,5849 0,0379 0,4896 0,533

EHND (SVM) 0,9516 0,0052 0,9255 0,9384 0,5849 0,0356 0,5802 0,5825

α/β PART 0,8873 0,0052 0,9052 0,8962 0,2623 0,0386 undef undef
EHND (PART) 1 0 1 1 0,4262 0,0408 0,3604 0,3906

SVM 0,8451 0,0159 0,8722 0,8584 0,4918 0,0299 0,4942 0,493
EHND (SVM) 0,9155 0,0121 0,8908 0,903 0,4426 0,0481 0,4062 0,4236

α + β PART 0,9688 0,0059 0,9135 0,9403 0,2143 0,0198 0,3571 0,2679
EHND (PART) 0,9375 0,0006 0,9722 0,9545 0,4286 0,0338 0,3929 0,4099
SVM 0,625 0,002 0,95 0,754 0,1429 0,006 0,4762 0,2198

EHND (SVM) 0,625 0 1 0,7692 0,2857 0,0087 undef undef

Small Proteins PART 1 0 1 1 0,6923 0 1 0,8182

EHND (PART) 1 0,0027 0,9697 0,9846 0,9231 0 1 0,96
SVM 1 0,0053 0,9412 0,9697 0,8462 0,0062 0,9167 0,88

EHND (SVM) 1 0 1 1 1 0 1 1

Total PART 0,924 0,0041 0,9254 0,9247 0,3851 0,0308 undef undef
EHND (PART) 0,9951 0,0003 0,9954 0,9953 0,5805 0,0266 0,5669 0,5736

SVM 0,8946 0,0088 0,9078 0,9012 0,5632 0,0253 0,5554 0,5593
EHND (SVM) 0,9191 0,0063 0,9279 0,9235 0,5747 0,0302 undef undef

Table 2: Performance of EHNDs (40 ensemble-members) in comparison to their respective base-classifier.
TPR = TP / (TP + FN)

FPR = FP / (FP + TN)
PPV = TP / (TP + FP)

F1 = (2TPR × PPV)/(TPR + PPV)
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