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Abstract
Outlier detection research is currently focusing on the
development of new methods and on improving the com-
putation time for these methods. Evaluation however is
rather heuristic, often considering just precision in the
top k results or using the area under the ROC curve.
These evaluation procedures do not allow for assessment
of similarity between methods. Judging the similarity of
or correlation between two rankings of outlier scores is
an important question in itself but it is also an essential
step towards meaningfully building outlier detection en-
sembles, where this aspect has been completely ignored
so far. In this study, our generalized view of evaluation
methods allows both to evaluate the performance of ex-
isting methods as well as to compare different methods
w.r.t. their detection performance. Our new evaluation
framework takes into consideration the class imbalance
problem and offers new insights on similarity and re-
dundancy of existing outlier detection methods. As a
result, the design of effective ensemble methods for out-
lier detection is considerably enhanced.

1 Introduction
Outlier detection (i.e., the identification of points or ob-
jects that, for some reason, do not fit well to the remain-
der of a data set) is important for many application ar-
eas. Consequently, outlier detection is a quite active
research area with many new methods proposed every
year, based on different underlying methodologies like
statistical reasoning [17], distances [2, 23, 36, 37, 44, 47],
or densities [6, 8, 20, 24]. An open and widely ignored
problem, though, is the proper and informative evalu-
ation of the rankings of outlier scores provided by the
different methods. Current outlier detection is often
evaluated using precision@k, which is the true positive
rate for the top k results in a data set that contains k
outliers. This is a rather naïve way of evaluating the
result due to the imbalanced nature of the problem: in
a data set that contains 100 objects of which 2 are out-
liers, a method that ranks the true outliers on rank 3 and
4 will have a precision@2 of 0. Thus, occasionally, the

precision values are shown for a range of k. This evalu-
ation is sensible e.g. in information retrieval, where only
the top 10 results of a search query are displayed, and
the classification of the data set provides complete infor-
mation on the relevancy. The task of unsupervised out-
lier detection however needs to accept that the “ground
truth” may be incomplete and that real world data may
include sensible outliers that are just not yet known
or were considered uninteresting during labeling. De-
tecting such outliers however is overly punished due to
class imbalance. A more advanced method of evalua-
tion are receiver operating characteristic (ROC) curves,
which plot the true positive rate against the false pos-
itive rate, thus inherently treating the class imbalance
problem. To numerically compare ROC plots, one uses
the area under this curve (AUC). However, this method
also essentially loses the score information, i.e. whether
the outlier score offers a reasonable contrast between
outliers and inliers. Especially for ROC and focusing on
classification tasks, this problem of losing the score in-
formation found attention recently [22]. Here, we try to
take a wider perspective on evaluation of rankings, tak-
ing score information into account. We focus, though,
on the application area of outlier detection.

An important motivation for our elaboration on
an improved evaluation of outlier rankings and outlier
scores is to support the design of ensemble methods for
outlier detection. A key for building good ensembles is
to use ensemble members that make uncorrelated errors.
To meaningfully measure the correlation between the
results of different methods for outlier detection is
hence a step of paramount importance for building
effective outlier ensembles. This has found no attention
in previous attempts to ensemble outlier detection,
presumably due to the lack of evaluation measures
describing such correlation between methods.

We will discuss some reasoning about evaluation
of (outlier) rankings presented in the literature in Sec-
tion 2. In the following, we will elaborate on the re-
lationship between common evaluation measures, and
identify a general outlier score evaluation method (Sec-
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tion 3). We elaborate on requirements for building effec-
tive ensemble methods in Section 4. In the experiments
(Section 5), we demonstrate the usefulness and benefits
of the generalized evaluation measure by analyzing the
similarity between results of different methods. Further-
more, we show how our evaluation measure is useful in
enhancing an ensemble for outlier detection. Section 6
concludes the paper.

2 Related Work
Database research in ranking focuses on the scalability
of the ranking retrieval algorithm (e.g. w.r.t. the top-k
query problem [10, 12, 16, 33]). In the context of out-
lier detection, much work therefore aimed at making
outlier detection more efficient in retrieving the top-
k outliers, omitting the assessment of outlierness for
those objects that, given the already received results,
cannot rank among the top-k anymore. Examples are
[2, 4, 19, 26, 36, 37, 44]. Usually, in these methods, the
efficiency is evaluated while the quality of the ranking
result is bound to be optimal w.r.t. the complete rank-
ing (i.e., identical in the top k objects) as retrieved by
the (less efficient) base method. Evaluation of rankings
has not been a major issue in this research area. Re-
cently, though, it was noted [32] that the evaluation of
rankings of outlier scores merely based on ROC AUC
values is unsatisfactory. Therefore, [32] introduced an
“outlier ranking coefficient” of a ranking R as the ratio
between the Spearman ranking coefficient between R
and the best possible ranking and the Spearman rank-
ing coefficient between the worst possible and the best
possible ranking. The best ranking ranks all outliers
before all inliers while the worst ranking ranks all in-
liers before all outliers. This does however not take into
account that there are k! possible “best” rankings for k
outliers and hence does not tell anything about relation-
ships of similarity or correlation between two different
but possibly equally well rated rankings. The truly best
outlier ranking should rank more obvious or clear out-
liers before less obvious outliers before those that could
be outliers or inliers and so on. As reasoned in [13, 25],
an optimally usable outlier score should provide an es-
timation of the probability of being an outlier. Ranking
points according to their probability of being an out-
lier is then a truly meaningful ranking of objects (where
ties, however, are possible). In the context of classifi-
cation, ClasSi [18] is an abstraction and generalization
of the reasoning in [32] that allows the use of multiple
classes in the same ranking by giving a class similar-
ity function. By choosing classes that resemble outliers
and inliers, this can be applied to the evaluation of out-
lier scores as in the special case of [32], suffering from
the same drawbacks. Neither of these two methods is

suitable for comparing two different outlier ranking re-
sults meaningfully. Methods occasionally used for this
task include Spearman’s footrule, Spearman’s ρ [41] and
Kendall’s τ [21]. These methods are designed in gen-
eral for evaluating the similarity of two rankings. These
values neither take the class imbalance problem into ac-
count, nor do they provide a good contrast for rankings
where one expects the rankings to be strongly corre-
lated. A weakness of these methods is that they solely
evaluate the ranking, but not the underlying scoring.
In addition, the common formula relies on a ranking
with no ties, which is unrealistic in an outlier detec-
tion scenario where ties in particular with sure inliers
are to be expected. Nevertheless, as time honored mea-
sures, both found a lot of attention in the information
retrieval literature. In a very broad perspective, [38]
discuss a couple of interpretations of Pearson’s r. Top-
k variants of Kendall’s τ and Spearman’s footrule are
discussed in [11]. Melucci [31] discusses the observation
that a single correlation coefficient (here: Kendall’s τ)
along with a test of significance gives limited informa-
tion only. The use of Kolmogorov-Smirnov is proposed.
A certain problem of Kendall’s τ for the evaluation of
rankings is that errors at any place are equally penal-
ized. Usually, however, the top ranked items are most
important. Shieh [39] introduces weights to penalize er-
rors in different positions differently. An accuracy mea-
sure based on common elements in the top-k of both
rankings, normalized by the number of objects of inter-
est, is proposed in [45]. Yilmaz et al. [46] propose a mix
of Kendall’s τ and the average precision of relevant ob-
jects, thereby providing a probabilistic interpretation.
Kendall’s τ and Spearman’s footrule are discussed and
enriched in parallel in [27]. A more subtle problem of
Kendall’s τ has been pointed out e.g. in [7, 27, 40]: all
swaps are treated as being statistically independent. In
general, however, they are not. If two objects i, j share
similar characteristics that are judged by one outlier
model O1 as outlierish, by another model O2 they are
not, swaps of both objects i, j with some other objects
k, l in the two resulting outlier rankings are not inde-
pendent. Instead of noticing the correlation between
objects i, j, Kendall’s τ is inclined to overestimate the
correlation between the two outlier models.

While current correlation coefficients, like Blest’s
index [5], Shieh’s weighted Kendall’s τ [39], or τAP

[46], do incorporate weights to give more importance
to items being ranked at the top, they actually do
not address the class imbalance problem. For outlier
detection, balancing classes is necessary to restrict
the influence of a large inlier class on the correlation
coefficient value. Weights, if used to balance classes,
should be related to the class size. The traditional



measures use weights solely based on ranks [30], being
not or at least not directly related to the class sizes.
Furthermore, evaluation in information retrieval heads
towards a different goal where precision or recall are
not meaningful to individuals seeking only a few hits.
However, for outlier detection, both recall and precision
are important, as we wish to find as many outliers as
possible while not miss-labeling too many inliers.

3 Generalization of Outlier Evaluation
3.1 Rank Similarity Measures A common formu-
lation of Spearman’s rank similarity is:

ρ = 1− 6
∑

i(ranki(X)− ranki(Y ))2

n(n2 − 1)

This formula is only correct for a total ranking with
no ties, that is each integer rank occurs exactly once
in each ranking. Interestingly, it is a linear inversion
of the squared Euclidean distance, applied to the rank
position vectors (rank1, . . . , rankn). Another popular
statistic, Spearmans footrule, can be seen as the Man-
hattan distance applied to the ranks. This leads to
an intriguing parallel to the cost measure used in [25],
which can be rewritten as a weighted Manhattan dis-
tance applied to vectors containing the “unified” outlier
scores (unified1, . . . , unifiedn) to a target vector consist-
ing of 0 for an inlier and 1 for an outlier. The full ver-
sion of Spearman’s rank similarity ρ however is defined
as Pearson correlation applied to the ranks:

ρ =
Cov(rank(X), rank(Y ))√

Var(rank(X))
√
Var(rank(Y ))

The Pearson correlation is a recurring theme in com-
paring rankings. Another popular correlation statistic,
Kendall’s τ , can be written as:

τ =
1

n(n− 1)

∑

i �=j

sgn(Xi −Xj)sgn(Yi − Yj)

= Ei �=j [sgn(Xi −Xj)sgn(Yi − Yj)]

This however also is nothing but Pearson correlation,
applied to the precedence relation: assign to each object
combination i �= j a unique index to convert C(X) :=
(ci,j := sgn(Xi −Xj)) into a vector field. Now consider
the Pearson correlation of C(X) and C(Y ). Note that
E[C(X)] = 0 since ci,j + cj,i = 0. Without ties, we have
Var(C(X)) = 1, since c2i,j = 1. Then:

ρC =
Cov(C(X), C(Y ))√

Var(C(X))
√
Var(C(Y ))

= Cov(C(X), C(Y ))

= E[(C(X)− E[C(X)])(C(Y )− E[C(Y )])]

= E[C(X)C(Y )] = τ

There are many more such statistics. For example,
Somers’ D is the regression coefficient of C(Y ) with re-
spect to C(X) [34]. The ROC AUC statistic is equiv-
alent to Somers’ D [34]. Kruskal’s γ is a modification
of Kendall’s τ to handle ties. ClasSi [18] is a general-
ization of Kendall’s τ using weights derived from class
similarity in particular for multiclass problems.

Essentially, all these measures of ranking similarity
can be seen as a combination of two steps: (i) normaliza-
tion and conversion; (ii) similarity computation. Popu-
lar choices are using the rank or order relation as nor-
malization step and either Manhattan or Pearson corre-
lation for the similarity computation. The popular for-
mulas of the simplified Spearman’s rank and Kendall’s
τ were developed as specializations of this pattern that
offer computational benefits (by not having to compute
variances) for integer ranks with no ties allowed.

3.2 Score Normalization As emphasized by the
simplified formulas for Spearman’s ρ and Kendall’s τ ,
the common use of rank correlation is based on the
assumption that the whole ranking is equally important
and significant, whether the confused objects are ranked
highly or not. An additional benefit is that, using
ranks, arbitrary scores can be compared with each
other, independent of their value range or meaning (as,
e.g., in [28]).

Alas, this is not really appropriate for outlier de-
tection: first, outlier detection is a rather imbalanced
problem, where the key objects of interest are the rare
class. Second, the ranking is significant only for the
top objects, whereas the scores for the inliers usually
do not vary much at all. In fact, the scores of inliers
are often not even computed exactly, as e.g. in top-n
approaches. Third, the scores themselves often con-
vey a meaning and might even indicate that there are
no outliers at all. Nevertheless, since algorithms often
vary a lot in their value range and interpretation, it
makes sense to perform some normalization on the score
vectors. When comparing different methods that have
different scales, some kind of normalization is unavoid-
able. Recently, [25] proposed a variety of normaliza-
tion methods based on statistics and distribution fitting
that can accommodate several outlier detection algo-
rithms. These normalizations transform various outlier
scores to a uniform value range of [0 : 1]. We build upon
those normalizations here to compare normalized out-
lier scores to the ground truth result, defined as 0 for
true inliers and 1 for true outliers. We extend, however,
the rather simple cost-based evaluation approach of [25]
to a broader perspective and make it applicable to com-
paring multiple solutions with each other, instead of just
measuring the cost with respect to the class labels.



Table 1: Summarized rank comparison measures
Simplified Spearman’s ρ
Normalization: rank
Vector space: score vectors
Measure: normalized squared Euclidean
Full Spearman’s ρ
Normalization: rank
Vector space: score vectors
Measure: Pearson correlation
Kendall’s τ
Normalization: none
Vector space: order relation
Measure: Pearson correlation
ROC AUC
Normalization: none
Vector space: order relation
Measure: Regression coefficient
Unified Outlier [25]
Normalization: various normalizations proposed
Vector space: score vectors
Measure: weighted Manhattan distance
ClasSi [18]
Normalization: rank
Vector space: class weighted order relation
Measure: normalized Pearson

3.3 Outlier Scores as Vector Fields Usually, out-
lier scores have so far been only used to obtain an ob-
ject ranking, expecting the outliers to come first. The
“breadth first” ensemble method of [28] is an example
of this interpretation, which merges the outlier scores of
multiple algorithm runs to an ensemble by taking the
top outlier each, then the second ranked objects each,
etc., completely discarding the scores. However, a (nu-
merical) outlier ranking can also be seen as a vector in
a high dimensional space consisting of one dimension
per object. By assigning a fixed index position to each
object, one obtains a unique and complete representa-
tion of the outlier scores. The transformation is lossless,
however it does not explicitly encode the rank infor-
mation (unless we substitute the scores by their ranks,
which can be seen as a special normalization). Given
two outlier score vectors, the obvious way of comparing
them is using an arbitrary distance function – e.g., Eu-
clidean distance, Manhattan distance, or Pearson corre-
lation distance. Due to the imbalanced nature of outlier
scorings, we suggest however not to use the ordinary
versions of these distances, but weighted variants.

3.4 Generalizing Existing Ranking Measures
Seeing outlier score rankings as vector fields generalizes
the traditional evaluation measures. Table 1 gives an
overview of multiple rank comparison measures and how
they fit into the general scheme discussed here. Some

methods use the order relation instead of score vectors.
Since it is not clear how to properly weight the order
relation for an imbalanced problem and how to use the
scores, we do not further explore this option in the
remainder. Yet these can be seen as instances of the
generalized view as well.

3.5 Choosing Appropriate Functions There is no
“best” distance function, just as you cannot say whether
Euclidean or Manhattan distance is “better” – this
clearly depends on the problem you are trying to solve.
But let us discuss a few rules of thumb for choosing
appropriate functions for this framework.

Choosing a normalization and vector space:
If the exact order of inliers and outliers within these
groups is not important, particularly not among the
inliers, a rank normalization is not appropriate. Instead,
a score-based normalization such as the ones proposed in
[25] is a good choice. If however there is little knowledge
available about the actual scores and score distributions,
a rank normalization can be useful. In our experiments,
we will be only pursuing the first strategy, analyzing the
actual scores.

Choosing a distance function: Since outlier de-
tection is a highly imbalanced problem, applying this
method to outlier scores requires a weighted measure-
ment function. Secondly, the different distance func-
tions can serve particular needs. Using Manhattan dis-
tance is good for estimating costs as it was intended and
used in [25]. For optimization problems, the common
procedure is to minimize squared errors, so a (weighted)
Euclidean (or squared weighted Euclidean) is more ap-
propriate. Finally, if we are interested in the correla-
tion of scores and have little extra information about
the score distribution, a correlation distance such as
(weighted) Pearson correlation is the obvious choice,
since it also includes some regularization of the scores
by their mean and standard deviation.

In a supervised or semi-supervised context, the
weights can be chosen according to the known outliers.
In an unsupervised context, the weights can be esti-
mated for example by considering the union of the top
outliers of each method as true outliers.

3.6 Weighted Pearson Correlation Pearson cor-
relation is an interesting candidate for our framework.
However, the original method is unweighted, and thus
will likely be strongly biased by the non-outliers. In
order to apply it to an imbalanced problem, we em-
ploy a weighted covariance instead of the regular co-
variance. Let the weight assigned to object i be ωi

and Ω :=
∑

i ωi. The weighted mean for standardized
weights is commonly defined as Eω(X) := 1

Ω

∑
i ωiXi



Table 2: Artifical scorings of 4 positive and 4 negative
examples, evaluated using typical measures

A B B′ C D D′ E

+ 1.0 1.0 1.0 1.0 1.0 1.0 1.0

+ 1.0 1.0 1.0 1.0 1.0 1.0 0.0

+ 0.9 0.9 0.9 0.55 0.1 0.1 1.0

+ 0.3 0.2 0.1 0.55 0.01 0.0 0.0

− 0.1 0.1 0.2 0.45 0.0 0.01 1.0

− 0.0 0.1 0.1 0.45 0.0 0.0 0.0

− 0.0 0.0 0.0 0.0 0.0 0.0 1.0

− 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ROC 0.000 0.000 0.188 0.000 0.000 0.312 1.000

smROC 0.038 0.056 0.193 0.225 0.019 0.330 1.000

Pearson 0.119 0.165 0.223 0.226 0.381 0.387 1.000

Sq. Eucl. 0.127 0.168 0.218 0.202 0.448 0.453 1.000

Manhattan 0.225 0.275 0.325 0.450 0.473 0.478 1.000

and the sample variance is then estimated using

σ2
ω(X) :=

1

Ω

∑

i

ωi(Xi − Eω(X))2

Along this line, sample covariance is defined as

Covω(X,Y ) :=
1

Ω

∑

i

ωi (Xi − Eω(X)) (Yi − Eω(Y ))

The weighted Pearson correlation then is:

ρω(X,Y ) :=
Covω(X,Y )

σω(X)σω(Y )
(3.1)

Weighted Pearson correlation, just like regular Pearson
correlation, is in the range of −1 . . .+1, and can be used
as a dissimilarity function for example via 1− ρω.

3.7 Examples We study the effects of the proposed
measure on a few toy examples, that also serve to
highlight deficits in existing methods. In Table 2, we
give a number of object scorings A to E. For simplicity
we have chosen just 8 objects, half of them positive,
half negative. We compute the scores of these rankings
using a few typical methods. To make them easier
comparable, we normalized the scores to a uniform
range from 0 for “perfect” to 1 for “random”. For ROC
and smROC, we used 2(1 − AUC), for Pearson: 1 − ρ.
Squared Euclidean and Manhattan are linearly scaled.

Since ROC does not take the scores into account,
it obviously is unable to differentiate A, B, C, and D,
that all are perfect rankings. It does however consider
the error from D to D′ to be much more severe than
B to B′ while numerically it is the other way around.
While the recent variant smROC [22] does use the
scores, it behaves similarly here, because this setup
actually triggers a non-continuity in its inversion step.

It also considers D to be better than A. Pearson,
squared Euclidean, and Manhattan essentially behave
as expected in these cases, with no obvious benefits
for either one. It can be seen that squared Euclidean,
due to the use of squared values, is less punishing the
“undecided” scoring of C close to 0.5 (which can be
actually desirable in many situations).

3.8 Summary The general process of applying a
score normalization, then computing a distance func-
tion on the score vectors is a rather obvious but so far
underused general process in evaluating outlier scores.
It can also be seen as a generalization of most existing
measures, as shown in Table 1, which underlines the
flexibility of this process and the many ways of opti-
mizing it for particular situations. By using a weighted
distance function, the imbalance problem can be han-
dled. The wide choice of possible distance functions –
including linear costs, quadratic errors, and correlation
measures – makes the general principle usable in a wide
range of domains, including computing the similarity
(and correlation) of results, and quality measures of the
scores, using classic mean squared error principles from
statistics.

4 Enhancing Outlier Detection Ensembles
4.1 Background In classification, building ensem-
bles of single classifiers to gain an improved effective-
ness has a rich tradition and a sound theoretical back-
ground [9, 43]. Also in clustering, building ensemble
clustering methods has found much interest over the
years [15]. In the area of outlier detection, though much
effort has been invested in design and implementation
of advanced outlier detection algorithms, only some at-
tempts to design superior combinations can be found
in the literature [13, 25, 28, 35]. Let us reconsider the
fundamental lessons learned w.r.t. ensemble methods in
classification. The two basic conditions for an ensemble
to improve over the contained base-classifiers are that
the base classifiers themselves are (i) accurate (i.e., at
least better than random) and (ii) diverse (i.e., making
different errors on new instances). These two conditions
are necessary and sufficient. If several individual clas-
sifiers were not diverse, then all of them will be wrong
whenever one of them is wrong. This way, nothing is
gained by combining them. On the other hand, if the
errors made by the classifiers were uncorrelated, more
individual classifiers may be correct while some individ-
ual classifiers are wrong. Therefore, a majority vote by
an ensemble of these classifiers may be also correct. It
is clear that each ensemble member should be at least
somehow meaningful in order to get meaningful results
out of their combination. Hence, a key for building good



ensembles is to use ensemble members that make uncor-
related errors (if any). Though [28] introduced feature
bagging (a common procedure in ensemble classifica-
tion or ensemble clustering) to induce some diversity in
several outlier detectors, the actually achieved decorre-
lation of detectors has not been evaluated. Overall, this
requirement has not yet found theoretical attention in
the few attempts to design outlier ensembles, and actu-
ally the means to do so have not been around so far. In-
stead, the four approaches known so far concentrated on
methods for meaningfully combining the scores. They
addressed the problem that scores delivered by differ-
ent methods (or in different subspaces, where the scores
are usually based on distances) usually vary strongly.
For combination of such different scores, [28] proposed,
first, a normalization by ranking (breadth-first traversal
through the outlier rankings to combine), and, second,
the cumulative sum of the different scores. The second
decisively relies on the comparability of the retrieved
scores. To enhance this comparability was the aim of
the subsequently proposed approaches. Calibration ap-
proaches (sigmoid functions or mixture modeling) to fit
outlier scores provided by different detectors into prob-
ability values have been used in [13]. They induce diver-
sity by using different values for k of the kNN distance
as an outlier score. In [35], the scores provided by a
specific algorithm are centered around their mean and
scaled by their standard deviation. Thus, all scores are
in the same range, even if rather different algorithms
are used for combination. Nevertheless, to induce di-
versity among different detectors, [35] primarily follow
the feature bagging approach of [28]. Statistical reason-
ing was used in [25] to translate scores of different out-
lier detection methods into sort of outlier probabilities.
There, the possibility of enhancement by combining dif-
ferent methods has been demonstrated, yet no measure
of actual diversity or correlation between the used base
algorithms has been applied.

4.2 Observations We will see in the experimental
evaluation, for example, that building an ensemble from
different LOF runs with different k (as in [13]) will
not always yield a good ensemble since the results
may be highly correlated. On the other hand, we will
also demonstrate by means of our correlation analysis,
that feature bagging indeed leads to rather uncorrelated
results. Hence, it is in general reasonable to use
feature bagging also as a heuristic for outlier detection
ensembles. Alas, to enter a caveat, though the quality
in combining outlier detectors from subspaces improves
upon the single subspace outlier detectors, the quality
can remain well below the quality of a single method
using all features.

4.3 Greedy Ensemble Construction Based on
analysis of correlation between outlier score rankings,
we propose an unsupervised greedy ensemble construc-
tion approach, optimizing diversity: For a set I of in-
dividual outlier detectors, select the union of the top k
data points of each instance in I, resulting in K � k · |I|
different data points. Under the preliminary assump-
tion that these were the true outliers of the data set,
we build a target vector that has a 1 when the object
is in these K objects and 0 otherwise. We compute the
weights for our distance measure based on this working
assumption using 1

2K and 1
2(n−K) as weights.

We initialize the ensemble with the detector i ∈ I
that has the highest weighted Pearson correlation to
the target vector. Then we sort all remaining detectors
I \ i by the lowest correlation to the current ensemble,
to maximize diversity. We test if we can improve
our ensemble (increase the correlation with the target
vector) by including the next method from the sorted
list. If so, we update our ensemble with the additional
method and reorder the list, otherwise we discard it.
At each iteration, one method gets either included or
discarded, and these decisions are not revised.

The motivation is that we have two factors to decide
by: diversity and increase of correlation to the target
vector (i.e., improved accuracy). Correlation increase
obviously is the better hard factor – we do not want
to include detectors that decrease our estimated perfor-
mance – while diversity is more useful as a preference
criterion. Also note that this process is entirely unsu-
pervised (except for the initial choice of available de-
tectors, obviously): The ensemble is greedily built from
unsupervised detectors by just estimating their perfor-
mance. Though this is a simple approach to merely
demonstrate the applicability of a correlation measure
in ensemble construction, the results are convincing and
very competitive. Note that this greedy strategy is not
possible with a classic precision@k or ROC evaluation,
that cannot compare two methods for their diversity.

Clearly, using results with uncorrelated errors for
combination can only be the second criterion since a
certain level of accuracy in the ensemble members is
essential – and the better the accuracy, the stronger
the overall correlation. These two, however, are not as
tightly connected as in classification or clustering, since
we do not assess the correlation w.r.t. binary decisions
but w.r.t. the resulting rankings, where quite different
rankings can relate to equal performance in binary
decision. This is exactly the gap in information that
is not considered when using ROC analysis only. We
demonstrate in the experiments how using this second
criterion can improve the overall performance of an
ensemble considerably.



5 Experiments
In the experiments, we use a weighted Pearson correla-
tion distance as defined in Equation 3.1 for assessment
of similarity of rankings of outlier scores, after normal-
izing the score vectors as suggested in [25].

5.1 Data The first data set is based on the “Ams-
terdam Library of Object Images” (ALOI) [14]. We
extracted feature vectors of dimensionality 27 in HSB
space. While the object classes contain about 110
each, we down-sampled objects to become rare arriv-
ing at a data set of 50000 objects, containing 1508 out-
liers. The “Wisconsin Breast Cancer” (WBC) and “Pen-
Based Recognition of Handwritten Digits” (PenDigits)
data sets are from the UCI machine learning reposi-
tory [3]. To obtain outliers, again one of the classes
(corresponding to malignant tumors in WBC and to ‘4’
in PenDigits) was down-sampled to 10 (WBC) and 20
(PenDigits) instances. The Metabolic data set [29] mea-
sures the concentration of 43 metabolites in the blood
of newborns. The control group (healthy) has 19, 730
instances, and there are 659 atypical records (illness).
The KDDCup 1999 data set, while probably not resem-
bling real network data and having irregularities, was
also included in our experiments because of its size with
60, 839 records and 38 numerical dimensions (in the pre-
processed version we use) and because it is commonly
used in related work. For our experiments, we are us-
ing unsupervised methods only and it does not matter
whether we are detecting actual network intrusions or
just defects in the data set.

5.2 Similarity of Methods We compare a series of
kNN-based outlier detection methods with each other:
LOF [6], LDOF [47], LoOP [24], kNN [37], aggregated
kNN [2], and ABOD [26], using a variety of parameter
settings for each. (We omitted ABOD for the ALOI
data set, where it did not finish in reasonable time.)
We use the methods as implemented in ELKI [1].

Figure 1 gives a similarity matrix for these algo-
rithms along with a ground truth (the result matching
the data set labels) on the ALOI data. Dark signals
high similarity (correlation) of the ranking results of
two compared algorithms. For each algorithm, the pa-
rameter k is set to {5, 10, 15, 20, 25} in turn. As can
be estimated from the first column and row (correla-
tion with ground truth), LoOP performed best (though
far from good) in this experiment, LDOF did not find
any outlier. Since the data are color histograms, we
also used the histogram intersection distance [42] on a
finer grained range of values for k. While the results are
better overall, the similarity matrix looks virtually the
same (see below, Figure 6(b)). Apparently, ALOI is not
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Figure 1: ALOI with Euclidean distance

��
��
�

�����

��
	�
��

��	���

��
�
��
��

�������

��
�
	�
��

���	���

��
�
��
�

������

��
�
�
��
�

�������

��
�
�
��
�

�������

Figure 2: WBC with Euclidean distance

an easy target for all used algorithms, as the results are
not highly correlated with the ground truth throughout.

The WBC data are an easier target for all methods
(here including ABOD: Figure 2). We selected the op-
timal parameter values here, using Euclidean distance,
later we inspect the stability over varying parameter
values (Section 5.3). Nevertheless, the methods yield
outlier scores that are quite dissimilar w.r.t. each other.
Note that all variants are actually performing well in
terms of ROC AUC on WBC but the correlation assess-
ment reveals disagreements in the rankings where, still,
the top-ranked items (though ranked differently within
the top-group) are mostly outliers.

The two methods based on kNN distances (kNN
and aggregated kNN) are strongly correlated with each
other but show the least similarity to all other methods.
The aggregated version, though, is consistently a bit
more similar to LOF, LoOP, and LDOF as the version
solely based on a single distance. This observation
makes sense, as the aggregation already introduces a
dampening which is increased by the more sophisticated
local methods.

5.3 Parameter Stability The parameter stability
of methods can be inspected considering the diagonal



(a) Ground truth, LOF (k=3,...,50)

(b) Ground truth, LDOF (k=3,...,50)

Figure 3: WBC: Within method similarity over varying
parameter k with weighted Manhattan distance

blocks of the matrices for the same method with differ-
ent k. Considering, e.g., LOF and LoOP on ALOI (see
Figure 6(b)), the rather smooth plot indicates a general
stability over a broad range of k, i.e., the results of these
runs with different parameter settings are highly corre-
lated (except for rather high values of k vs. rather low
values of k). These findings should discourage in gen-
eral from building an ensemble consisting of LOF runs
with different ks (irrespective of the additional issue of
accuracy, which is also bad here).

A somewhat different behavior can be seen on the
WBC data. Here, we inspect the stability of LOF
and LDOF (Fig. 3) in detail. We see both methods
improving with increasing k = 3, . . . , 50, but with a
different pace and different stability. LOF essentially
needs a k chosen big enough to perform well. LDOF
is less stable, a broad range of small k values retrieves
results that are quite dissimilar to the (better) results
with big k values. Other methods result in similar
findings (not shown): LoOP is comparable to LOF in
stability, the kNN model is even less stable than LDOF.
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Figure 4: ALOI: LOF, k = 20, distance measures
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Figure 5: WBC: LOF, k = 20, distance measures

5.4 Distance Measures To assess the impact of dis-
tance measures on the resulting outlier decisions, we
keep the method (again LOF) and parameter (k = 20)
the same, but vary the distance functions. Used dis-
tance measures are histogram-intersection, L.8, Man-
hattan, Euclidean, L3, maximum, squared Euclidean,
arc cosine, cosine, Pearson-correlation, and squared
Pearson-correlation. As depicted in Figure 4, on the
ALOI data, these distances perform rather differently
(though, again, all results are far from perfect). Intrigu-
ingly, all results are more similar to each other than they
are to the ground truth. This figure changes when we
consider the WBC data (Figure 5): here virtually all
Lp-norms perform well (and similar), while the vector-
length invariant distance measures deteriorate. Overall,
we see here again that the WBC data are much more
accessible to outlier detection than the ALOI data. Fur-
thermore, we see that the behavior of distance functions
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(c) Gain (green: improved, red: deteriorated)

Figure 6: ALOI: Similarity of methods and gain in
combining pairs

varies strongly dependent on the data set. The variance
in performance of Lp-distances on ALOI is much higher
than on WBC data, and there – unsurprisingly – is no
clearly “best” distance function. Choosing a different
distance function can both have a negligible impact on
the algorithms performance or produce largely uncorre-
lated results.

Table 3: Ensemble results for combination of methods
ROC gain combined methods correl.
0.7218 - kNN k = 3 -
0.7663 - LOF k = 4 -
0.7716 - LoOP k = 4 -
0.7767 - LOF k = 20 -
0.8007 - LoOP k = 30 -
0.8253 0.2176 LOF k = 20 + LoOP k = 4 0.4006
0.7952 0.1237 LOF k = 4 + kNN k = 3 0.4226
0.7938 0.0769 LOF k = 20 + kNN k = 3 0.5014
0.8275 0.1344 LOF k = 4 + LoOP k = 30 0.5373
0.7814 0.0427 LOF k = 4 + LoOP k = 4 0.8458
0.7932 -0.0375 LOF k = 20 + LoOP k = 30 0.9311
reference: existing ensemble methods
0.7541 mixture model mean [13]
0.7546 maximum rank [28]
0.7709 unscaled mean [28]
0.7821 sigmoid mean [13]
0.7997 unified score [25]
0.8054 HeDES scaled mean [35]

5.5 Diversity vs. Accuracy for Combinations
To numerically measure the gain in outlier detection
performance of a combination (ensemble) of outlier
detectors as compared to their individual performance,
we use the relative improvement towards the target
AUC score of 1 over the best of the combined detectors:

gain(M1,M2) := 1− 1−AUC(M1 +M2)

1−max (AUC(M1), AUC(M2))

In Figure 6, we inspect the relationship between accu-
racy of the algorithms (Fig. 6(a)), similarity of their
results (Fig. 6(b)), and accuracy gain in combining two
algorithms (Fig. 6(c)), here on the ALOI data, varying
k for all algorithms from 3 to 30. We see essentially
that combining correlated algorithms does not yield a
better result than either of them (black) or, depending
of the individual performance, even deteriorate (red).
The kNN and aggregated kNNmodels perform well with
rather small k. In this region, combination with, e.g.,
LOF shows good improvements (green). While the ac-
curacy of kNN and aggregated kNN is decreasing with
bigger values for k, also the combination with other
methods does usually deteriorate the ensemble perfor-
mance (red). An interesting exception is LDOF, which
is substantially different from the kNN methods. Here,
the combination of two not extremely well performing
methods results in an intriguing gain of performance
(albeit at a low level).

Finally, we show numerically that we yield better
results when using the correlation information for en-
semble member selection as compared to the state of
the art as reported in [25] (see Table 3). As a com-
bination rule, we use just the averaged score and rank



these. Clearly, this is a rather simple approach. Also,
combining just two individuals does usually not improve
as well as the combination of more individuals. But we
are not interested here in studying combination rules
(where the other approaches are more sophisticated al-
ready) but in the impact of the ensemble member selec-
tion. First, we show five selected base results (among
the best performing) along with their achieved ROC
AUC. Second, we show for several pairs the ROC AUC
and gain achieved when combining two of these, along
with their correlation. Clearly, combining highly corre-
lated results achieves a lower gain than combining rather
uncorrelated results. Finally, we show as a reference
the ROC AUC values for all existing ensemble meth-
ods, combining LOF, LDOF, kNN, and agg. kNN as
ensemble members. The best reference value is easily
reached or surpassed with combinations of two uncorre-
lated methods, whereas the combination of two strongly
correlated methods results in a negative gain. This high-
lights the importance of diversification for ensembles.

5.6 Effective Ensemble Member Selection We
study the impact of correlation analysis on the construc-
tion of outlier detection ensembles, inducing diversity
with two variants, namely (i) feature bagging, and (ii)
using different methods and parameters.

Feature Bagging: In Figure 7, we study the
potential of feature bagging for outlier ensembles on the
ALOI data. We randomly generated 25 feature bags,
each containing 18 out of the 27 original features. In
Figure 7(a), we have the similarity matrix of the LOF
outlier rankings in these feature-bags. Almost all of
them are rather uncorrelated, the highest correlation
occurring (except on the diagonal) is 0.477 (bags 7×12).
As expected, the gains (Fig. 7(b)) are positive (green
signal) in most cases. Exceptions are combinations
of the best-performing individual feature-bags. These
deteriorate (red signal) by pairing with most other
feature-bags. We ascertain here that feature bagging
usually results in uncorrelated outlier rankings (which
qualifies feature bagging a good heuristic for outlier
ensembles), and that the combination (at least of more
than two) of such uncorrelated rankings usually yields
a positive gain.

In Figure 7(c), the individual performance of LOF
(k = 10) on these feature bags (measured with tradi-
tional ROC AUC) is plotted along with the performance
of two ensembles resulting from combination of all fea-
ture bags. The full ensemble is just the mean score
of all instances. It already outperforms the best indi-
vidual feature bag. The greedy ensemble was built as
described in Section 4.3, by collecting the union of the
top 250 data points of each instance and using this for

(a) Similarity

(b) Gain (green: improved, red: deteriorated)
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Figure 7: ALOI: Similarity of feature-bags and gain in
combinations

weighting and the 0 − 1 vector as optimization target.
The ensemble kept 13 of the 25 feature bags.

For comparison, we computed 5000 truly random
ensembles also containing 13 instances each. The mean
AUC for this control group is 0.6359, which is slightly
below both the best individual method’s AUC of 0.6385
and the full ensemble’s AUC of 0.6403. The standard
deviation is 0.0074, which makes the optimized ensem-
ble’s AUC of 0.6522 about 2.20 standard deviations bet-



Table 4: Ensemble results for combination of methods
Method AUC significance gain compared to

full random
Metabolic dataset (5 · 13 = 65 instances, k = 100, 125, . . . , 400)
Full ensemble 0.9201 n/a := 0 +56.6%

Random ensemble 0.8159 ±0.1221 −130% := 0

Greedy ensemble 0.9530 = μ+ 1.12σ +41.2% +74.5%

Pen digits dataset (6 · 98 = 588 instances, k = 3 . . . 100)
Full ensemble 0.9656 n/a := 0 +74.6%

Random ensemble 0.8648 ±0.1669 −293% := 0

Greedy ensemble 0.9697 = μ+ 0.63σ +11.8% +77.6%

ALOI images dataset (5 · 28 = 140 instances, k = 3 . . . 30)
Full ensemble 0.7903 n/a := 0 +2.36%

Random ensemble 0.7853 ±0.0222 −2.42% := 0

Greedy ensemble 0.8380 = μ+ 2.37σ +22.7% +24.6%

KDDCup 1999 dataset (5 · 10 = 50 instances, k = 5 . . . 50)
Full ensemble 0.8861 n/a := 0 +15.3%

Random ensemble 0.8655 ±0.0414 −18.1% := 0

Greedy ensemble 0.9472 = μ+ 1.97σ +53.6% +60.7%

ter than the random subset, and a relative gain of 3.8%
over the best individual AUC.

However, in this example, the quality of all indi-
vidual outlier rankings is not good enough to yield a
particularly impressive overall quality of the ensemble
(which qualifies the findings of [28]). This is not un-
expected on this data set: in color histograms, many
dimensions are zero, and few dimensions carry the ac-
tual signal. The quality of a feature bag largely depends
on keeping the right dimensions.

Combining Different Methods: For our largest
experiments, we used all results from LOF, LDOF,
LoOP, kNN, and weighted kNN, (for PenDigits also
ABOD) and multiple values of k. Some of these
instances, such as kNN, are expected to be strongly
correlated. Furthermore, LDOF often did not work too
well. As control group, we used 5000 random ensembles
with as many methods as the greedy ensemble used
(usually around 5−10), and use the mean and standard
deviation of these ensembles to judge the significance.
It can be seen (Table 4) that the random ensembles are
usually clearly worse than the full ensemble, while the
greedy ensemble provides a clear improvement, and also
performs better than the full ensemble (the PenDigits
data set is fairly easy, a much bigger improvement
was not to be expected). On the ALOI data set, the
ensemble obtained a ROC AUC score of 0.8380, which
is in particular also clearly better than the previously
reported results on this data set (see Table 3).

6 Conclusion
Though developing algorithms for outlier detection
found a lot of attention in recent years, evaluation and

judging the quality of algorithms has barely improved
over using ROC curves or the area under these curves
as a ranking evaluation measure. ROC or ROC AUC
analysis, however, completely neglects the scores (which
is a pity as long as the scores have any meaning at all)
and does not allow for an easy and clear comparison
between different methods or for an assessment of sim-
ilarity between their results.

Here, we developed a correlation measure for com-
paring rankings, taking the scores into account. This
measure is suitable in particular for outlier rankings and
outlier scores (posing other requirements as compared
to the evaluation of rankings in IR and databases in gen-
eral). We discussed the relationship and differences to
other typical ranking evaluation measures and demon-
strated the applicability and advances in evaluating the
results of different outlier detection algorithms, with dif-
ferent parametrization, and on different data. Were all
methods would have a similar performance as judged
by ROC AUC, supplementing a ROC analysis with our
ranking similarity measure allows for deeper insights in
similarities and differences between different methods,
parametrization, distance measures, and data.

In particular, our measure provides for the first time
the means to select members of an ensemble for outlier
detection in a sophisticated manner (rather than the
mere heuristic compositions tried so far). We therefore
expect to enable further advances in the development of
effective ensemble methods for outlier detection.
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