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Abstract

The detection of correlations between different fea-
tures in high dimensional data sets is a very important
data mining task. These correlations can be arbitrar-
ily complex: One or more features might be correlated
with several other features, and both noise features as
well as the actual dependencies may be different for dif-
ferent clusters. Therefore, each cluster contains points
that are located on a common hyperplane of arbitrary
dimensionality in the data space and thus generates a
separate, arbitrarily oriented subspace of the original
data space. The few recently proposed algorithms de-
signed to uncover these correlation clusters have sev-
eral disadvantages. In particular, these methods can-
not detect correlation clusters of different dimension-
ality which are nested into each other. The complete
hierarchical structure of correlation clusters of vary-
ing dimensionality can only be detected by a hierar-
chical clustering approach. Therefore, we propose the
algorithm HiCO (Hierarchical Correlation Ordering),
the first hierarchical approach to correlation clustering.
The algorithm determines the cluster hierarchy, and
visualizes it using correlation diagrams. Several com-
parative experiments using synthetic and real data sets
show the performance and the effectivity of HiCO.

1. Introduction

The detection of correlations between different fea-
tures in a given data set is a very important data
mining task. High correlation of features may re-
sult in a high degree of collinearity or even a perfect
one. Thus, strong correlations between different fea-
tures correspond to approximate linear dependencies
between two or more attributes. These dependencies
can be arbitrarily complex, one or more features might
depend on a combination of several other features. In
the data space they appear as lines, planes, or, gen-
erally speaking, hyperplanes exhibiting a relative high

density of data points compared to the surrounding
space. Knowledge about correlations enables the user
to detect hidden causalities and to reduce the dimen-
sionality of the data set.

Correlation clustering [6] is a novel concept of knowl-
edge discovery in databases which has been successfully
applied to applications like target marketing in recom-
mendation systems, gene expression analysis in molec-
ular biology, metabolome data analysis for individual
drug design, etc. It corresponds to the marriage of two
widespread ideas: Correlation analysis, typically by
a principal component analysis (PCA) and clustering,
i.e. identifying local subgroups of data objects sharing
similar properties. Correlation clustering groups the
data sets into subsets called correlation clusters such
that the objects in the same correlation cluster are all
associated to the same hyperplane of arbitrary dimen-
sionality. We will refer to a correlation cluster associ-
ated to a λ-dimensional hyperplane as a λ-dimensional
correlation cluster. The dimensionality of a hyperplane
associated to a correlation cluster is called correlation
dimensionality.

In [6] it was demonstrated that a trivial combination
of the concepts of clustering and correlation detection
is not sufficient to find correlation clusters. Therefore,
algorithms for correlation clustering have to integrate
the concepts of clustering and correlation detection in
a more sophisticated way. The algorithm ORCLUS
[2], for instance, integrates PCA into k-means cluster-
ing and the algorithm 4C [6] integrates PCA into the
density based clustering algorithm DBSCAN [8]. Both
algorithms decompose a data set into subsets of points,
each subset being associated to a specific λ-dimensional
hyperplane. Since both methods use the correlation
dimensionality λ as a global parameter, i.e. the cor-
relation dimensionality of the resulting clusters must
be determined by the user, they are both not able to
find all correlation clusters of different dimensionality
during one single run.

Moreover, searching clusters of different dimension-
ality is essentially a hierarchical problem because sev-
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Figure 1. Hierarchies of correlation clusters.

eral correlation clusters of low dimensionality may to-
gether form a larger correlation cluster of higher dimen-
sionality, and so on. For example, consider two lines
in a 3D space that are embedded into a 2D plane (cf.
Figure 1). Each of the two lines forms a 1-dimensional
correlation cluster. On the other hand the plane is a
2-dimensional correlation cluster that includes the two
1-dimensional correlation clusters. In order to detect
the lines, one has to search for 1-dimensional correla-
tion clusters, whereas in order to detect the plane, one
has to search for 2-dimensional correlation clusters.

None of the previously proposed algorithms for cor-
relation clustering is able to detect hierarchies of cor-
relation clusters. Therefore, in this paper we pro-
pose HiCO (Hierarchical Correlation Ordering), a new
algorithm for searching simultaneously for correla-
tion clusters of arbitrary dimensionality and detect-
ing hierarchies of correlation clusters. Additionally,
HiCO overcomes another drawback of the existing non-
hierarchical correlation clustering methods like 4C and
ORCLUS, since HiCO does not require the user to de-
fine critical parameters that limit the quality of clus-
tering such as a density threshold or the number of
clusters in advance.

The remainder of this paper is organized as follows:
Section 2 introduces the related work. Section 3 ex-
plains the necessary preliminaries to be performed be-
fore applying our new algorithm HiCO. In section 4
we define the notion of hierarchical correlation clusters
and introduce the algorithm HiCO. Section 5 contains
an extensive experimental evaluation of HiCO. Section
6 concludes the paper.

2. Related Work

As most traditional clustering algorithms usually
fail to detect clusters in high-dimensional data, sev-
eral subspace clustering algorithms have been pro-
posed recently. However, subspace clustering algo-
rithms [3, 1, 13, 10, 5] only find axis parallel projections
of the data. Since the principal axes of correlated data

are arbitrarily oriented, subspace clustering algorithms
are not able to capture local data correlations and find
clusters of correlated objects.

Pattern-based clustering methods [16, 15, 12, 11]
aim at grouping objects that exhibit a similar trend
in a subset of attributes into clusters rather than ob-
jects with low distance. This problem is also known as
co-clustering or biclustering [9, 7]. In contrast to cor-
relation clustering, pattern-based clustering is limited
to a special form of correlation where all attributes
are positively correlated. It does not capture nega-
tive correlations nor correlations where one attribute
is determined by two or more other attributes. Thus,
bi-clustering or pattern-based clustering could be re-
garded as a special case of correlation clustering [6].

ORCLUS [2] integrates PCA into k-means cluster-
ing. In each iteration of the k-means algorithm, the as-
sociation of points to correlation clusters is optimized,
and the correlation clusters are recomputed under the
side condition that the overall average dimensionality
of all hyperplanes associated to the respective correla-
tion clusters corresponds to a user-provided parameter
λ. The resulting correlation clusters are allowed to ex-
ist in arbitrarily oriented subspaces represented by a
set of Eigenvectors. Beside the parameter λ, ORCLUS
requires the user to specify the number of clusters k in
advance. ORCLUS usually has problems with correla-
tion clusters of very different dimensionalities because
the resulting clusters must have dimensionalities near
λ.

4C [6] integrates PCA into DBSCAN [8] and
searches for arbitrary linear correlations of fixed di-
mensionality. The algorithm assigns to each point P a
similarity matrix which is determined from the covari-
ances of the vectors in the neighborhood of P . The
point P is said to be a core point of a correlation
cluster, if the points in its neighborhood form a λ-
dimensional hyperplane where λ is a user-defined pa-
rameter. The neighboring points may also deviate from
the ideal plane up to a certain degree which is also a
user defined parameter. Two correlation core points
are united into a common correlation cluster if the as-
sociated hyperplanes are sufficiently similar. Beside the
dimensionality λ of the computed correlation clusters,
the user must specify additional parameters to define
the minimum density of a cluster. 4C may also miss
important clusters for similar reasons as ORCLUS. In
addition, the global density threshold for correlation
clusters specified by the input parameters is often also
hard to determine since correlation clusters of different
dimensionality will most likely exhibit different densi-
ties.

Quite recently, CURLER, a method to detect arbi-



trary, non-linear correlations, has been proposed [14].
CURLER generates micro-clusters using an EM vari-
ant which are then merged to uncover correlation clus-
ters. CURLER improves over ORCLUS and 4C as the
correlations underlying the clusters are not necessarily
linear. In addition, by merging several clusters accord-
ing to their co-sharing level the algorithm on the one
hand becomes less sensitive to the predefined number
of clusters k. On the other hand, the user becomes
disabled to directly derive a model describing the cor-
relations, since the original k models are no longer per-
sistent in the resulting clustering.

Let us note that none of the proposed approaches to
correlation clustering can detect hierarchies of correla-
tion clusters, i.e. lower-dimensional correlations within
a common higher-dimensional correlation.

3. Preliminaries

To determine how two points are correlated, we in-
troduce in section 4 a special distance measurement
called correlation distance. This measurement is based
on the local correlation dimensionality of a point which
reflects the dimensions having a strong correlation in
the neighborhood of this point. In order to compute
the correlation distance between two points we have to
determine in a preprocessing step for each point P of
the data set:

1. The local covariance matrix ΣP which is the co-
variance matrix of the k nearest neighbors of P .

2. The local correlation dimensionality λP which in-
dicates the highly correlated dimensions in the k
nearest neighbors of P .

3. The local correlation similarity matrix M̂P which
is used to compute the local correlation distance
between two points.

In the following, D denotes a set of points and dist
is the Euclidean distance function.

Definition 1 (local covariance matrix)
Let k ∈ N, k ≤ |D|. The local covariance matrix ΣP

of a point P ∈ D w.r.t. k is formed by the k nearest
neighbors of P .

Formally1: Let X be the centroid of NN k(P ), then

ΣP =
1

|NN k(P )| ·
∑

X∈NNk(P )

(X − X) · (X − X)T

1Note that we use column vectors by convention. Therefore,
(X − X) · (X − X)T is not the inner (scalar) product but the
outer product constructing a d × d matrix.

Since the local covariance matrix ΣP of a point P
is a square matrix it can be decomposed into the Eigen-
value matrix EP of P and the Eigenvector matrix VP

of P such that ΣP = VP · EP · VT
P .

The Eigenvalue matrix EP is a diagonal matrix
holding the Eigenvalues of ΣP in decreasing order in
its diagonal elements. The Eigenvector matrix VP is
an orthonormal matrix with the corresponding Eigen-
vectors of ΣP .

Unlike in [6] we do not base the local covariance ma-
trix on a range query predicate because for our hierar-
chical clustering method, we do not have a predefined
query radius and there exists no natural choice for such
a radius. Therefore, we prefer to base the local correla-
tion on a certain number k of nearest neighbors which
is more intuitive.

Now we define the local correlation dimensionality of
a point P as the number of dimensions of the (arbitrar-
ily oriented) subspace which is spanned by the major
axes of the k nearest neighbors of P . If, for instance,
the points in a certain region of the data space are
located near by a common line, the correlation dimen-
sionality of these points will be 1. That means we have
to determine the principal components of the points in
NN k(P ). The Eigenvector associated with the largest
Eigenvalue has the same direction as the first principal
component, the Eigenvector associated with the second
largest Eigenvalue determines the direction of the sec-
ond principal component and so on. The sum of the
Eigenvalues equals the trace of the square matrix ΣP

which is the total variance of the points in NN k(P ).
Thus, the obtained Eigenvalues are equal to the vari-
ance explained by each of the principal components,
in decreasing order of importance. The correlation di-
mensionality of a point P is now defined as the smallest
number of Eigenvectors explaining a portion of at least
α of the total variance of the k nearest neighbors of P :

Definition 2 (local correlation dimensionality)
Let α ∈]0, 1[. Then the local correlation dimension-
ality λP of a point P is the smallest number r of
Eigenvalues ei in the d × d Eigenvalue matrix EP for
which ∑r

i=1 ei∑d
i=1 ei

≥ α

We call the first λp Eigenvectors of VP strong
Eigenvectors, the other Eigenvectors are called weak.

Typically α is set to values between 0.80 and 0.90,
e.g. α = 0.85 denotes that the obtained principal com-
ponents explain 85% of the total variance. In the fol-
lowing we denote the λP -dimensional subspace which



is spanned by the major axes of the neighborhood of
P the correlation hyperplane of P .

In the third step of the preprocessing phase we asso-
ciate each point with a so-called local similarity matrix
which is used to compute the local correlation distance
to another point of the data set. The local similarity
matrix can be derived from the local covariance matrix
in the following way:

Definition 3 (local correlation similarity matrix)
Let point P ∈ D, VP the corresponding d × d Eigen-
vector matrix of the local covariance matrix ΣP of P ,
and λP the local correlation dimensionality of P . The
matrix ÊP with entries êi (i = 1, . . . , d) is computed
according to the following rule:

êi =
{

0, if i ≤ λP

1, otherwise

The matrix M̂P = VP ÊP VT
P is called the local corre-

lation similarity matrix of P .

Definition 4 (local correlation distance)
The local correlation distance of point P to point Q
according to the local correlation similarity matrix M̂P

associated with point P is denoted by

LocDistP(P, Q) =
√

(P − Q)T · M̂P · (P − Q).

LocDistP(P, Q) is the weighted Euclidean distance
between P and Q using the local correlation similarity
matrix M̂P as weight. The motivation for the adapta-
tion of M̂P is that the original local covariance matrix
ΣP has two undesirable properties: (1) It corresponds
to a similarity measure and to an ellipsoid which is ori-
ented perpendicularly to the major axes in the neigh-
borhood of P . This would result in high distances to
points lying within or nearby the subspace of the major
axes and in low distances to points lying outside. Ob-
viously, for detecting correlation clusters we need quite
the opposite. (2) The Eigenvalues vary with the data
distribution, so some points P may have higher Eigen-
values in EP than others and this would lead to incom-
parably weighted distances. Thus, to compute compa-
rable local correlation distances an inversion and a scal-
ing of the Eigenvalues has to be performed. Intuitively
spoken, the local correlation distance LocDistP(P, Q)
equals the Euclidean distance between Q and the cor-
relation hyperplane exhibited by the neighbors of P .
Thus, if Q lies within the correlation hyperplane of P
then LocDistP(P, Q) = 0.

We call the matrix Ê the selection matrix of the
weak Eigenvectors because VP · Ê provides a matrix
containing only weak Eigenvectors. We will later also

use another matrix ĚP = Id×d − ÊP where the 0 and
1-entries of the diagonal elements are changed. We call
this matrix Ě the selection matrix of the strong Eigen-
vectors since VP · Ě provides a matrix containing only
strong Eigenvectors. The selection matrices ÊP and
ĚP only depend on the local correlation dimensional-
ity λP : ÊP is a d × d diagonal matrix where the first
λP diagonal elements are 0 and the remaining d − λP

diagonal elements are 1 (and vice versa for ĚP ).
Note that the local correlation distance is not yet

the similarity measure which is directly used in our hi-
erarchical clustering algorithm. It is merely a construc-
tion element for the actual correlation distance measure
which will be defined in the following section.

4. Hierarchical Correlation Clusters

Hierarchical clustering methods in general are able
to find hierarchies of clusters which are nested into each
other, i.e. weaker clusters in which some stronger clus-
ters are contained. The hierarchical density based clus-
tering method OPTICS, for example, is able to detect
clusters of higher density which are nested in clusters
of lower but still high density.

The task of correlation clustering as defined in [6] is
to group those points of a data set into same clusters
where the correlation is uniform. Our general idea is
to evaluate the correlation between two points with
a special distance measure called correlation distance.
This distance results in a small value whenever many
attributes are highly correlated in the neighborhood of
the two points. In contrast, the correlation distance is
high if only a few attributes are highly correlated or
the attributes are not correlated at all. Therefore, our
strategy is to merge those points into common clusters
which have small correlation distances. A hierarchy
of correlation clusters means that clusters with small
correlation distances (e.g. lines) are nested in clusters
with higher correlation distances (e.g. 2d-planes).

4.1. Main Concepts of HiCo

Once we have associated the points of our database
with a local correlation dimensionality and with a
decomposed local similarity matrix, we can now ex-
plain the main idea of our hierarchical clustering algo-
rithm. Conventional hierarchical clustering algorithms
like SLINK or OPTICS without the idea of correla-
tion work as follows: They keep two separate sets of
points, points which have already been placed in the
cluster structure and those which have not. In each
step, one point of the latter set is selected and placed
in the first set. The algorithm always selects that point
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which minimizes the distance to any of the points in
the first set. By this selection strategy, the algorithm
tries to extend the current cluster hierarchy as close to
the bottom of the hierarchy as possible.

We will adapt this paradigm. In the context of
hierarchical correlation clustering, the hierarchy is a
containment hierarchy of the correlation primitives.
Two or more correlation lines may together form a
2-dimensional correlation plane and so on. We sim-
ulate this behavior by defining a similarity measure
between points which assigns a distance of 1, if these
two points (together with their associated similarity
matrices) share a common correlation line. If they
share a common correlation plane, they have a dis-
tance of 2, etc. Sharing a common plane can mean
different things: Both points can be associated to a
2-dimensional correlation plane and the planes are the
same, or both points can be associated to 1-dimensional
correlation lines and the lines meet at some point or are
parallel (but not skew).

If we associate a pair of points with a distance mea-
sure with the properties mentioned before, we can gen-
erally use the well-known hierarchical clustering algo-
rithms. Intuitively, the distance measure between two
points corresponds to the dimensionality of the data
space which is spanned by the strong Eigenvectors of
the two points. By the notion spanning a space we
do not mean spanning in the algebraic sense of linear
independence which considers two vectors to span a 2-
dimensional space even if they have only a minimal dif-
ference of orientation. In our context, a vector q adds
a new dimension to the space spanned by a set of vec-
tors {p1, . . . , pn} if the “difference” between q and the
space spanned by {p1, . . . , pn} is substantial, i.e. if it
exceeds the threshold parameter ∆. This is illustrated
in Figure 2: the space spanned by {q1} ∪ {p1} is con-
sidered to be the same as the space spanned by p1 only.
On the other hand, the set of vectors {q2} ∪ {p1} span
a 2-dimensional space, as the “difference” between q2

and p1 exceeds ∆.
We first give a definition of the correlation dimen-

sionality of a pair of points λ(P, Q) which follows the
intuition of the spanned space. Later we will give a

method for computing this dimensionality efficiently,
given the local Eigenvector matrices and the local cor-
relation dimensionalities of P and Q, respectively. The
correlation dimensionality is the most important com-
ponent of our correlation similarity measure which will
later be extended a little bit one more time.

Definition 5 (correlation dimensionality)
The correlation dimensionality between two points
P, Q ∈ D, denoted by λ(P, Q), is the dimensionality of
the space which is spanned by the union of the strong
Eigenvectors associated to P and the strong Eigenvec-
tors associated to Q.

If we would like to determine the correlation dimen-
sionality of two points P and Q in a strong algebraic
sense, we would have to look exactly for the linearly
independent vectors in the union of the strong Eigen-
vectors of P and Q. These n vectors form a basis of the
n-dimensional subspace spanned by the strong Eigen-
vectors of P and Q. Note that we are not interested in
the spanned space in the strong algebraic sense. That
means we are not looking for vectors that are linearly
independent in strict algebraic sense but only for those
vectors that are linearly independent in our relaxed
notion as mentioned above in order to allow a certain
degree of jitter of data points around a perfect hyper-
plane.

An obvious idea for computing the correlation di-
mensionality of a pair of objects is to compare the
strong Eigenvectors pi ∈ VP ·ĚP and qi ∈ VQ ·ĚQ in a
one-by-one fashion. However, two vector pairs {p1, p2}
and {q1, q2} can be linearly dependent although each
vector is independent from each of the other three vec-
tors.

We can test one of the strong Eigenvectors, say p1 ∈
VP ·ĚP whether or not it is linearly independent (in our
relaxed sense) to all the strong Eigenvectors qi ∈ VQ ·
ĚQ by substituting it into the local similarity matrix
of Q, i.e. by testing: pT

1 · M̂Q · p1 > ∆2.
If this comparison holds then we know that p1 opens

up a new dimension compared to Q, and that the corre-
lation dimensionality λ(P, Q) is at least (λQ + 1). But
if we test a second vector p2 ∈ VP · ĚP we still have
the problem that p2 can be linearly dependent from
VQ · ĚQ

⋃{p1} without being linearly dependent from
any vector in VQ · ĚQ and {p1} alone. This problem
is visualized in Figure 3. The strong Eigenvectors p1

and p2 of P (depicted in dashed lines) are each lin-
early independent from the strong Eigenvectors q1 and
q2 of Q (depicted in solid lines) and by definition also
linearly independent from each other (they are even or-
thogonal). However, p2 is linearly dependent from the
vectors in VQ · ĚQ

⋃{p1}.
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Figure 3. Two points with their Eigenvectors.

Therefore, before testing p2, we have to integrate
p1 temporarily into the Eigenvector matrix VQ (but
only if p1 indeed opens up a new dimension). To do
so, we have to replace temporarily the weak Eigenvec-
tor qλQ+1 by the new strong Eigenvector p1 and then
orthonormalize the resulting matrix.

To orthonormalize the set of vectors {q1, . . . , qλQ
, p1,

qλQ+2, . . . , qd} the following steps have to be applied
according to the method of Gram-Schmitt: Note that
the vector qλQ+1 is temporarily replaced by vector p1,
i.e. qλQ+1 = p1.

1. xi := qi −
∑i−1

k=1〈qk, qi〉qk for i = λQ + 1, . . . , d

2. qi := xi

||xi|| for i = λQ + 1, . . . , d

The resulting vectors {q1, . . . , qd} build now again
an orthonormal basis of the d-dimensional feature
space.

We have to make (d−λQ) vectors orthogonal which
causes some problems because (1) we have to guaran-
tee the linear independence (this time in the strong
algebraic sense) of the remaining Eigenvectors in VQ

because, otherwise, orthonormalization could fail. (2)
The effort is considerable high because this orthonor-
malization (which is in O(d2)) must be performed every
time a new vector is integrated into VQ. Therefore, our
actual algorithm computes the test pT

i ·(VQ ·ÊQ ·VT
Q) ·

pi > ∆2 in an indirect way by replacing Ê by Ě which
will yield the advantage that less vectors (one instead
of up to d vectors) have to be orthonormalized. The
justification for the indirect computation is given by
the following lemma:

Lemma 1 (Indirect Similarity Computation)
Let V be an orthonormal matrix consisting of the
strong Eigenvectors of ΣQ, some of the added and or-
thonormalized Eigenvectors of ΣP and the remaining
orthonormalized weak Eigenvectors of ΣQ. Than

xT · (V · Ê · VT) · x = xT · x − xT · (V · Ě · VT) · x
Proof.

xT · (V · Ê · VT) · x = xT · (V · (I − Ě) · VT) · x =
xT · (V · I · VT) · x − xT · (V · Ě · VT) · x =

xT · x − xT · (V · Ě · VT) · x

The advantage of this computation is that now in
the joint matrix M̌Q = VQ · ĚQ ·VT

Q the weak Eigen-
vectors qm for m > λQ are not considered. Keeping the
weak Eigenvectors orthonormal after every insertion of
a new strong Eigenvector of ΣP causes the main effort
in orthonormalization: With direct computation, up to
d vectors have to be orthonormalized after each inser-
tion. Therefore, the overall complexity is O(d2) per in-
sertion. Using the indirect computation it is sufficient
to orthonormalize only the inserted vector which can
be done in O(d) time. Note also that in this case the
linear independence of the vector to be orthonormal-
ized to the strong Eigenvectors in VQ is given, because
this vector is even linear independent in our relaxed
sense (and linear independency in weak sense implies
linear independency in strict sense).

The algorithm for computing the correlation dis-
tance is presented in Figures 4 and 5. First, the correla-
tion dimensionality λ(P, Q) for a pair of points (P, Q) is
derived as follows: For each of the strong Eigenvectors
qi of Q test whether qT

i ·qi−qT
i ·(VP ·ĚP ·VT

P )·qi > ∆2.
If so, increase λP by one and set pλP

to the orthonor-
malized vector of qi. Finally, λP (Q) contains the corre-
lation dimensionality of the point pair (P, Q) w.r.t. P .
In an analogue way λQ(P ) is derived for the same point
pair. The overall correlation dimensionality λ(P, Q) is
the maximum of both, λP (Q), and λQ(P ). λ(P, Q) is
now the major building block for our correlation dis-
tance. As λ(P, Q) ∈ N, many distances between dif-
ferent point pairs are identical. Therefore, there are
many tie situations during clustering. We resolve these
tie situations by additionally considering the Euclidean
distance as a secondary criterion. This means, inside
a correlation cluster (if there are no nested stronger
correlation clusters), the points are clustered as by a
conventional hierarchical clustering method. Formally
we define:

Definition 6 (correlation distance)
The correlation distance between two points P, Q∈D,
denoted by CDist(P ,Q), is a pair consisting of the
correlation dimensionality of P and Q and the Eu-
clidean distance between P and Q, i.e. CDist(P, Q) =
(λ(P, Q), dist(P, Q)).

We say CDist(P, Q) ≤ CDist(R, S) if one of the
following conditions hold:

(1) λ(P, Q) < λ(R, S),

(2) λ(P, Q) = λ(R, S) and dist(P, Q) ≤ dist(R, S).



function correlationDistance(P , Q, ∆)

compute ĚP from ÊP ;
VP = Eigenvector matrix of P ;
λP = correlation dimensionality of P ;

compute ĚQ from ÊQ;
VQ = Eigenvector matrix of Q;
λQ = correlation dimensionality of Q;

for each strong Eigenvector qi ∈ VQ do
if qT

i qi − qT
i VP ĚP VT

P qi > ∆2 then
adjust(VP , ĚP , qi, λP );
λP = λP + 1;

for each strong Eigenvector pi ∈ VP do
if pT

i pi − pT
i VQĚQVT

Qpi > ∆2 then
adjust(VQ, ĚQ, pi, λQ);
λQ = λQ + 1;

CDist = max(λP , λQ);
return (CDist, distEuclid(P, Q));

Figure 4. Pseudocode correlation distance.

procedure adjust(V, Ě, x, λ)

// set column (λ + 1) of matrix V to vector x
vλ+1 := x;
for each strong Eigenvector vi ∈ V do

vλ+1 := vλ+1 − 〈vi, x〉 · vi

vλ+1 :=
vλ+1

||vλ+1|| ;

set column (λ+1) of Ě to the (λ+1)-th unit vector;

Figure 5. Pseudocode orthonormalization.

algorithm HiCO(D, k, µ, α, ∆)

for each P ∈ D do
compute ÊP ,VP ;

// priority queue pq is ordered by CReachµ

for each P ∈ D do
P .CReach = ∞;
insert P into pq;

while pq �= ∅ do
O := pq.next();
R := µ-nearest neighbor if O;
for each P ∈ pq do

new cr := max(CDist(O, R),CDist(O, P ));
pq.update(P , new cr);

Figure 6. Pseudocode HiCO algorithm.

4.2. Algorithm HiCO

Using the correlation distance defined above as a
distance measure, we can basically run every hierar-
chical (or even non-hierarchical) clustering algorithm
which is based on distance comparisons. Examples for

such algorithms are Single-Link, Complete-Link, and
the density-based clustering methods DBSCAN (non-
hierarchical) and OPTICS. Since OPTICS is hierar-
chical and more robust w.r.t. noise than Single- and
Complete-Link, we use the algorithmic schema and vi-
sualization technique of OPTICS for HiCO.

As suggested in [4] we introduce a smoothing fac-
tor µ to avoid the Single-Link effect and to achieve
robustness against noise points. Thus, instead of using
the correlation distance CDist(P, Q) to measure the
similarity of two points P and Q we use the correla-
tion reachability CReachµ(O, P ) to compare these two
points. The correlation reachability of a point P rela-
tive from a point O is defined as the maximum value of
the correlation distance from O to its µ-nearest neigh-
bor and the correlation distance between P and O.

Definition 7 (correlation reachability)
For µ ∈ N, µ ≤ |D| let R be the µ-nearest neighbor of
O ∈ D w.r.t. the correlation distance. The correlation
reachability of a point P ∈ D relative from point O
w.r.t. µ ∈ N is defined as

CReachµ(O, P ) = max(CDist(O, R),CDist(O, P ))

Using this correlation reachability, HiCO computes
a “walk” through the data set and assigns to each
point O its smallest correlation reachability with re-
spect to a point considered before O in the walk. In
each step of the algorithm HiCO selects that point O
having the minimum correlation reachability to any al-
ready processed point. This process is managed by a
seed list which stores all points that have been reached
from already processed points sorted according to the
minimum correlation reachabilities. A special order of
the database according to its correlation-based cluster-
ing structure is generated, the so-called cluster order,
which can be displayed in a correlation reachability dia-
gram. Such a correlation reachability diagram consists
of the reachability values on the y-axis of all points,
plotted in the order which HiCO produces on the x-
axis. The result is a visualization of the clustering
structure of the data set which is very easy to under-
stand. The “valleys” in the plot represent the clusters,
since points within a cluster typically have lower cor-
relation reachabilities than points outside a cluster.

The complete integration of our distance measure
into the algorithm HiCO can be seen in Figure 6.

4.3. Runtime Complexity

Let n be the number of data points and d be the di-
mensionality of the data space. In the preprocessing
step the correlation neighborhoods are precomputed



Figure 7. 3D synthetic data set (DS1).

which requires O(nd+kd2) for the determination of the
covariance matrix. Since this is done for each object in
the data set and k < n, we have a runtime complexity
of O(n2d2) for the preprocessing step. During the run
of HiCO, we have to evaluate for each pair of points
of the database its correlation dimensionality. This re-
quires again a complexity of O(n2d2). In addition, we
have to decompose the covariance matrix of each point
into the Eigenvalue matrix and the Eigenvector ma-
trix. This step has a complexity of O(nd3). Thus, the
overall runtime complexity of HiCO is O(n2d2 + nd3).

5. Experimental Evaluation

5.1. Data Sets

For our experiments, we used several synthetic data
sets containing points marked with cluster labels that
represent the hierarchical clustering structure. In ad-
dition, we used four real-world data sets. The first one,
called “DS2”, is a data set derived from a medical study
to develop screening methods in order to identify carri-
ers of a rare genetic disorder. Four measurements were
made on blood samples of approximately 150 people
who do not suffer from the disease and on 50 carriers
of the disease.

As a second data set we used the “El Nino” data,
a benchmark data set from the UCI KDD Archive2.
The data set called “DS3” contains oceanographic and
surface meteorological readings taken from a series of
buoys positioned throughout the equatorial Pacific. It
contains approximately 800 9D objects. The third data
set called “DS4” consists of approximately 550 11D
observations from the 1985 Current Population Sur-
vey3. The fourth data set called “DS5” consists of
the concentrations of 43 metabolites in 2,000 newborns.
The newborns were labeled according to some specific
metabolic diseases.

2http://kdd.ics.uci.edu/
3http://lib.stat.cmu.edu/datasets/CPS_85_Wages

5.2. Results on Synthetic Data

We applied HiCO to several synthetic data sets. In
the following, we focus on the 3-dimensional data set
“DS1” depicted in Figure 7. It contains a hierarchy
of correlation clusters consisting of two 1D correla-
tions (lines) belonging to a 2D correlation (plane) and
noise. The correlation reachability distance diagram
computed by HiCO is shown in Figure 8(a). As it can
be observed, HiCO detects two 1D correlation clusters
that are embedded within a 2D correlation cluster. Ad-
ditionally, some objects have a correlation distance of
3 (which equals the data dimensionality), i.e. they can
be regarded as noise. We analyzed the “valleys” in the
correlation reachability diagram marked with “Cluster
1”, “Cluster 2”, and “Cluster 3”. The points that are
clustered together in that correlation clusters are de-
picted in Figures 8(b), 8(c), and 8(d). As it can be
seen, the correlation plane “Cluster 3” corresponds to
the 2D correlation cluster in the diagram, whereas the
two correlation lines “Cluster 1” and “Cluster 2” ex-
actly correspond to the 1D correlation sub-clusters of
“Cluster 3” in the diagram. Obviously, HiCO detects
the hidden correlation hierarchy exactly.

For comparison, we applied ORCLUS, OPTICS and
4C on the same datasets, but none of them were able to
find the correlation clusters equally well, despite rea-
sonable parameter settings. For ORCLUS we choose
e.g. k = 3 and l = 2, but as it can be seen in Figure 9,
ORCLUS was not able to find the correlation clusters
hidden in the synthetic 3D data set.

We also applied OPTICS to the synthetic 3D data
set (cf. Figure 10). OPTICS detected a hierarchy of
clusters according to its density based paradigm, but
it was not able to separate the correlation within these
clusters.

Figure 11 shows the results of two 4C runs with dif-
ferent parameter settings. As parameter λ was set to
one in the first run, 4C detected four 1-dimensional
clusters consisting of the two lines in the synthetic 3D
data set (cf. Figure 11(a)), but 4C failed to detect the
2-dimensional correlations. According to the parame-
ter setting of λ = 2 in the second run, 4C found one
2-dimensional correlation cluster consisting of the two
lines and the plane (cf. Figure 11(b)). In both runs,
4C was not able to detect all three correlation clusters
as HiCO did.

5.3. Real-world Data

The results of HiCO applied to the real-world data
sets are shown in Figure 12. Applied to the DS2 data
(cf. Figure 12(a)), HiCO found a cluster with cor-
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Figure 8. Results of HiCO applied to DS1 (Parameters: µ = k = 20, α = 0.90, ∆ = 0.05).

(a) Cluster 1. (b) Cluster 2. (c) Cluster 3.

Figure 9. Results of ORCLUS applied to DS1 (Parameters: k = 3, l = 2).
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(a) Reachability plot. (b) Cluster 1. (c) Cluster 2.

Figure 10. Results of OPTICS applied to DS1 (Parameters: ε = 1, minPts = 20).
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(a) Parameters: λ=1,
ε=0.1, µ=20, δ=0.2.

Cluster 1

(b) Parameters: λ=2,
ε=0.25, µ=20, δ=0.1.

Figure 11. Results of 4C applied to DS1.

relation dimensionality of 2 embedded in a larger 3-
dimensional correlation cluster. The cluster with a cor-
relation dimensionality of 2 mostly consists of carriers

of the genetic disorder. Most of the people not suffering
from the disease belong to the cluster with a correlation
dimensionality of 3.

The resulting reachability diagram of HiCO applied
on data set DS3 is depicted in Figure 12(b). As it can
be seen, the hierarchy contains a 1-dimensional correla-
tion cluster and four 2-dimensional clusters. Analyzing
these clusters, we found that the observations belong-
ing to these clusters were mostly made from neighbored
buoys.

The result of HiCO on DS4 is depicted in Figure
12(c). We can observe a strong hierarchy of correla-
tion clusters. HiCO computed four 2-dimensional cor-
relation clusters embedded in a 3-dimensional correla-
tion cluster which is again embedded in a 4-dimensional
cluster. The hierarchy ends up with 5-dimensional and
6-dimensional clusters. The first of the 2-dimensional



(a) DS2 (µ=10, k=25). (b) DS3 (µ=15, k=40). (c) DS4 (µ=10, k=40).
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(d) DS5 (µ=10, k=100).

Figure 12. Results of HiCo on real-world data sets (Parameters: ∆ = 0.25, α = 0.8).

clusters consists only of white married women, living
not in the southern states of the USA and not be-
longing to any union. To the second 2-dimensional
cluster male persons with the same attributes as the
women in the first cluster have been assigned. The
third 2-dimensional cluster consists of unmarried white
women being no union member and living in the north-
ern states. And last but not least people belonging
to the fourth 2-dimensional cluster have the same at-
tributes as the third cluster but being men instead of
women. Obviously, HiCO computed pure correlation
clusters on this data set.

Finally, HiCO retrieved on DS5 7-dimensional and
8-dimensional correlation clusters embedded in higher
dimensional clusters (cf. Figure 12(d)). These clus-
ters of relative low dimensionality consist only of new-
borns suffering from phenylketonuria (PKU), while the
healthy newborns are grouped in the clusters of higher
dimensionality.

To summarize, our experiments show that HiCO de-
tects several interesting correlation cluster hierarchies
in real-world data sets.

6. Conclusions

In this paper, we have proposed HiCO, the first algo-
rithm for computing hierarchies of correlation clusters,
i.e. lower dimensional correlations embedded within
larger dimensional correlation clusters. In contrast to
existing approaches, our method does not require the
user to specify any global density threshold, the num-
ber of clusters to be found, nor any parameter spec-
ifying the dimensionality of the correlations. Our ex-
tensive experimental evaluation shows that HiCO finds
meaningful and rich hierarchies of correlation clusters
in synthetic and real-world data sets.
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puting clusters of correlation connected objects. In
Proc. SIGMOD, 2004.

[7] Y. Cheng and G. M. Church. Biclustering of expres-
sion data. In Proc. ISMB, 2000.

[8] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in
large spatial databases with noise. In Proc. KDD,
1996.

[9] J. A. Hartigan. Direct clustering of a data matrix.
JASA, 67(337):123–129, 1972.

[10] K. Kailing, H.-P. Kriegel, and P. Kröger. Density-
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