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ABSTRACT
Correlation clustering aims at grouping the data set into
correlation clusters such that the objects in the same cluster
exhibit a certain density and are all associated to a common
arbitrarily oriented hyperplane of arbitrary dimensionality.
Several algorithms for this task have been proposed recently.
However, all algorithms only compute the partitioning of the
data into clusters. This is only a first step in the pipeline
of advanced data analysis and system modelling. The sec-
ond (post-clustering) step of deriving a quantitative model
for each correlation cluster has not been addressed so far.
In this paper, we describe an original approach to handle
this second step. We introduce a general method that can
extract quantitative information on the linear dependencies
within a correlation clustering. Our concepts are indepen-
dent of the clustering model and can thus be applied as a
post-processing step to any correlation clustering algorithm.
Furthermore, we show how these quantitative models can be
used to predict the probability distribution that an object
is created by these models. Our broad experimental evalu-
ation demonstrates the beneficial impact of our method on
several applications of significant practical importance.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering—Algorithms

General Terms
Algorithms
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1. INTRODUCTION
The detection of correlations between different features

in a given data set is a very important data mining task.
High correlation of features may result in a high degree of
collinearity or even a perfect one, corresponding to approx-
imate linear dependencies between two or more attributes.
These dependencies can be arbitrarily compex, one or more
features might depend on a combination of several other fea-
tures. In the data space, dependencies of features are man-
ifested as lines, planes, or, generally speaking, hyperplanes
exhibiting a relatively high density of data points compared
to the surrounding space. Knowing of correlations is tradi-
tionally used to reduce the dimensionality of the data set by
eliminating redundant features. However, detection of cor-
related features may also help to reveal hidden causalities
that are of great interest to the domain expert.

Recently, correlation clustering [6] has been introduced
as a novel concept of knowledge discovery in databases to
detect dependencies among features and to cluster those
points that share a common pattern of dependencies. It
corresponds to the marriage of two widespread ideas: First,
correlation analysis performed e.g. by principle component
analysis (PCA) and, second, clustering which aims at identi-
fying local subgroups of data objects sharing high similarity.
Correlation clustering groups the data set into subsets called
correlation clusters such that the objects in the same cor-
relation cluster are all associated to a common hyperplane
of arbitrary dimensionality. In addition, many algorithms
for correlation cluster analysis also require the objects of a
cluster to exhibit a certain density, i.e. feature similarity.

Correlation clustering has been successfully applied to
several application domains (see e.g. [3, 24, 6]). For exam-
ple, costumer recommendation systems are important tools
for target marketing. For the purpose of data analysis for
recommendation systems, it is important to find homoge-
neous groups of users with similar ratings in subsets of the
attributes. In addition, it is interesting to find groups of
users with correlated affinities. This knowledge can help
companies to predict customer behavior and thus develop
future marketing plans. In molecular biology, correlation
clustering is an important method for the analysis of several
types of data. In metabolic screening, e.g., the collected
data usually contain the concentrations of certain metabo-
lites in the blood of thousands of patients. In such data sets,
it is important to find homogeneous groups of patients with
correlated metabolite concentrations indicating a common
metabolic disease. Thus, several metabolites can be linearly
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dependent on several other metabolites. Uncovering these
patterns and extracting the dependencies of these clusters
is a key step towards understanding metabolic or genetic
disorders and designing individual drugs. A second exam-
ple where correlation clustering is a sound methodology for
data analysis in molecular biology is DNA microarray data
analysis. Microarray data comprise the expression levels
of thousands of genes in different samples such as experi-
mental conditions, cells or organisms. Roughly speaking,
the expression level of a gene indicates how active this gene
is. The recovering of dependencies among different genes in
certain conditions is an important step towards a more com-
prehensive understanding of the functionality of organisms
which is a prominent aspect of systems biology. When the
samples represent some patients, it is important to detect
homogeneous groups of persons exhibiting a common linear
dependency among a subset of genes in order to determine
potential pathological subtypes of diseases and to develop
individual treatments.

In all these cases, however, knowing merely of the ex-
istence of correlations among some features is just a first
step. It is far more important to reveal quantitatively and
as exactly as possible which features contribute to which de-
pendencies as a second step. Having performed this second
step, modelling a system becomes possible, that describes
the respective underlying data quantitatively as well as qual-
itatively. Thus, in order to gain the full practical potentials
from correlation cluster analysis, this second step is urgently
needed. All existing approaches to correlation clustering
usually focus only on the first step of detecting the clus-
ters. To the best of our knowledge, there is no method for
the second step of extracting quantitative correlation cluster
information.

In this paper, we describe an approach to handle this sec-
ond step of data analysis. We introduce general concepts for
extracting quantitative information on the linear dependen-
cies within a correlation cluster such that domain experts
are able to understand the correlations and dependencies
in their data. In fact, our method can be applied to any
correlation clusters, regardless of what correlation cluster-
ing algorithm produced the results. As output, we obtain a
set of linear equations that are displayed to the user. These
equations can be used to understand the dependencies hid-
den in the analyzed data set and to create complex real-life
models. As an example, how this information can be used
for further analysis, we additionally introduce a framework
to predict the probability that a new object is generated by
a specific model of the derived ones.

The remainder of this paper is organized as follows. In
Section 2 we review related work on correlation clustering
and existing approaches for deriving descriptions of quanti-
tative dependencies among several attributes. Our concepts
to derive quantitative models of correlation clusters are pro-
posed in Section 3. Section 4 presents a broad experimental
evaluation where we demonstrate the practical importance
of our approach. The paper concludes in Section 5.

2. RELATED WORK

2.1 Correlation Clustering
The expectation maximization (EM) [8] is one of the first

clustering algorithms that can detect correlation clusters.
The EM algorithm tries to model the data distribution of

a data set using a mixture of non-axis parallel Gaussian
distributions. Let us note that the EM algorithm cannot
distinguish between correlation clusters and full-dimensional
clusters without any correlation.

ORCLUS [3] is a k-means style correlation clustering al-
gorithm and, thus, can be seen as a specialization of the
EM algorithm that detects only correlation clusters. The
correlation clusters are allowed to exist in arbitrarily ori-
ented subspaces represented by a set of Eigenvectors. The
number of clusters k and the average dimensionality l of the
correlation clusters are the input parameters of ORCLUS.

In [6] the algorithm 4C, a combination of DBSCAN [9]
and PCA, is presented to find correlation clusters. The user
must specify several parameters, including: ε and μ, defin-
ing minimum density of a cluster, a threshold δ to decide
which principal axes of a cluster are relevant for the correla-
tion, and the dimensionality λ of the computed correlation
clusters.

Let us note that none of the proposed approaches to cor-
relation clustering provides a cluster model including an ex-
plicit description of the correlations within the cluster.

CURLER [20]aims at detecting arbitrary, non-linear cor-
relations. It uses the concept of micro-clusters that are gen-
erated using an EM variant and then are merged to uncover
correlation clusters. The correlations underlying the found
clusters are not necessarily linear. Furthermore, CURLER
assumes each data object to belong to all clusters simul-
taneously, but with different probabilities for each cluster
assigned. By merging several clusters according to their co-
sharing level, the algorithm on the one hand becomes less
sensitive to the predefined number of clusters k. On the
other hand, the user becomes disabled to directly derive a
model describing the correlations, since the original k models
are no longer persistent in the resulting clustering. However,
we focus on linear correlations between features. Thus, the
non-linear correlations uncovered by CURLER are orthogo-
nal to our approach.

Recently, several subspace clustering algorithms [4, 2, 14,
17, 5] were proposed to find clusters in axis-parallel projec-
tions of the data space. These algorithms are not able to
capture local data correlations and find clusters of corre-
lated objects since the principal axes of correlated data are
arbitrarily oriented.

Pattern-based clustering methods [24, 21, 16, 15] aim at
finding groups of objects that exhibit a similar trend in a
subset of attributes. This problem is also known as co-
clustering or biclustering [12, 7]. In contrast to correlation
clustering, pattern-based clustering limits itself to a very
special form of correlation where all attributes are positively
correlated. It does not include negative correlations or cor-
relations where one attribute is determined by two or more
other attributes. Thus, bi-clustering or pattern-based clus-
tering could be regarded as a special case of correlation clus-
tering, as more extensively discussed in [6].

2.2 Quantitative Association Rules
An interesting approach to derive descriptive models of

quantitative relationships among subsets of attributes is known
as quantitative association rule mining. Some earlier ap-
proaches to this task loose information requiring discretiza-
tion of attributes (e.g. [19]) or representation of numerical
values in a rule’s right-hand side by some statistical charac-
terizations, e.g. the mean or sum of the values (cf. [22]). Dis-



cretization of attributes, moreover, does not overcome the
restriction to axis parallel dependencies. Recently, Rückert
et al. [18] proposed to base quantitative association rules on
half-spaces, thus allowing the discovery of non-axis-parallel
rules and possibly accounting for cumulative effects of sev-
eral variables. The rules derived by this approach are of the
form “if the weighted sum of some variables is greater than a
threshold, then a different weighted sum of variables is with
high probability greater than a second threshold”. This ap-
proach has been shown to be useful in detecting some rules
of gene-expression data sets [10]. However, these association
rules do not yet uncover continuous linear dependencies, but
stick to certain thresholds, reflecting the boundaries of half-
spaces.

2.3 Regression Analysis
A task very similar to the one tackled in this paper is

linear and multiple regression analysis (e.g. cf. [11] for an
overview). The general purpose of linear regression is to
learn a linear relationship between a “predictor” variable
and a “response” variable. Multiple regression extends this
task by allowing multiple “predictor” variables. Other non-
linear regression models can be used to learn non-linear re-
lationships among the predictor and the response variables.
However, the main difference between regression analysis
and our approach is that in regression analysis, the predictor
variables are assumed to be independent. Since correlation
clusters are defined to consist of points that exhibit a linear
dependency among a set of attributes, we want to identify
these dependencies when deriving a quantitative model for
each cluster. Obviously, we cannot define any independent
variable(s), i.e. we cannot derive a set of predictor variables.
Thus, regression analysis cannot be applied to derive quan-
titative models for correlation clusters as envisioned in this
paper.

3. DERIVING QUANTITATIVE MODELS
FOR CORRELATION CLUSTERS

In the following we assume D to be a database of n feature
vectors in a d-dimensional real-valued feature space, i.e. D ⊆
R

d. A cluster is a subset of those feature vectors exhibiting
certain properties, e.g. the members of a cluster may be
close to each other in the feature space compared to non-
members, or – in case of correlation clustering – they may
be close to a common regression line, while other points
are not. Generally, clustering algorithms as those reviewed
above can provide (implicitely or explicitely) a description
of the found clusters by means of a covariance matrix per
cluster.

Formally, let C be a cluster, i.e. C ⊆ D, and x̄C denote the
centroid (mean) of all points x ∈ C. The covariance matrix
ΣC of C is defined as:

ΣC =
1

|C| ·
X
x∈C

(x − x̄C) · (x − x̄C)T

In general, the covariance matrix describes a distribution
of attributes. EM-like algorithms utilize such a description
of a distribution of attributes to derive a Gaussian model
that may have created the observed data. In case of cor-
relation clusters, however, a far more adequate description
may be possible. Indeed, the fact, that correlations between
features have been found, even disqualifies the covariance

matrix as an adequate model of a correlation cluster, since
it is sort of a probabilistic model of scatter around a certain
mean value. Strong correlations as in correlation clusters,
on the other hand, do suggest not only probabilistic scat-
ter, but linear dependencies, and (by a higher perspective of
interpretation) perhaps even functional or causal relations.
Thus, we will now consider the intrinsic properties of cor-
relation clusters, and how to make use of them in order
to derive a more appropriate model covering dependencies
quantitatively.

3.1 Correlation Clusters
Consider a correlation cluster C that is derived using any

algorithm capable of finding correlation clusters. Since the
covariance matrix ΣC of C is a square matrix, it can be
decomposed into the Eigenvalue matrix EC of ΣC and the
Eigenvector matrix VC of ΣC such that

ΣC = VC · EC · VT
C

The Eigenvalue matrix EC is a diagonal matrix holding
the Eigenvalues of ΣC in decreasing order in its diagonal
elements. The Eigenvector matrix VC is an orthonormal
matrix with the corresponding Eigenvectors of ΣC.

Now we define the correlation dimensionality of C as the
number of dimensions of the (arbitrarily oriented) subspace
which is spanned by the major axes in VC. Let us note,
that the correlation dimensionality is closely related to the
intrinsic dimensionality of the data distribution. If, for in-
stance, the points in C are located near a common line, the
correlation dimensionality of these points will be 1. This
means that we have to determine the principal components
(Eigenvectors) of the points in C. The Eigenvector asso-
ciated with the largest Eigenvalue has the same direction
as the first principal component, the Eigenvector associated
with the second largest Eigenvalue determines the direction
of the second principal component and so on. The sum of
the Eigenvalues equals the trace of the square matrix ΣC
which is the total variance of the points in C. Thus, the
obtained Eigenvalues are equal to the variance explained
by each of the principal components, in decreasing order
of importance. The correlation dimensionality of a set of
points C is now defined as the smallest number of Eigenvec-
tors explaining a portion of at least α of the total variance
of C. These ideas are illustrated in Figure 1. Figure 1(a)
shows a correlation cluster of correlation dimensionality 1
corresponding to a (perfect) line. Only one Eigenvector (e1)
explains the total variance of C. Figure 1(b) shows a correla-
tion cluster of correlation dimensionality 2 that corresponds
to a (perfect) plane. Here, two Eigenvectors explain the
total variance of C. Let us note that in the displayed exam-
ples, the correlations are perfect, i.e. there is no deviation
from the hyperplane but all points within the set perfectly
fit to the hyperplane. However, in real-world data sets, this
is a quite unrealistic scenario. A threshold α may account
for that fuzziness to define an adequate dimensionality of
the correlation hyperplane. We call the dimensionality of a
hyperplane neglecting a certain amount of deviation in or-
thogonal direction correlation dimensionality. The correla-
tion dimensionality is defined more formally in the following.

Definition 1 (correlation dimensionality).
Let α ∈]0, 1[. Then the correlation dimensionality λC of a
set of points C is the smallest number r of Eigenvalues ei in



(a) 1-dimensional correlation cluster (b) 2-dimensional correlation cluster

Figure 1: Correlation dimensionality of correlation clusters.

the d × d Eigenvalue matrix EC explaining a portion of at
least α of the total variance:

λC = min
r∈{1,...,d}

(
r

˛̨̨
˛̨ Pr

i=1 eiPd
i=1 ei

≥ α

)

Typically, values for α are choosen between 0.8 and 0.9.
For example, α = 0.85 denotes that the obtained principal
components explain 85% of the total variance. In the fol-
lowing, we denote the λC-dimensional affine space which is
spanned by the major axes of C, i.e. by the λC first Eigen-
vectors of C and translated by, e.g. the mean vector x̄C, the
correlation hyperplane of C.

Thus, the correlation dimensionality λC is the dimension-
ality of the affine space containing all points of the set C
allowing a small deviation corresponding to the remaining
portion of variance of 1−α. The remaining, neglected vari-
ance scatters along the Eigenvectors eλC+1, . . . , ed.

We therefore distinguish between two disjoint sets of Eigen-
vectors:

Definition 2 (strong and weak Eigenvectors).
We call the first λC Eigenvectors of VC strong Eigenvectors.
The strong Eigenvectors of VC are denoted by V̌C. The
remaining Eigenvectors are called weak Eigenvectors. We
denote the weak Eigenvectors by V̂C.

For an illustration see again Figure 1: In the correlation
cluster of correlation dimensionality 1 (Figure 1(a)) e1 is
a strong Eigenvector whereas e2 and e3 are weak Eigenvec-
tors. In the correlation cluster of correlation dimensionality
2 (Figure 1(b)) e1 and e2 are strong Eigenvectors whereas
e3 is a weak Eigenvector. The Eigenvectors are overexem-
plified in this example. Suppose they were scaled by their
corresponding Eigenvalues. If no variance remains along an
Eigenvector, as it may e.g. appear for e2 and e3 in Figure
1(a), this Eigenvector will disappear since the corresponding
Eigenvalue becomes zero.

While the correlation hyperplane is spanned by the strong
Eigenvectors, it is equally well defined by the weak Eigen-
vectors that are orthogonal to this hyperplane in R

d. Fur-
thermore, describing the correlation cluster by means of the
weak Eigenvectors (instead of the strong Eigenvectors) di-
rectly yields an equality system that defines not only the

corresponding hyperplane, but also allows to directly inspect
the underlying dependencies among attributes numerically,
as we will show in more detail subsequently.

3.2 Deriving Quantitative Models for
Correlation Clusters

Let C be a λ-dimensional correlation cluster in D (C ⊆ D).
Thus, there are λ strong Eigenvectors and d−λ weak Eigen-
vectors in the describing matrix of Eigenvectors derived by
PCA on the points of cluster C. A λ-dimensional hyperplane
defining the correlation cluster C is therefore completely de-
fined by the mean point (centroid) x̄C = (x̄1 · · · x̄d)T of all
points belonging to cluster C and the set of weak Eigenvec-
tors, V̂C, that are normal vectors to the hyperplane. Then
we can derive the following equation system to describe the
hyperplane, consisting of d − λ equations:

v(λ+1),1(x1−x̄1) + v(λ+1),2(x2−x̄2) + ··· + v(λ+1),d(xd−x̄d) = 0

v(λ+2),1(x1−x̄1) + v(λ+2),2(x2−x̄2) + ··· + v(λ+2),d(xd−x̄d) = 0

...
vd,1(x1−x̄1) + vd,2(x2−x̄2) + ··· + vd,d(xd−x̄d) = 0

where vi,j is the value at column i, row j in the Eigenvector
matrix VC of C. As we have pointed out, only the weak
Eigenvectors are relevant. Thus we can equivalently denote
this equation system by

V̂T
C · x = V̂T

C · x̄C.

The defect of V̂T
C gives the number of free attributes, the

other attributes may actually be involved in linear depen-
dencies. Basically, these dependencies are revealed by trans-
forming the equation system using Gauss-Jordan elimina-
tion. The thus derived reduced row echelon form of the ma-
trix is known to be unique [25]. The unique form does, of
course, not provide new information, but it is easily compa-
rable to alternative solutions and conveniently interpretable
by inspecting experts. To enhance numerical stability, we
suppose to use total pivoting for the Gauss-Jordan elimina-
tion.

By construction, the equation system is – at least approx-
imately – fulfilled for all points x ∈ C. But, furthermore, it
suggests a quantitative model for the cluster. This model
could be evaluated using retained data points. Besides, as



we will see below, it may also serve as a predictive model to
classify new data points.

In summary, we propose the following general method to
derive quantitative models of clusters in a dataset of feature
vectors D ⊂ R

d:

1. Run a clustering algorithm on D that is able to find
correlation clusters, i.e. use e.g. 4C or ORCLUS. How-
ever, also k-means or DBSCAN is possible, provided
that a proper distance function taking into account
the correlation dimension is used. If the result may be
restricted to clusters of positively correlated features,
even the usage of any general biclustering or pattern-
based clustering algorithm will be possible. The de-
cision for a specific clustering algorithm will also de-
termine whether or not a data object may belong to
several clusters simultaneously. In our experiments we
use COPAC [1], a new correlation clustering algorithm
that is shown to improve over 4C as well as ORCLUS
w.r.t. efficiency, effectivity, and robustness.

2. For each correlation cluster Ci ⊂ D found in the pre-
vious step:

(a) Derive the covariance matrix ΣCi .

(b) Select the weak Eigenvectors V̂Ci of ΣCi with re-
spect to a certain α.

(c) Derive the equation system describing the corre-
lation hyperplane:

V̂T
Ci

· x = V̂T
Ci

· x̄Ci

(d) Apply Gauss-Jordan elimination to the derived
equation system to obtain a unique description
of quantitative dependencies by means of the re-
duced row echelon form of the equation system.

3.3 Interpretation of Correlation Cluster
Models

Suppose by applying this method we obtain the following
solution describing a cluster in a 5-dimensional feature space
R

5:

1x1 + 0x2 + c1x3 + 0x4 + e1x5 = f1

0x1 + 1x2 + c2x3 + 0x4 + e2x5 = f2

0x1 + 0x2 + 0x3 + 1x4 + e3x5 = f3

This would provide a quantitative model describing a corre-
lation cluster of correlation dimensionality 2 (corresponding
to the number of free attributes, or, equivalently, the number
of strong Eigenvectors) where we have linear dependencies
among

• x1, x3, and x5

• x2, x3, and x5

• x4 and x5

by given factors c1, e1, c2, e2, and e3.
Note that we must not draw any conclusions concerning

causalities between attributes. But relations between cer-
tain attributes are quantitatively and uniquely defined. To
resolve these relations to any formula that suggests a causal-
ity we have to rely on the domain knowledge of experts.
However, we believe that uncovered quantitative relation-
ships will lead to refined experiments and help to finally
explore supposable causalities. Thus, we could choose ex-
perimental settings involving either

• x4 and x5, or

• x2, x3, and x5, or

• x1, x3, and x5,

and changing the quantities in relation to each other. The
dependencies revealed in the original experiment could have
been interpreted such as fall or rise of an arbitrary subset
of S ⊂ {x1, x3, x5} caused fall or rise of the remaining sub-
set {x1, x3, x5} \ S. Further experiments could refine the
model by excluding certain combinations of causal models.
Of course, the three variables, x1, x3, and x5, may also sim-
ply be connected by a fourth variable, that has not been
monitored so far. Thus, trivially, a quantitative connection
will never guarantee a direct causal relationship. Further-
more, in many domains, one-way causal relationships pro-
vide only one part of the whole picture, since systems often
are regulated by negative-feedback-loops, that make causal-
ities circular. Nevertheless, modelling parts of a complex
system remains useful even under restrictive constraints (as
shown e.g. for genetic regulatory interaction networks, cf.
[13]).

3.4 Sample Application: Predictive Models
Having derived a descriptive model, it can be refined by

determining an average distance of the cluster members from
the correlation hyperplane. Such deviations are typically
to be expected in natural systems. At least, one has to
account for errors in measurement. The distance of a point
to a hyperplane is thereby naturally defined as the Euclidean
distance to its perpendicular projection onto the hyperplane,
i.e.:

d(x,C) = ||x − x̄C − projC−x̄C (x − x̄C)||,
where C denotes the idealized hyperplane of a correlation
cluster. By definition, the hyperplane C is an affine space,
that is a subspace translated by x̄C, the mean vector of all
points of the cluster corresponding to C. projS : R

n → R
n

denotes the perpendicular projection of a vector to an ar-
bitrary subspace S of R

n. If S is given by an orthonormal
basis, e.g. the set of strong Eigenvectors derived for the cor-
responding correlation cluster, {s1, · · · , sλS}, then

projS(x) = 〈x, s1〉s1 + 〈x, s2〉s2 + · · · + 〈x, sλS 〉sλS .

Assuming the deviations fit to a Gaussian distribution
with μ = 0, the standard deviation σ of the distances of all
cluster members suffices to define a Gaussian model of devi-
ations from the common correlation hyperplane. For each of
the derived models, the probability is given for a new data
object to be generated by this specific Gaussian distribution.
A set of models for a set of correlation clusters can there-
fore provide a convenient instrument for classification in the
perspective of different linear dependencies among the data.
The probability that an object x was generated by the jth
of n Gaussian distributions, Cj , is given by

P (Cj |x) =

1

σj

√
2π

e
− 1

2σ2
j
(d(x,Cj))

2

Pn
i=1

1

σi

√
2π

e
− 1

2σ2
i

(d(x,Ci))
2 .

Compared to many traditional classification algorithms,
like SVM or kNN, our predictive models do not only provide
a separating boundary between classes (cf. Figure 2(a)), but



(a) Linear decision
boundaries

(b) Axis parallel deci-
sion rules

(c) Density functions (d) Deviations from hy-
perplanes

Figure 2: Decision models of different types of classifiers

Figure 3: Synthetic data set DS1.

also give a meaningful definition of the class. So do other
classifiers, like decision trees or rule based learners, but their
descriptions usually are limited to (at least in sections) axis
parallel decision boundaries (cf. Figure 2(b)). The models
provided by the EM algorithm or other Bayesian learners
differ from our models in that they simply define a scatter-
ing around a mean point, using a quadratic form distance
function or a density function for a certain probability dis-
tribution (cf. Figure 2(c)). For underlying linear dependen-
cies, a quadratic distance function will resemble our models
only if the dependencies are perfectly expressed in the data
without any aberrations. Accounting for some variance per-
pendicular to a hyperplane, while the hyperplane represents
a linear dependency among several attributes, is a novel ap-
proach among the family of classification algorithms (cf. Fig-
ure 2(d)).

4. EVALUATION
In our experiments we use the correlation clustering algo-

rithm COPAC [1] to generate the correlation clusters in a
preprocessing step to our method. We choose this algorithm
due to its efficiency, effectivity, and robustness. In each case,
parameters for clustering were chosen according to [1]. Let
us again note that any other (correlation) clustering algo-
rithm is applicable for preprocessing.

4.1 Synthetic data sets
For our experiments we used several synthetic data sets

containing correlation clusters in the unit cube of R
d that

have been generated by a generic data generator. The gen-
erated correlation clusters form a λ-dimensional hyperplane
which is specified by an equation system of d−λ equations.
The distances of the points to the hyperplane are normally
distributed with a specified standard deviation and a mean
of zero.

The first data set DS1 consists of five correlation clusters,
each forming a line of 1,000 points in R

3 (cf. Figure 4). In
each cluster, the distances of the points to the correlation
lines are normally distributed with a standard deviation of
about 1.5% of the maximum distance in the unit cube. The
purpose of this data set is to demonstrate the capability of
our proposed method to obtain a quantitative model for the
correlation clusters. As it can be seen in Table 1 we derived
a good approximation of the equation systems that define
the models for the correlation clusters despite the obviously
strong jitter in the data set.

In the second experiment we evaluated our method on
data sets with varying standard deviation. We generated six
data sets (DS20, ..., DS25) forming a 2-dimensional hyper-
plane in R

3 with different values for the standard deviation
of the distances. The values for the standard deviation were
set to σ0 = 0% up to σ5 = 5% of the maximum distance
in the unit cube (cf. Figure 4). The results are shown in
Table 2. As expected, with increasing standard deviation
of the distances, the detected correlation models suffer from
a slight blurring, i.e. the coefficients of the models slightly
deviate from the exact coefficients. However, the general
correlations are still detected and also the hidden quanti-
tative relationships are still uncovered rather clear even if
the points stronger deviate from the optimal hyperplane. In
general, our proposed method has proven to be rather robust
w.r.t. small jitter.

In addition to the reported experiments on 3-dimensional
data, we performed several experiments on higher dimen-
sional data. In all experiments, we achieved results of sim-
ilar high quality, i.e. all linear dependencies hidden in the
data were correctly uncovered. Due to space limitations and
clearness reasons, we omit a detailed presentation of these
results.



Table 1: Dependencies on DS1 data.
Generated Found

dependencies standard deviation dependencies

cluster 1 x1 − x3 = 0 σ = 0.0246 x1 − 1.0069x3 = −0.0035
x2 + 0.5x3 = 0.75 x2 + 0.5065x3 = 0.7537

cluster 2 x1 − x3 = 0 σ = 0.0243 x1 − 1.0027x3 = −0.0028
x2 − x3 = 0 x2 − 0.9901x3 = 0.0022

cluster 3 x1 + x3 = 1 σ = 0.0238 x1 + 1.0008x3 = 1.0005
x2 − x3 = 0 x2 − 1.0011x3 = 0.0000

cluster 4 x1 − x3 = 0 σ = 0.0246 x1 − 1.0009x3 = 0.0000
x2 + x3 = 1 x2 + 0.9999x3 = 0.9995

cluster 5 x1 + x3 = 1 σ = 0.0249 x1 + 0.9975x3 = 0.9988
x2 + x3 = 1 x2 + 0.9968x3 = 0.9992

(a) DS20 (σ0 = 0) (b) DS21 (σ1 = 0.0173) (c) DS22 (σ2 = 0.0346)

(d) DS23 (σ3 = 0.0520) (e) DS24 (σ4 = 0.0693) (f) DS25 (σ5 = 0.0866)

Figure 4: Synthetic data sets with different values for standard deviation.

4.2 Real world data sets
Wages data. The Wages data set1 consists of 534 11-
dimensional observations from the 1985 Current Population
Survey. Since most of the attributes are not numeric, we
used only 4 dimensions (A=age, Y E=years of education,
Y W=years of work experience, and W=wage) for correla-
tion analysis.

COPAC detected three correlation clusters in this data
set. The resulting dependencies of these clusters are sum-
marized in Table 3. The first cluster consists only of people
having 12 years of education, whereas the second cluster
consists only of people having 16 years of education. Fur-

1http://lib.stat.cmu.edu/datasets/CPS_85_Wages

thermore, in both of these clusters the difference between
age and work experience is a specific constant, namely years
of education plus 6, which makes perfectly sense. Addition-
ally, for the first cluster, we found a dependency between
wage and age: the wage equals a constant plus a small fac-
tor times the age of an employee, i.e., the older an employee,
the more he earns. This relationship is independent from the
attribute work experience. Note that years of education is
a constant where this condition holds. In the third cluster
only those employees are grouped which started school in
the age of 6 years and after graduation immediately began
working. Thus, the sum of years of education and work
experience equals the age minus 6.



Table 2: Dependencies on DS2 data.
Generated Found

dependencies standard deviation dependencies

DS20 x1 − 0.5x2 − 0.5x3 = 0 σ = 0 x1 − 0.5000x2 − 0.5000x3 = 0.0000

DS21 x1 − 0.5x2 − 0.5x3 = 0 σ = 0.0173 x1 − 0.4989x2 − 0.5002x3 = 0.0000

DS22 x1 − 0.5x2 − 0.5x3 = 0 σ = 0.0346 x1 − 0.5017x2 − 0.4951x3 = 0.0016

DS23 x1 − 0.5x2 − 0.5x3 = 0 σ = 0.0520 x1 − 0.5030x2 − 0.5047x3 = −0.0059

DS24 x1 − 0.5x2 − 0.5x3 = 0 σ = 0.0693 x1 − 0, 4962x2 − 0.5106x3 = −0.0040

DS25 x1 − 0.5x2 − 0.5x3 = 0 σ = 0.0866 x1 − 0.4980x2 − 0.4956x3 = 0.0064

Table 3: Dependencies on Wages data.
cID derived dependencies

1 Y E = 12
Y W − 1 · A = −18
W − 0.07 · A = 5.14

2 Y E = 16
Y W − 1 · A = −22

3 Y E + 1 · Y W − 1 · A = −6

Gene expression data. This data set was derived from
an experimental study of apoptosis in human tumor cells2.
Apoptosis is a genetically controlled pathway of cell death.
The data set contains the expression level of 4610 genes at
five different time slots (5, 10, 15, 30, 60 minutes) after
initiating the apoptosis pathway.

We analyzed two correlation clusters detected by COPAC.
The derived dependencies of these clusters are depicted in
Table 4. The attributes are abbreviated by Mi, where i de-
notes the time slot of this attribute, e.g. M5 denotes time
slot “5 minutes”. The first cluster contains several genes
that are located at the mitochondrial membrane. The first
four time slots exhibit a negative linear relationship with
M60. Similar observations can be made for the second
cluster that contains several genes that are related to the
tumor necrosis factor (RNF). The uncovered dependencies
suggest that the activity of the corresponding genes decrease
with proceeding cell death. The strong negative correlations
among genes related to mitochondria (cluster 1) indicates
that the volume of the energy metabolism (which is located
in mitochondria) is decreasing over time. In addition, the
correlation among the genes related to RNF makes sense
since the dying cells are tumor cells.

Breast cancer data. We also applied our method to four
correlation clusters found in the Wisconsin Breast Cancer
data derived from UCI ML Archive3. This data set mea-
sures nine biomedical parameters characterizing breast can-
cer type in 683 humans (humans with missing values were
removed from the data set). The parameters include Clump

2The data are donated by our project partners.
3http://www.ics.uci.edu/~mlearn/MLSummary.html

Thickness (attribute “A1”), Uniformity of Cell Size (“A2”),
Uniformity of Cell Shape (“A3”), Marginal Adhesion (“A4”),
Single Epithelial Cell Size (“A5”), Bare Nuclei (“A6”), Bland
Chromatin (“A7”), Normal Nucleoli (“A8”), and Mitoses
(“A9”).

The derived dependencies of the four clusters are depicted
in Table 5. Let us note that each cluster only contains hu-
mans suffering from a benign tumor type. The patients suf-
fering from a malignant tumor type were classified as noise.
The dependencies in the first cluster are quite clean and in-
dicate a constant behaviour of seven attributes. In addition,
A5 is related to A7. The models of the remaining clusters
are quite complex. Mostly, the first attributes which mea-
sure an aggregated information about the shape and the
size of the tumor cells exhibit a relationship to more specific
measurements on single parts of the tumor. In general, since
the clusters only contain benign tumors, our results indicate
that this mostly harmless tumor type can still be explained
and modelled by linear relationships among the measure-
ments, whereas the more dangerous tumor type cannot be
explained or modelled through any linear relations among
the measurements.

4.3 Applying Quantitative Models to Class
Prediction

Last but not least, we briefly discuss a further potential
application of our method that utilizes the derived models
for subsequent data analysis. As sketched above, the quan-
titative models generated by our method can e.g. be used to
predict the class of a new object. To evaluate this potential,
we used three 2-dimensional synthetic data sets each with
5 classes. The first data set (“DS30”) contains 50 points
per class, the second and the third data sets (“DS31” and
“DS32”) each contain 100 points per class. Each class is gen-
erated according to a certain linear dependency. The class
distributions in DS30 and DS31 exhibit a jitter of 0.5% of
the maximum distance in the unit cube, whereas the jitter of
the classes in DS32 is 0.75%. The third data set is depicted
in Figure 5. Note that these data sets are rather artificial
and are only applied for a proof of principle.

We compared the classification accuracy of our sketched
classifier to several other standard learning approaches. For
this comparison we used the WEKA framework [23] with
standard parameter settings, in particular, kNN (IBk) with
k = 1 (best results reported), SVM (SMO), rule-based learner
(PART), Naive Bayes, decision tree (J48), and multinomial



Table 4: Dependencies on Gene expression data.
cID derived dependencies sample gene names

1 M5 − 1.05 · M60 = −0.12 NDUFB10, MTRF1, TIMM17A, TOM34,
M10 − M60 = −0.17 CPS1, NM44, COX10, FIBP, TRAP1,
M15 − M60 = 0 MTERF, ME2, HK1, HADHA, ASAH2,
M30 − 1.1 · M60 = 0.11 CPS1, CA5A, BNI3PL

2 M5 − 0.98 · M60 = 0 TNFRSF6, TNFRSF11A, TNFRSF7,
M10 − 0.98 · M60 = 0 TNFRSF1B, TNFRSF10B,TNFRSF5,
M15 − 0.97 · M60 = 0 TNFRSF1A, TRAF5, TRAF2,
M30 − 0.97 · M60 = 0 TNFSF12

Table 5: Dependencies on Wisconsin breast cancer data.
cID derived dependencies

1 A1 = 2 and A2 = 1 and A3 = 1 and A4 = 1 and A6 = 1 and A5 − 0.1 · A7 = 1.9
A8 = 1 and A9 = 1

2 A1 − 0.4 · A4 + 0.7 · A5 − 0.2 · A6 + 0.9 · A7 − 24 · A8 = −20.9
A2 + 0.03 · A4 − 0.05 · A5 + 0.02 · A6 + 0.02 · A7 − 0.3 · A8 = 0.8
A3 + 0.2 · A4 + 0.1 · A5 + 0.1 · A6 + 0.2 · A7 − 1.8 · A8 = 0.3

3 A1 + 82.2 · A6 + 7.8 · A7 − 42 · A8 − 18.5 · A9 = 38.5
A2 − 1.9 · A6 − 0.2 · A7 + 0.9 · A8 + 1.8 · A9 = 1.5
A3 − 60.1 · A6 − 6.5 · A7 + 25.1 · A8 + 141 · A9 = 97.5
A4 − 7.2 · A6 − 0.4 · A7 − 1.1 · A8 + 15.6 · A9 = 7.6
A5 − 18.8 · A6 − 1.4 · A7 − 0.5 · A8 + 45.9 · A9 = 26.1

4 A1 − 5.4 · A5 + 1.6 · A6 − 0.1 · A7 + 1 · A8 − 16.3 · A9 = −21.1
A2 + 1.7 · A5 − 0.6 · A6 + 0.2 · A7 − 0.7 · A8 − 9.9 · A9 = −6.5
A3 − 1.8 · A5 − 0.8 · A6 − 0.3 · A7 − 0.7 · A8 − 11.9 · A9 = −8.5
A4 − 2.3 · A5 − 0.2 · A6 + 0.2 · A7 + 0.4 · A8 + 8.6 · A9 = 6.5

Figure 5: Data set DS32.

logistic regression (Logistic). The results are depicted in Ta-
ble 6. As it can be seen, our approach significantly outper-
forms most of the other approaches, except kNN, in terms
of accuracy.

Let us note that standard classifiers will most likely pro-
duce comparative or even better results if the classes are

Table 6: Comparison of different classifiers in terms
of accuracy (in %).

Our IBk SMO PART NB J48 Log.
method

DS30 95 91 62 82 65 82 67
DS31 94 94 54 85 64 83 60
DS32 91 91 58 81 60 83 57

generated through models that cannot be captured by our
concepts of linear dependencies. However, our small exam-
ple may show that if the classes are generated by a model of
linear dependencies as captured by our proposed concepts,
our method obviously yields a better prediction accuracy
than standard supervised learners.

5. CONCLUSIONS
Several correlation clustering algorithms have been pro-

posed recently. However, none of these algorithms derive a
quantitative model for each correlation cluster which is ur-
gently needed in order to gain the full practical potentials
from correlation cluster analysis. In this paper, we describe
an original approach to derive quantitative information on
the linear dependencies within correlation clusters. Our con-
cepts are independent of the clustering model and can thus



be applied as a post-processing step to any correlation clus-
tering algorithm. Furthermore, as a sample application of
our approach, we sketched how these quantitative models
can be used to predict the probability distribution that an
object is created by these models. Our broad experimental
evaluation demonstrates the beneficial impact of our method
on several applications of significant practical importance.
We exemplified how our method can be used in conjunction
with a suitable clustering algorithm to gain valuable and
important knowledge about complex relationships in real-
world data.
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