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Abstract. We propose an original outlier detection schema that detects
outliers in varying subspaces of a high dimensional feature space. In
particular, for each object in the data set, we explore the axis-parallel
subspace spanned by its neighbors and determine how much the object
deviates from the neighbors in this subspace. In our experiments, we
show that our novel subspace outlier detection is superior to existing full-
dimensional approaches and scales well to high dimensional databases.

1 Introduction

Outlier detection aims at finding the “different mechanism” [1], i.e., detecting
outliers that do not fit well to the mechanisms that generate most of the data
objects. All existing approaches somehow rely on the full-dimensional Euclidean
data space in order to examine the properties of each data object to detect
outliers. However, today’s applications are characterized by producing high di-
mensional data. In general, mining these high dimensional data sets is impre-
cated with the curse of dimensionality. For outlier detection, two specific aspects
are most important. First, in high dimensional spaces Euclidean distances (and
other Lp-norms) can no longer be used to differentiate between points. All points
are more or less equi-distant to each other (see e.g. [2]). As a consequence, no
particular outlier can be detected that deviates considerably from the majority
of points. Second, we may have still concrete mechanisms that have generated
the data but, usually, for each of these generating mechanisms only a subset of
features may be relevant (this problem is known as local feature relevance [3]).
In addition, these subsets of relevant features may be different for different gen-
erating mechanisms. As a consequence, outlier detection makes sense only when
considering the subsets of relevant features of these generating mechanisms, i.e.
subspaces of the original feature space. Figure 1(a) illustrates the general idea
of finding outliers in subspaces. Point o is not an outlier in the full (two) di-
mensional space because it does not deviate considerably from its neighboring
points (indicated by crosses). Since the density among o and its neighbors in the
two dimensional feature space is rather uniform, o will also not be recognized
as an outlier by any existing full dimensional outlier detection method. How-
ever, when projected on the axis A1, point o is an outlier because it deviates



considerably from the neighboring points. Apparently, the points indicated by
crosses have been generated by a mechanism where a low variance around a cer-
tain value in attribute A1 is characteristic while the values of attribute A2 are
uniformly distributed and obviously not characteristic for the given mechanism.
Finding outliers in subspaces is particularly interesting in high dimensional data
where we can expect a rather uniform distribution in the full dimensional space
but interesting distributions (including outliers) in subspaces. Since these sub-
spaces of relevant features are usually not known beforehand (outlier detection
is an unsupervised task), the search for outliers must be coupled with the search
for the relevant subspaces. In this paper, we present a novel outlier detection
schema that searches for outliers in subspaces of the original data. Our method
is particularly useful for high dimensional data where outliers cannot be found
in the entire feature space but in different subspaces of the original space. The
remainder is organized as follows. We review related work in Section 2. Our novel
subspace outlier model is described in Section 3. An experimental evaluation is
presented in Section 4. Section 5 provides conclusions.

2 Related Work

Existing approaches for outlier detection can be classified as global or local
outlier models. A global outlier approach is based on differences of properties
compared over the complete data set and usually models outlierness as a binary
property: for each object it is decided whether it is an outlier or not. A local
outlier approach rather considers a selection of the data set and usually computes
a degree of outlierness: for each object a value is computed that specifies “how
much” this object is an outlier w.r.t. the selected part of the data. Here, we
focus on this second family of approaches. The first approach to overcome the
limitations of a global view on outlierness has been the density-based local outlier
factor (LOF) [4]. The LOF compares the density of each object o of a data set D
with the density of the k-nearest neighbors of o. A LOF value of approximately
1 indicates that the corresponding object is located within a cluster, i.e. a region
of homogeneous density. The higher the difference of the density around o is
compared to the density around the k-nearest neighbors of o, the higher is the
LOF value that is assigned to o. The outlier score ABOD [5] claims to be tailored
to meet the difficulties in high dimensional data because it is not primarily based
on conventional distance measures but assesses the variance in angles between an
outlier candidate and all other pairs of points. Nevertheless, the special problem
of irrelevant attributes in high dimensional data is not addressed by ABOD.

3 Outlier Detection in Axis-Parallel Subspaces

The general idea of our novel subspace outlier model is to analyze for each point,
how well it fits to the subspace that is spanned by a set of reference points. The
subspace spanned by a set of points is simply an axis-parallel hyperplane of any
dimensionality l < d, where d is the dimensionality of the entire feature space,
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(a) The general idea of finding
outliers in subspaces.
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(c) Illustration of the distance
between a point o and a subspace
hyperplane H(R(o)).
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Fig. 1. Illustration of basic concepts.

such that all points of the reference set are close to this hyperplane. If a point
deviates significantly from this reference hyperplane, it is considered to be an
outlier in the subspace that is perpendicular to that hyperplane.

In the following, we assume that D ⊆ R
d is a database of n points in a

d-dimensional feature space and dist is a metric distance function on the points
in D, e.g. one of the Lp-norms or the cosine distance. For any point p ∈ Rd, we
denote the projection of p onto attribute i by pi.

Intuitively, the subspace hyperplane of a set of points S (the reference set)
captures the subspace in which the variance of the points in S is high, whereas in
the perpendicular subspace, the variance of the points in S is low. The variance
VARS ∈ R of S is the average squared distance of the points in S to the mean

value µS , i.e., VARS =
P

p∈S dist(p,µS)2

Card(S) , where Card(S) denotes the cardinality



of the set S. Analogously, the variance along an attribute i, denoted by varS
i ∈ R

of S is defined as varS
i =

P
p∈S(dist(pi,µ

S
i ))2

Card(S) .

Let R(p) ⊆ D be a set of reference points for p ∈ D, called reference set
w.r.t. which the outlierness of p should be evaluated. The subspace defining
vector vR(p) ∈ Rd of a reference set R(p) specifies the relevant attributes of the
subspace defined by the set R(p), i.e. the attributes where the points in R(p)
exhibit a low variance. Thereby, we differentiate between high and low variance
as follows. In all d attributes, the points have a total variance of VARR(p). Thus,
the expected variance along the i-th attribute is 1/d ·VARR(p). We evaluate the
variance of the points along the i-th attribute as low if var

R(p)
i is smaller than

the expected variance by a predefined coefficient α. For each attribute in which
R(p) exhibits a low variance, the corresponding value of the subspace defining
vector vR(p) is set to 1, for the remaining attributes to 0. Formally,

v
R(p)
i =

{
1 if var

R(p)
i < αVARR(p)

d
0 else.

(1)

The subspace hyperplane H(R(p)) of R(p) is defined by a tuple of the mean value
µR(p) of R(p) and the subspace defining vector vR(p) of R(p), i.e. H(R(p)) =
(µR(p), vR(p)). Figure 1(b) illustrates a subspace hyperplane for a sample refer-
ence set R(o) (indicated by crosses) of a point o (indicated by a dot) in a three
dimensional feature space. The points of R(o) form a line in the three dimensional
space. Thus, the subspace defining vector of R(o) is defined as vR(o) = (1, 0, 1)T,
because attribute A1 and A3 are relevant and attribute A2 is not, i.e. the variance
along A1 and A3 is small whereas it is high along A2. The subspace hyperplane
of R(o) is defined by the mean µR(o) of R(o) and vR(o) and is visualized as the
red solid line perpendicular to the plane spanned by A1 and A3. Now, we are
able to measure how much p deviates from the subspace hyperplane H(R(p))
spanned by its reference set R(p). The deviation of any point o to a subspace
hyperplane H(S) is thereby naturally defined as the Euclidean distance in the
subspace which is perpendicular to the hyperplane. This can simply be com-
puted using a weighted Euclidean distance between o and µS using the subspace
defining vector vS as weight vector, i.e.,

dist(o,H(S)) =

√√√√ d∑
i=1

vS
i · (oi, µS

i )2. (2)

The idea of this distance between a sample 3D point o and the subspace hyper-
plane of its reference set R(o) is illustrated in Figure 1(c). This distance value
is a very intuitive measurement for the degree of outlierness of any p ∈ D w.r.t.
the set of points in R(p). A value near 0 indicates that the particular point p fits
very well to the hyperplane H(R(p)), i.e., is no outlier, whereas a considerably
higher value indicates that p is an outlier. The final subspace outlier degree is
defined as follows.



Definition 1 (subspace outlier degree). Let R(p) denote a set of reference
objects for object p ∈ D. The subspace outlier degree (SOD) of p w.r.t. R(p),
denoted by SODR(p)(p), is defined as

SODR(p)(p) :=
dist(o,H(R(p)))

‖vR(p)‖
1

,

i.e., the distance between point p and its reference set R(p) according to Equation
2, normalized by the number of relevant dimensions as given e.g. by the number
of entries v

R(p)
i = 1 in the weighting vector vR(p) as defined in Equation 1.

In contrast to most of the existing approaches, our model also gives an explana-
tion why a point p is an outlier. Given an outlier p, we can obtain the subspace in
which p is an outlier by simply inverting the subspace defining vector vR(p). This
yields the subspace that is perpendicular to the subspace hyperplane of R(p). In
addition, we can derive the mean value of the points in R(p) in that subspace.
Thus, our model implicitly provides not only a quantitative outlier model but
also a qualitative outlier model by specifying for each outlier the features that
are relevant for the outlierness.

We now discuss how to choose a meaningful reference set for a given point
p ∈ D to compute the outlierness of p. Existing local (full dimensional) outlier
detection models usually examine the local neighborhood of p, e.g. the k-nearest
neighbors or the ε-neighborhood based on Euclidean distance. However, due
to the curse of dimensionality, distances cannot be used to differentiate points
clearly in high dimensional feature spaces. As a consequence, the concept of
“local neighborhood” is rather meaningless in high dimensional data (see e.g.
[2]). An SNN approach usually measures the similarity of points based on the
number of common nearest neighbors. An explanation for the robustness of SNN
is that even though all points are almost equidistant to a given point p, a nearest
neighbor ranking of the data objects is usually still meaningful. Two points p
and q that have been generated by the same generating mechanism will most
likely be neighbors or have similar neighbors in the subspace that is relevant
for the common generating mechanism. Adding irrelevant attributes will blur
these neighborhood relations by means of the absolute distances. However, most
points of the common generating mechanisms will still be among the nearest
neighbors of p and q. Thus, the number of shared neighbors of p and q will be
large if both points originate from the same generating mechanism. Formally, let
Nk(p) ⊆ D be the k-nearest neighbors of p ∈ D w.r.t. the distance function dist .
The shared nearest neighbor similarity between two points p, q ∈ D is defined as
simSNN (p, q) = Card (Nk(p) ∩Nk(q)) . Now, the reference set R(p) of p is the set
of l-nearest neighbors of p using simSNN , i.e.,a subset of D that contains l points
according to the following condition: ∀o ∈ R(p),∀ô ∈ D \R(p) : simSNN (ô, p) ≤
simSNN (o, p).

The SOD algorithm relies on two input parameters. First, k specifies the
number of nearest neighbors that are considered to compute the shared nearest
neighbor similarity. This is not really a critical parameter as long as it is cho-
sen high enough to grasp enough points from the same generating mechanism.



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

(a) Results of SOD.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

(b) Results of LOF.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

(c) Results of ABOD.

Fig. 2. Comparison of the 25-top ranked outliers in a sample 2D data set.

Second, l specifies the size of the reference sets. This parameter should also not
be chosen too small for the same reason. Obviously, l should be chosen smaller
or equal than k. Let us note that we have a third parameter α that specifies a
threshold to decide about the significance of an attribute. If the variance of the
reference set along an attribute is smaller than α times of the expected variance,
then this attribute is considered relevant. In our experiments, setting α = 0.8
yields consistently good results so we recommend to choose it accordingly. To
compute the SOD, first the set of k-nearest neighbors of each of the n points of
the database needs to be computed which requires in summary O(d · n2) in the
worst-case. This can be reduced to O(d·n log n) if an index structure is applied to
support the NN queries. Then, for each point p, the reference set of p consisting
of the l nearest neighbors of p w.r.t. the SNN similarity needs to be computed
which takes O(k · n), the mean and the variance of this reference set needs to
be computed which takes O(d · l), and finally, the SOD can be computed. In
summary, since k � n and l � n, the runtime complexity of the latter steps
and the overall complexity is in O(d · n2) which is comparable to most existing
outlier detection algorithms.

4 Experiments

We report the results of an experimental comparison of SOD with the full-
dimensional distance-based LOF outlier model as one of the best-known outlier
models and the full-dimensional angle-based ABOD outlier model as the most
recent approach claiming to be specifically applicable to high dimensional data.
All competitors are implemented within the ELKI-framework [6]. We first ap-
plied the competing outlier models to several synthetic data sets. Here, we focus
on a toy 2D data set to illustrate the difference between a full dimensional ap-
proach like LOF or ABOD and the idea of a subspace outlier model followed
by SOD. The results are visualized in Figure 2. Most points of the data set are
produced by one of two generating mechanisms, for each mechanism only one
attribute is relevant whereas the other is not. This results in one cluster of 80
points scattered along a line parallel to the y-axis and one cluster of 50 points
scattered along a line parallel to the x-axis. In addition, 25 points have been gen-
erated randomly as outliers. The Figures display the 25 top-ranked outliers by
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Fig. 3. ROC curves for data sets of varying number of irrelevant attributes.

each approach (marked by red circles). It can be observed that SOD has no prob-
lems in finding the outliers that deviate from the generating mechanisms. On the
other hand, LOF and ABOD have two potential types of errors. First, points
of the generating mechanisms are wrongly reported as outliers (false alarms)
because the density is not high enough in the surrounding area. Second, points
that are not generated by one of the generating mechanisms are missed (false
drops) because their surrounding area is dense enough. We further conducted
several experiments on higher dimensional synthetic data sets. Here, we defined
a Gaussian distribution of 430 points in three dimensions with µ = 0.33 and
σ = 0.08. Additionally, 20 outliers are placed in a range of 0.455 to 1.077 as
minimal and maximal distance from the cluster center, respectively, whereas the
outmost cluster point has a distance of 0.347 from µ. These values are given
w.r.t. the three relevant dimensions only. Then we added 7, 17, . . ., 97 irrelevant
attributes with values uniformly distributed in the range [0, 1], resulting in 9
additional data sets of dimensionality 10, 20, . . ., 100, respectively. In all experi-
ments, SOD produced better results in terms of accuracy compared to LOF and
ABOD. Figure 3 presents example ROC curves catching the performance of all
three approaches for these data sets. While LOF and ABOD are very competitive
in lower dimensional data sets, their performance considerably deteriorates with
higher dimensionality while SOD remains very stable at optimal values. Only
starting at 80 dimensions, 77 of which are irrelevant attributes, SOD starts to
retrieve a false positive as the 19th outlier. Even at 100 dimensions, it only
retrieves one false positive as 18th outlier.

We applied SOD and its competitors to a data set of career statistics of
current and former NBA players1 including 15 important parameters like points
per game, rebounds per game, assists per game until the end of the 2007/2008
season. The data are normalized in order to avoid a bias due to different scaling of
the attributes. The eight players with top SOD and ABOD values are displayed
in Table 1. Both ABOD and SOD give some insightful results on this data set.
They also agree on many of the top outliers. Eddy Curry — top outlier for both
algorithms — for example is a significant outlier because of his 100% quote on
three point field goals (2 of 2). We also ran LOF on this data set detecting mostly

1 Obtained from http://www.nba.com



Table 1. Results on NBA data set.

(a) Top-8 outlier retrieved by SOD.

Rank Name SOD

1 Eddy Curry 0.0807

2 Dennis Rodman 0.0678

3 Amir Johnson 0.0560

4 Karl Malone 0.0473

5 Shawn Marion 0.0470

6 Michael Jordan 0.0457

7 Avery Johnson 0.0408

8 Andrei Kirilenko 0.0386

(b) Top-8 outlier retrieved by ABOD.

Rank Name ABOD

1 Eddy Curry 0.0021

2 Amir Johnson 0.0035

3 John Stockton 0.0043

4 Hakeem Olajuwon 0.0053

5 Dennis Rodman 0.0058

6 Karl Malone 0.0063

7 Shaquille O’Neal 0.0068

8 Andrei Kirilenko 0.0076

players with exceptional high values in particular parameters or particularly low
numbers.This experiment with real world data emphasizes that SOD can provide
insightful information. It does not show a clear advantage over ABOD; they
mostly agree on the outlier results. Depending on the use case, one or the other
result can be seen as more useful. Outliers detected by ABOD can be seen as a
more global kind of outlier, whereas SOD is stronger at detecting local outliers
and additionally accounting for local feature correlation.

5 Conclusions

In this paper, we introduced SOD, a completely new approach to model outliers
in high dimensional data. SOD explores outliers in subspaces of the original
feature space by combining the task of outlier detection and relevant subspace
finding. Our experimental evaluation showed that SOD can find more interesting
and more meaningful outliers in high dimensional data with higher accuracy than
full dimensional outlier models by no additional computational costs.
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