
Density-Based Data Analysis and Similarity
Search

Hans-Peter Kriegel, Stefan Brecheisen, Peer Kröger, Martin Pfeifle, Matthias
Schubert, and Arthur Zimek

Department “Institute for Informatics”, University of Munich
Oettingenstr. 67, 80538 Munich, Germany

{kriegel,brecheis,kroegerp,pfeifle,schubert,zimek}@dbs.ifi.lmu.de

Abstract. Similarity search in database systems is becoming an increas-
ingly important task in modern application domains such as multimedia,
molecular biology, medical imaging, computer aided engineering, market-
ing and purchasing assistance as well as many others. Furthermore, the
feature transformations and distance measures used in similarity search
build the foundation of sophisticated data analysis and mining tech-
niques. In this chapter, we show how visualizing cluster hierarchies de-
scribing a database of objects can aid the user in the time consuming
task to find similar objects and discover interesting patterns. We present
related work and explain its shortcomings which led to the development
of our new methods. Based on reachability plots, we introduce methods
for visually exploring a data set in multiple representations and compar-
ing multiple similarity models. Furthermore, we present a new method
for automatically extracting cluster hierarchies from a given reachability
plot which allows a user to browse the database for similarity search. We
integrated our new method in a prototype which serves two purposes,
namely visual data analysis and a new way of object retrieval called
navigational similarity search.

1 Introduction

In recent years, an increasing number of database applications has emerged for
which efficient and effective similarity search and data analysis is substantial.
Important application areas are multimedia, medical imaging, molecular biology,
computer aided engineering, marketing and purchasing assistance, etc. [1–8]. In
these applications, there usually exist various feature representations and similar-
ity models that can be used to retrieve similar data objects or derive interesting
patterns from a given database. Hierarchical clustering was shown to be effective
for evaluating similarity models [9, 10]. Especially, the reachability plot gener-
ated by OPTICS [11] is suitable for assessing the quality of similarity models
and compare the meaning of different representations to each other. To further
extract patterns and allow new methods of similarity search, cluster extraction
algorithms can extract cluster hierarchies representing a concrete categorization
of all data objects.

brecheis
In: Petrushin V. A., Khan L. (eds.): Multimedia Data Mining and Knowledge Discovery, pp. 94–115, 2006. © Springer-Verlag London Ltd 2006

In this chapter, we present methods that employ hierarchical clustering and
visual data mining techniques to fulfill various tasks for comparing and evaluat-
ing distance models and feature extractions methods. Furthermore, we introduce
an algorithm for automatically detecting hierarchical clusters and use this hier-
archy for navigational similarity search. In ordinary similarity search systems,
a user is usually obliged to provide an example query object to which the re-
trieved database objects should be similar. In contrast, navigational similarity
search allows a user to browse the database using the extracted cluster hier-
archy to navigate between groups of similar objects. In order to evaluate our
ideas, we developed a research prototype. Its basic functionality is to display the
cluster structure of a given data set and to allow navigational similarity search.
Furthermore, we integrated two components called VICO and CLUSS. VICO
(VI sually Connected Object Orderings) is a tool for evaluating and comparing
feature representations and similarity models. The idea of VICO is to compare
multiple reachabilty plots of one and the same data set. CLUSS (CLU ster Hier-
archies for S imilarity Search) is an alternative hierarchical clustering algorithm
which was especially developed to generate cluster hierarchies being well suited
for navigational similarity search.

To sum up, the main topics of this chapter are as follows:

– We describe methods for evaluating data representations and similarity mod-
els. Furthermore, we sketch possibilities to visually compare these represen-
tations and models.

– We present an alternative approach to the retrieval of similar objects, called
navigational similarity search. Unlike conventional similarity queries, the
user does not need to provide a query object but can interactively browse
the data set.

– We introduce a new cluster recognition algorithm for the reachability plots
generated by OPTICS. This algorithm generalizes all the other known clus-
ter recognition algorithms for reachability plots. Although our new algorithm
does not need a sophisticated and extensive parameter setting, it outperforms
the other cluster recognition algorithms w.r.t. quality and number of recog-
nized clusters and subclusters. The derived cluster hierarchy enables us to
employ OPTICS for navigational similarity search.

– We introduce an alternative method for generating cluster hierarchies which
provides a more intuitive access to the database for navigational similarity
search. The advantage of this method is that each of the derived clusters is
described by a set of well selected representative objects giving the user a
better impression of the objects contained in the cluster.

The remainder of the chapter is organized as follows: We briefly introduce
the clustering algorithm OPTICS in Section 2. In Section 3, we present the
main application areas of our new methods for data analysis and navigational
similarity search. Section 4 introduces a novel algorithm for extracting cluster
hierarchies, together with an experimental evaluation. An alternative way to
derive cluster hierarchies for navigational similarity search is presented in Section
5. The chapter concludes in Section 6 with a short summary.

2 Hierarchical Clustering

In the following, we will briefly review the hierarchical density-based cluster-
ing algorithm OPTICS which is the foundation of the majority of the methods
described in this chapter.

The key idea of density-based clustering is that for each object o of a cluster
the neighborhood Nε(o) of a given radius ε has to contain at least a minimum
number MinPts of objects. Using the density-based hierarchical clustering algo-
rithm OPTICS yields several advantages due to the following reasons:

– OPTICS is – in contrast to most other algorithms – relatively insensitive to
its two input parameters, ε and MinPts. The authors in [11] state that the
input parameters just have to be large enough to produce good results.

– OPTICS is a hierarchical clustering method which yields more information
about the cluster structure than a method that computes a flat partitioning
of the data (e.g. k-means [12]).

– There exists a very efficient variant of the OPTICS algorithm which is based
on a sophisticated data compression technique called “Data Bubbles” [13],
where we have to trade only very little quality of the clustering result for a
great increase in performance.

– There exists an efficient incremental version [14] of the OPTICS algorithm.

OPTICS emerges from the algorithm DBSCAN [15] which computes a flat
partitioning of the data. The clustering notion underlying DBSCAN is that of
density-connected sets (cf. [15] for more details). It is assumed that there is a
metric distance function on the objects in the database (e.g. one of the Lp-norms
for a database of feature vectors).

In contrast to DBSCAN, OPTICS does not assign cluster memberships but
computes an ordering in which the objects are processed and additionally gen-
erates the information which would be used by an extended DBSCAN algorithm
to assign cluster memberships. This information consists of only two values for
each object, the core-distance and the reachability-distance.

Definition 1 (core-distance). Let o ∈ DB, MinPts ∈ N, ε ∈ R, and MinPts-
dist(o) be the distance from o to its MinPts-nearest neighbor. The core-distance
of o w.r.t. ε and MinPts is defined as follows:

Core-Dist(o) :=
{
∞ if |Nε(o)| < MinPts
MinPts-dist(o) otherwise.

Definition 2 (reachability-distance). Let o ∈ DB, MinPts ∈ N and ε ∈ R.
The reachability distance of o w.r.t. ε and MinPts from an object p ∈ DB is
defined as follows:

Reach-Dist(p, o) := max (Core-Dist(p), distance(p, o)).

core-distance(o)
reachability-distance(o,p)
reachability-distance(o,q)

o

pq

MinPts = 5

Fig. 1. Illustration of core-level and reachability-distance.

Figure 1 illustrates both concepts: The reachability-distance of p from o
equals to the core-distance of o and the reachability-distance of q from o equals
to the distance between q and o.

The original output of OPTICS is an ordering of the objects, a so called
cluster ordering :

Definition 3 (cluster ordering). Let MinPts ∈ N, ε ∈ R, and CO be a totally
ordered permutation of the database objects. Each o ∈ D has additional attributes
o.P , o.C and o.R, where o.P ∈ {1, . . . , |CO|} symbolizes the position of o in
CO. We call CO a cluster ordering w.r.t. ε and MinPts if the following three
conditions hold:

(1) ∀p ∈ CO : p.C = Core-Dist(p)
(2) ∀o, x, y ∈ CO :

o.P < x.P ∧ x.P < y.P ⇒ Reach-Dist(o, x) ≤ Reach-Dist(o, y)
(3) ∀p, o ∈ CO : R(p) = min{Reach-Dist(o, p) | o.P < p.P}, where min ∅ =

∞.

Intuitively, Condition (2) states that the order is built on selecting at each posi-
tion i in CO that object o having the minimum reachability to any object before
i. o.C symbolizes the core-distance of an object o in CO whereas o.R is the
reachability-distance assigned to object o during the generation of CO. We call
o.R the reachablity of object o throughout the chapter. Note that o.R is only
well-defined in the context of a cluster ordering.

The cluster structure can be visualized through so called reachability plots
which are 2D plots generated as follows: the clustered objects are ordered along
the x-axis according to the cluster ordering computed by OPTICS and the reach-
abilities assigned to each object are plotted along the abscissa. An example
reachability plot is depicted in Figure 2. Valleys in this plot indicate clusters:
objects having a small reachability value are closer and thus more similar to
their predecessor objects than objects having a higher reachability value.

1

2

A
1

A
2 B

A B

Fig. 2. Reachability plot (right) computed by OPTICS for a sample 2-D data set (left).

The reachability plot generated by OPTICS can be cut at any level εcut

parallel to the abscissa. It represents the density-based clusters according to the
density threshold εcut: A consecutive subsequence of objects having a smaller
reachability value than εcut belongs to the same cluster. An example is presented
in Figure 2: For a cut at the level ε1 we find two clusters denoted as A and B.
Compared to this clustering, a cut at level ε2 would yield three clusters. The
cluster A is split into two smaller clusters denoted by A1 and A2 and cluster B
decreased its size. Usually, for evaluation purposes, a good value for εcut would
yield as many clusters as possible.

3 Application Ranges

The introduced methods combine techniques from hierarchical clustering and
data visualization for two main purposes, data analysis and similarity search. In
the following, we will propose several applications in both areas for which our
introduced methods are very useful.

3.1 Data Analysis

The data analysis part of our prototype is called VICO. It allows a user to cluster
data objects in varying representations and using varying similarity models. The
main purpose of VICO is to compare different feature spaces that describe the
same set of data. For this comparison, VICO relies on the interactive visual
exploration of reachability plots. Therefore, VICO displays any available view
on a set of data objects as adjacent reachability plots and allows comparisons
between the local neighborhoods of each object. Figure 3 displays the main
window of VICO. The left side of the window contains a so-called tree control
that contains a subtree for each view of the data set. In each subtree, the keys
are ordered w.r.t. the cluster order of the corresponding view. The tree control
allows a user to directly search for individual data objects. In addition to the

Fig. 3. VICO displaying OPTICS plots of multi-represented data.

object keys displayed in the tree control, VICO displays the reachability plot of
each view of the data set.

Since valleys in the reachability plot represent clusters in the underlying
representation, the user gets an instant impression of the richness of the cluster
structure in each representation. However, to explore the relationships between
the representations, we need to find out whether objects that are clustered in
one representation are also similar in the other representation. To achieve this
type of comparison, VICO allows the user to select any data object in any
reachability plot or the tree control. By selecting a set of objects in one view,
the objects are highlighted in any other view as well. For example, if the user
looks at the reachability plot in one representation and selects a cluster within
this plot, the corresponding object keys are highlighted in the tree control and
identify the objects that are contained in the cluster. Let us note that it is
possible to visualize the selected objects as well, as long as there is a viewable
object representation. In addition to the information about which objects are
clustered together, the set of objects is highlighted in the reachability plots of
the other representations as well. Thus, we can easily decide whether the objects
in one representation are placed within a cluster in another representation as
well or if they are spread among different clusters or are part of the noise. If
there exist contradicting reachability plots for the same set of data objects, it is
interesting to know which of these representations is closer to the desired notion
of similarity. Thus, VICO allows the user to label data objects w.r.t. predefined
class values. The different class values for the objects are displayed by different

colors in the reachability plot. Thus, a reachability plot of a data space that
matches the user’s notion of similarity should display clusters containing objects
of the same color. Figure 3 displays a comparison of two feature spaces for an
image data set. Each image is labelled w.r.t. the displayed motive.

Another feature of VICO is the ability to handle multi-instance objects. In
a multi-instance representation, one data object is given by a set of separated
feature objects. An example are CAD parts that can be decomposed to a set
of spatial primitives, which can be represented by a single feature vector. This
way, the complete CAD part is represented by a set of feature vectors, which
can be compared by a variety of distance functions. To find out which instances
are responsible for clusters of multi-instance objects, VICO allows us to clus-
ter the instances without considering the multi-instance object they belong to.
Comparing this instance plot to the plot derived on the complete multi-instance
objects allows us to analyze which instance clusters are typical for the clusters
on the complete multi-instance object. Thus, for multi-instance settings, VICO
highlights all instances belonging to some selected multi-instance object. To con-
clude, VICO allows even non-expert users to evaluate similarity models, directly
compares different similarity models to each other, and helps exploring the con-
nection between multi-instance distance functions and the underlying distance
metrics in the feature space of instances.

3.2 Navigational Similarity Search

For similarity search, the idea of our system is to provide navigational access
to a database. This way, it is possible to browse a database of objects in an
explorer-like application, instead of posing separated similarity queries. A main
problem of these similarity queries is that a user always has to provide a query
object to which the retrieved objects should be as similar as possible. However,
in many application scenarios finding a query object is not easy. For example, an
engineer querying a CAD database would have to specify the 3D shape of a CAD
part before finding similar parts. Sketching more complicated parts might cause
a considerable effort. Thus, similarity queries are often quite time-consuming.
The alternative idea of navigational similarity search offers an easier way to re-
trieve the desired objects. The idea is to use an extracted hierarchy of clusters
as a navigation tree. The root represents the complete data set. Each node in
the tree represents a subcluster consisting of a subset of data objects for which
the elements are more similar to each other than in the father cluster. The more
specialized a cluster is the more similar its members are to each other. To de-
scribe the members of a cluster one or more representative objects are displayed.
Browsing starts at a general level. Afterwards, the user follows the path in the
cluster hierarchy for which the displayed representatives resemble the image in
the user’s mind in a best possible way. The browsing terminates when the user
reaches a cluster for which the contained objects match the user’s expectation.
Another advantage of this approach is that the cluster usually contains the com-
plete set of similar objects. For similarity queries, the number of retrieved results
can either be specified in the case of kNN queries or is implicitly controlled by a

specified query range. However, both methods usually do not retrieve all objects
that could be considered as similar.

4 Cluster Recognition for OPTICS

In this section, we address the task of automatically extracting clusters from a
reachability plot. Enhancing the resulting cluster hierarchy with representative
objects for each extracted cluster, allows us to use the result of OPTICS for
navigational similarity search. After a brief discussion of recent work in that
area, we propose a new approach for hierarchical cluster recognition based on
reachability plots called Gradient Clustering.

4.1 Recent Work

To the best of our knowledge, there are only two methods for automatic cluster
extraction from hierarchical representations such as reachability plots or dendro-
grams – both are also based on reachability plots. Since clusters are represented
as valleys (or dents) in the reachability plot, the task of automatic cluster ex-
traction is to identify significant valleys.

The first approach proposed in [11] called ξ-clustering is based on the steep-
ness of the valleys in the reachability plot. The steepness is defined by means
of an input parameter ξ. The method suffers from the fact that this parameter
is difficult to understand and hard to determine. Rather small variations of the
value ξ often lead to drastic changes of the resulting clustering hierarchy. As
a consequence, this method is unsuitable for the purpose of automatic cluster
extraction.

The second approach was proposed by Sander et al. [16]. The authors describe
an algorithm called Tree Clustering that automatically extracts a hierarchical
clustering from a reachability plot and computes a cluster tree. It is based on
the idea that significant local maxima in the reachability plot separate clusters.
Two parameters are introduced to decide whether a local maximum is significant:
The first parameter specifies the minimum cluster size, i.e. how many objects
must be located between two significant local maxima. The second parameter
specifies the ratio between the reachability of a significant local maximum m and
the average reachabilities of the regions to the left and to the right of m. The
authors in [16] propose to set the minimum cluster size to 0.5% of the data set
size and the second parameter to 0.75. They empirically show, that this default
setting approximately represents the requirements of a typical user.

Although the second method is rather suitable for automatic cluster extrac-
tion from reachability plots, it has one major drawback. Many real-world data
sets consist of narrowing clusters, i.e. clusters each consisting of exactly one
smaller subcluster (cf. Figure 4).

Since the Tree Clustering algorithm runs through a list of all local maxima
(sorted in descending order of reachability) and decides at each local maximum
m, whether m is significant to split the objects to the left of m and to the right of

Fig. 4. Sample narrowing clusters: data space (left); reachability plot (middle); cluster
hierarchy (right)

m into two clusters, the algorithm cannot detect such narrowing clusters. These
clusters cannot be split by a significant maximum. Figure 4 illustrates this fact.
The narrowing cluster A consists of one cluster B which is itself narrowing
consisting of one cluster C (the clusters are indicated by dashed lines). The Tree
Clustering algorithm will only find cluster A since there are no local maxima to
split clusters B and C. The ξ-clustering will detect only one of the clusters A, B
or C depending on the parameter ξ but also fails to detect the cluster hierarchy.

A new cluster recognition algorithm should meet the following requirements:

– It should detect all kinds of subclusters, including narrowing subclusters.
– It should create a clustering structure which is close to the one which an

experienced user would manually extract from a given reachability plot.
– It should allow an easy integration into the OPTICS algorithm. We do not

want to apply an additional cluster recognition step after the OPTICS run
is completed. In contrast, the hierarchical clustering structure should be
created on-the-fly during the OPTICS run without causing any noteworthy
additional cost.

– It should be integrable into the incremental version of OPTICS [14], as most
of the discussed application ranges benefit from such an incremental version.

4.2 Gradient Clustering

In this section, we introduce our new Gradient Clustering algorithm which ful-
fills all of the above mentioned requirements. The idea behind the new cluster
extraction algorithm is based on the concept of inflexion points. During the OP-
TICS run, we decide for each point added to the result set, i.e. the reachability
plot, whether it is an inflexion point or not. If it is an inflexion point we might
be at the start or at the end of a new subcluster. We store the possible starting
points of the subclusters in a list, called startPts. This stack consists of pairs

g (x,y)

x y

x.R

y.R

w

−y.R x.R

Fig. 5. Gradient vector g(x, y) of two objects x and y adjacent in the cluster ordering.

(o.P, o.R). The Gradient Clustering algorithm can easily be intergrated into OP-
TICS and is described in full detail, after we have formally introduced the new
concept of inflexion points.

In the following, we assume that CO is a cluster ordering as defined in Def-
inition 3. We call two objects o1, o2 ∈ CO adjacent in CO if o2.P = o1.P + 1.
Let us recall, that o.R is the reachability of o ∈ CO assigned by OPTICS while
generating CO. For any two objects o1, o2 ∈ CO adjacent in the cluster order-
ing, we can determine the gradient of the reachability values o1.R and o2.R. The
gradient can easily be modelled as a 2D vector where the y-axis measures the
reachability values (o1.R and o2.R) in the ordering, and the x-axis represent the
ordering of the objects. If we assume that each object in the ordering is separated
by width w, the gradient of o1 and o2 is the vector

g(o1, o2) =
(

w

o2.R− o1.R

)
.

An example for a gradient vector of two objects x and y adjacent in a cluster
ordering is depicted in Figure 5.

Intuitively, an inflexion point should be an object in the cluster ordering
where the gradient of the reachabilities changes significantly. This significant
change indicates a starting or an end point of a cluster.

Let x, y, z ∈ CO be adjacent, i.e.

x.P + 1 = y.P = z.P − 1.

We can now measure the difference between the gradient vectors g(x, y) and
g(y, z) by computing the cosine of the angle between the vectors g(x, y) and
g(z, y) (= −g(y, z)). The cosine of this angle is equal to −1 if the angle is 180◦,
i.e. the vectors have the same direction. On the other hand, if the gradient vectors
differ a lot, the angle between them will be clearly smaller than 180◦ and thus

n o p
.

a c d x y zwb

cluster ordering

reachability

cluster Dcluster C

cluster B

cluster A

Fig. 6. Illustration of inflexion points measuring the angle between the gradient vectors
of objects adjacent in the ordering.

the cosine will be significantly greater than −1. This observation motivates the
concepts of inflexion index and inflexion points:

Definition 4 (inflexion index). Let CO be a cluster ordering and x, y, z ∈ CO
be objects adjacent in CO. The inflexion index of y, denoted by II(y), is defined
as the cosine of the angle between the gradient vector of x, y (g(x, y)) and the
gradient vector of z, y (g(z, y)), formally:

II(y) = cos ϕ(g(x,y),g(z,y)) =
−w2 + (y.R− x.R)(y.R− z.R)

‖g(x, y)‖ ‖g(z, y)‖
,

where ‖v‖ :=
√

v2
1 + v2

2 is the length of the vector v.

Definition 5 (inflexion point). Let CO be a cluster ordering and x, y, z ∈ CO
be objects adjacent in CO and let t ∈ R. Object y is an inflexion point iff

II(y) > t.

The concept of inflexion points is suitable to detect objects in CO which are
interesting for extracting clusters.

Definition 6 (gradient determinant). Let CO be a cluster ordering and
x, y, z ∈ CO be objects adjacent in CO. The gradient determinant of the gradi-
ents g(x, y) and g(y, z) is defined as

gd(g(x, y), g(z, y)) :=
∣∣∣∣ w −w
x.R− y.R z.R− y.R

∣∣∣∣

algorithm gradient_clustering(ClusterOrdering CO, Integer MinPts, Real t)
startPts := emptyStack;
setOfClusters := emptySet;
currCluster := emptySet;
o := CO.getFirst(); // first object is a starting point
startPts.push(o);

WHILE o.hasNext() DO // for all remaining objects
o := o.next;
IF o.hasNext() THEN

IF II(o) > t THEN // inflexion point
IF gd(o) > 0 THEN

IF currCluster.size() >= MinPts THEN
setOfClusters.add(currCluster);

ENDIF
currCluster := emptySet;
IF startPts.top().R <= o.R THEN

startPts.pop();
ENDIF
WHILE startPts.top().R < o.R DO

setOfClusters.add(set of objects from startPts.top() to last end point);
startPts.pop();

ENDDO
setOfClusters.add(set of objects from startPts.top() to last end point);
IF o.next.R < o.R THEN // o is a starting point

startPts.push(o);
ENDIF

ELSE
IF o.next.R > o.R THEN // o is an end point

currCluster := set of objects from startPts.top() to o;
ENDIF

ENDIF
ENDIF

ELSE // add clusters at end of plot
WHILE NOT startPts.isEmpty() DO

currCluster := set of objects from startPts.top() to o;
IF (startPts.top().R > o.R) AND (currCluster.size() >= MinPts) THEN

setOfClusters.add(currCluster);
ENDIF
startPts.pop();

ENDDO
ENDIF

ENDDO

RETURN setOfClusters;
END. // gradient_clustering

Fig. 7. Pseudo code of the Gradient Clustering algorithm.

If x, y, z are clear from the context, we use the short form gd(y) for the
gradient determinant gd(g(x, y), g(y, z)).

The sign of gd(y) indicates whether y ∈ CO is a starting point or an end
point of a cluster. In fact, we can distinguish the following two cases which are
visualized in Figure 6:

– II(y) > t and gd(y) > 0:
Object y is either a starting point of a cluster (e.g. object a in Figure 6) or
the first object outside of a cluster (e.g. object z in Figure 6).

– II(y) > t and gd(y) < 0:
Object y is either an end point of a cluster (e.g. object n in Figure 6) or the
second object inside a cluster (e.g. object b in Figure 6).

Let us note that a local maximum m ∈ CO which is the cluster separation point
in [16] is a special form of the first case (i.e. II(m) > t and gd(m) > 0).

The threshold t is independent from the absolut reachability values of the
objects in CO. The influence of t is also very comprehensible because if we
know which values for the angles between gradients are interesting, we can easily
compute t. For example, if we are interested in angles < 120◦ and > 240◦ we set
t = cos 120◦ = −0.5.

Obviously, the Gradient Clustering algorithm is able to extract narrowing
clusters. Experimental comparisons with the methods in [16] and [11] are pre-
sented in Section 4.3.

The pseudo code of the Gradient Clustering algorithm is depicted in Figure
7, which works like this. Initially, the first object of the cluster ordering CO is
pushed to the stack of starting points startPts. Whenever a new starting point
is found, it is pushed to the stack. If the current object is an end point, a new
cluster is created containing all objects between the starting point on top of the
stack and the current end point. Starting points are removed from the stack if
their reachablity is lower than the reachability of the current object. Clusters are
created as described above for all removed starting points as well as for the start-
ing point which remains in the stack. The input parameter MinPts determines
the minimum cluster size and the parameter t was discussed above. Finally the
parameter w influences the gradient vectors and proportionally depends on the
reachability values of the objects in CO.

After extracting a meaningful hierarchy of clusters from the reachability plot
of a given data set, we still need to enhance the found clustering with suitable
representations. For this purpose, we can display the medoid of each cluster, i.e.
the object having the minimal average distance to all the other objects in the
cluster.

4.3 Evaluation

Automatic cluster recognition is very desirable when analyzing large sets of
data. In the following, we will first evaluate the quality and then the efficiency
of the three cluster recognition algorithms using two real-world test data sets.
The first data set contains approximately 200 CAD objects from a German car
manufacturer, and the second one is a sample of the Protein Databank [17]
containing approximately 5000 protein structures. We tested on a workstation
featuring a 1.7 GHz CPU and 2 GB RAM.

Effectivity Both the car and the protein data set exhibit the commonly seen
quality of unpronounced but nevertheless to the observer clearly visible clusters.
The corresponding reachability plots of the two data sets are depicted in Figure
8.

Figure 8c shows that the Tree Clustering algorithm does not find any clusters
at all in the car data set, with the suggested default ratio parameter of 75%
[16]. In order to detect clusters in the car data set, we had to adjust the ratio

Fig. 8. Sample cluster of car parts. a) Gradient Clustering, b) ξ-Clustering, c) Tree
Clustering.

parameter to 95%. In this case Tree Clustering detected some clusters but missed
some other important clusters and did not detect any cluster hierarchies at all. If
we have rather high reachability values, e.g. values between 5 and 7 as in Figure
8 for the car data set, the ratio parameter for the Tree Clustering algorithm
should be set higher than for smaller values. In the case of the protein data set
we detected three clusters with the default parameter setting, but again missed
out on some important clusters. Generally, in cases where a reachability graph
consists of rather high reachability values or does not present spikes at all, but
clusters are formed by smooth troughs in the waveform, this cluster recognition
algorithm is unsuitable. Furthermore, it is inherently unable to detect narrowing
clusters where a cluster has one subcluster of increased density (cf. Figure 4).

On the other hand, the ξ-clustering approach successfully recognizes some
clusters while also missing out on significant subclusters (cf. Figure 8b). This
algorithm has some trouble recognizing cluster structures with a significant dif-
ferential of “steepness”. For instance, in Figure 4 it does not detect the narrowing
cluster B inside of cluster A because it tries to create steep down-areas contain-
ing as many points as possible. Thus, it will merge the two steep edges if their
steepness exceeds the threshold ξ. On the other hand, it is able to detect cluster
C within cluster A.

Finally, we look at our new Gradient Clustering algorithm. Figure 8a shows
that the recognized cluster structure is close to the intuitive one, which an expe-
rienced user would manually derive. Clusters which are clearly distinguishable
and contain more than MinPts elements are detected by this algorithm. Not

Table 1. CPU time for cluster recognition.

Car data (200 parts) Protein data (5,000 molecules)

ξ-clustering 0.221 s 5.057 s

Tree Clustering 0.060 s 1.932 s

Gradient Clustering 0.310 s 3.565 s

only does it detect a lot of clusters, but it also detects a lot of meaningful cluster
hierarchies, consisting of narrowing subclusters.

To sum up, in all our tests the Gradient Clustering algorithm detected much
more clusters than the other two approaches, without producing any redundant
and unnecessary cluster information.

Efficiency In all tests, we first created the reachability plots and then applied
the algorithms for cluster recognition and representation. Let us note that we
could also have integrated the Gradient Clustering into the OPTICS run without
causing any noteworthy overhead.

The overall runtimes for the three different cluster recognition algorithms
are depicted in Table 1. Our new Gradient Clustering algorithm does not only
produce the most meaningful results, but also in sufficiently short time. This is
due to its runtime complexity of O(n).

It theoretically and empirically turned out, that the Gradient Clustering
algorithm seems to be more practical than recent work for automatic cluster
extraction from hierarchical cluster representations.

5 Extracting Cluster Hierarchies for Similarity Search

5.1 Motivation

So far, our prototype works fine by computing, extracting, and visualizing the
hierarchical density-based cluster structure of a data set. The density-based clus-
ter model has been chosen due to several criteria. One very important aspect
among these criteria is its effectivity in finding clusters of different size and
shape. However, this clustering notion needs not to be the best cluster model for
navigational similarity search. For this application, the use of OPTICS may have
two limitations. In this section, we will discuss these limitations and a possible
solution for them.

The first limitation of using the density-based clustering notion is that OP-
TICS may place two objects that are rather similar, i.e. near in the feature space,
into two separate clusters. As a consequence, these two objects may be displayed
in completely different subtrees of the cluster hierarchy, i.e. the relationship be-
tween these two points in the cluster hierarchy is rather weak. This problem is
visualized in Figure 9: object A is obviously much more similar to object B than
to object C. However, since A and C belong to the same cluster, both objects
will be considered as similar by OPTICS. A and C will be placed in a similar

OPTICS

CLUSS

C

A

B

Fig. 9. A new cluster model for navigational similarity search.

subtree of the cluster hierarchy, whereas B may end up in a completely different
subtree. This is against the intuitive notion of similarity that would expect A
and B having a closer relationship in the cluster hierarchy than A and C.

The second limitation is that a cluster of complex shape and huge size can
usually not be represented by one representative object. However, the idea of
navigational similarity search depends on the suitability of the object which is
displayed in order to represent the objects in a cluster.

In order to solve these limitations, we propose a novel way of computing the
cluster hierarchy and suitable representations. The general idea is that we are
interested in small spherically shaped clusters rather than in clusters of arbitrary
size and shape. Intuitively, we can select a given number of representative objects
that represent their spherical neighborhood in a best possible way. These repre-
sentatives can build the lowest level of a cluster hierarchy tree. The next level
of the tree (above a given level) can then be built by choosing again the most
representative objects from the representatives in the level below until we do not
have enough representatives and, thus, have reached the root of the hierarchy.
The most important aspect in this strategy is the definition of the representative
power of an object. We will discuss this issue and outline a novel procedure to
generate the cluster hierarchy in the following.

The idea of this new approach is sketched in Figure 9: a data set with two
clusters of different size and shape is clustered. Using OPTICS, both clusters are
well separated and we can observe both of the mentioned problems: objects that
are member of the larger cluster but are quite near (i.e. similar) to the objects
in the smaller cluster will have a significantly poor relationship in the cluster
hierarchy to the objects in the smaller cluster. On the other hand, objects that
are much less similar but are members of the same (larger) cluster will have a
strong relationship to each other in the hierarchy. In addition, it is not clear
how to represent the larger cluster with its complex shape by a meaningful

representative. Our new approach generates representatives for small convex
clusters step by step. As it can be seen from Figure 9, this results in a hierarchy
that is much more suitable for interactive similarity search. For example, the
objects of the smaller cluster will be represented by the same object in the root
node of the hierarchy as the objects that belong to the large cluster but are
located at the border of that cluster near the smaller cluster. This reflects the
intuitive notion of similarity more accurately.

5.2 Basic Definitions

The basic idea is to extract a sufficient amount of dedicated objects that rep-
resents the other objects in a best possible way. Such objects are called repre-
sentatives and should be associated with a set of non-representatives, called the
border-shadow of a representative.

Definition 7 (border-shadow). Let REP be a set of representative objects
and ε ∈ R. The border-shadow of a representative r ∈ REP is defined by:

r.bordershadow := {o ∈ REP | dist(o, r) ≤ ε}.

The border-shadow of r contains the set of objects in the (hyper-) sphere
around r with radius ε. Obviously, a global value for the size of the representative
area for each representative is not appropriate, since it does not reflect the local
data distribution. Thus, we define an additional, adaptive set of representative
objects, the so called core-shadow of a representative.

Definition 8 (core-distance). Let REP be a set of representative objects, k ∈
N and r ∈ REP. The core-distance of r is defined by:

r.coredist :=
{

0 if |Nε(r)| < k
k-nn-dist(r) else.

Definition 9 (core-shadow). Let REP be a set of representative objects and
r ∈ REP. The core-shadow of r is defined by:

r.coreshadow := {o ∈ REP | dist(o, r) ≤ r.coredist}.

The core-shadow of r contains the set of objects in the (hyper-) sphere around
r with radius k-nn-dist(r). Obviously, this radius adapts to the local density of
objects around r.

Both the border-shadow and the core-shadow can be used to define the qual-
ity of a representative.

Definition 10 (quality of a representative). Let REP be a set of represen-
tative objects and r ∈ REP. The quality of r is defined by:

r.quality :=

{
0 if |Nε(r)| < k

Nε(r)

1+k-nn-dist(r) else.

algorithm cluster_representatives(SetOfObjects DB, Integer k)
REP_0 := emptySet;
REP_1 := DB;
i := 1;

WHILE REP_i != REP_i-1 DO
compute new epsilon;
send = emptySpatialIndex;
wait = emptySpatialIndex;
sort REP_i in descending order w.r.t. quality values;
r := REP_i.removeFirst();

WHILE r.quality == 0 AND REP_i.size > 0 DO
IF r.coreshadow does not intersect the core shadow of any object in send THEN

send.add(r);
FOR EACH s IN wait DO

IF s is in r.bordershadow DO
wait.remove(s);

ENDIF
ENDDO

ELSE
IF r is not in border-shadow of any object in send DO

wait.add(r);
ENDIF

ENDIF
r := REP_i.removeFirst();

ENDDO

REP_i+1 := REP_i;
REP_i+1.addAll(send);
REP_i+1.addAll(wait);
i++;

ENDDO
END. // cluster_representatives

Fig. 10. Pseudo code of the Cluster Representatives algorithm.

The key idea of our hierarchical clustering approach is to find on each level
of the hierarchy an optimal (w.r.t. quality) set of representatives such that the
representatives have non-overlapping core-shadows (overlapping border-shadows
are allowed).

5.3 Algorithm

The general idea of the algorithm is to start with the whole database as the
initial set of representatives. In the i-th iteration, we take the set of current
representatives REP i and compute the new set of representatives REP i+1. To
ensure, that we get the best representatives, we sort REP i by descending quality
values (cf. Definition 10). Theoretically, we can recursively select the represen-
tative r having the highest quality from the sorted REP i list, add r with its
border-shadow to REP i+1, and remove all further objects from REP i that are
in the core-shadow of r.

However, we have to take care, that core-shadows of representatives in REP i+1

do not overlap. For that purpose, we test for each not yet selected representa-
tive r ∈ REP i whether its core-shadow overlaps the core-shadow of any object
in REP i+1. To support this intersection-query efficiently, we can organize the

core-shadow

covering-shadow

r

a
b

c

a⇒ wait

b⇒ remove

c⇒ send

Fig. 11. Sorting of representatives acording to intersections of their core-shadows and
border-shadows.

objects in REP i+1 in a spatial index structure (data structure send). If there
is no such overlap, we add r and its border-shadow to REP i+1 (and send) and
remove all objects in the core-shadow of r from REP i. If the core-shadow of r
intersects the core-shadow of any already selected representatives in REP i+1,
we have to distinguish two cases. (1) If r is within the border-shadow of any
representative in REP i+1 we can remove r because it is represented by at least
one representative. (2) If r is not within the border-shadow of any representative
in REP i+1 we cannot remove r since it is not yet represented. We will have to
test for r at a later time, whether it is in the border-shadow of a representative
chosen later. For that purpose, we add those points to an additional data struc-
ture called wait. Thus, when adding a new representative r to REP i+1, we have
to test whether there are objects in wait which are in the border-shadow of r.
If so, we delete those objects from wait. The algorithm terminates if we gain no
more new representatives after an iteration, i.e. REP i+1 = REP i.

In summary, in each iteration, we do the following (cf. the pseudo code in
Figure 10):

1. Sort REP i by descending quality values.
2. As long as there are representatives in REP i having a quality greater than

0, take and remove the first object r from the sorted REP i list:
If r.coreshadow does not intersect the core-shadow of any object in REP i+1

(cf. object c in Figure 11):
– add r along with r.coreshadow and r.bordershadow to REP i+1,
– add r to send,

– remove all objects in wait which are in the border-shadow of r (range-
query against wait).

Else (i.e. r.coreshadow intersects the core-shadow of at least one object in
REP i+1):
– If r is not in the border-shadow of any object in REP i+1, add r to wait

(cf. object a in Figure 11).
– If r is in the border-shadow of any object in REP i+1, do nothing (r is

already removed from REP i; cf. object b in Figure 11).
3. Add all remaining objects in REP i and wait to REP i+1.

5.4 Choice of ε in the i-th Iteration

The quality of a representative r depends not only on the parameter k (spec-
ifying the number of neighbors of r which are taken into account for quality
computation) but also on the radius ε of the local area around r. A global value
for ε is not appropriate since the dataspace is getting sparser in each iteration.
A dynamically adapting value for ε is deemed more appropriate.

If we assume that DB is a set of n feature vectors of dimensionality d (i.e.
DB ⊆ Rd) and each attribute value of all o ∈ DB is normalized (i.e. falls into
the range [0,MAX] for a specified, fixed MAX) the volume of the data space
can be computed by:

V ol(DB) = MAX d.

If the n objects of DB are uniformly distributed in V ol(DB), we expect one
object in the volume V ol(DB)/n and k objects in the volume k · V ol(DB)/n.
Thus, the expected k-nearest neighbor distance of any object o ∈ DB is equal
to the radius r of a hypersphere having this volume k · V ol(DB)/n. Since the
volume of a hypersphere with radius r can be computed by:

VSphere(r) =

√
πd

Γ (d/2 + 1)
· rd,

where Γ denotes the well-known Gamma function, we can compute the expected
k-nn-distance r̂ of the objects in DB by solving the following equation:

√
πd

Γ (d/2 + 1)
· r̂d = k · MAX d

n
.

Simple algebraic transformations yield:

r̂ = MAX · d

√
k · Γ (d/2 + 1)

n ·
√

πd
.

For simplicity reasons, we can also compute:

r̂ = MAX · d

√
k

n
.

Fig. 12. Screenshot of CLUSS.

Let us note that this is the correct value of the expected k-nn-distance if we use
the L∞-norm instead of the L2-norm.

In the i-th iteration, an appropriated choice for ε as the expected k-nn-
distance of the objects in REP i:

ε = MAX · d

√
k

|REP i|
.

If we further assume MAX = 1 (i.e. all attributes have normalized values in
[0, 1]), we have:

ε = d

√
k

|REP i|
.

5.5 The Extended Prototype CLUSS

We have implemented the proposed ideas in Java and integrated a GUI to visu-
alize the cluster hierarchy and cluster representatives. The resulting prototype is
called CLUSS which uses the newly proposed method for generating the cluster
hierarchy and suitable cluster representatives. A sample sceenshot of CLUSS is
depicted in Figure 12. The hierarchy is now visualized by means of a tree (upper
right frame in Figure 12). For clearness, the subtrees of each node of the tree is
not visualized per default but can be expanded for browsing by clicking on the
according node. The hierarchy tree is also visualized in the frame on the left-
hand side of the GUI. The frame on the lower right side in Figure 12 displays
the representatives at the nodes that are currently selected.

We performed some sample visual similarity search queries using CLUSS
and compared it to the cluster hierarchy created by OPTICS and Gradient

Clustering. In fact, it turned out that using CLUSS allows a more accurate
interactive similarity search. The hierarchy generated by CLUSS differs from that
generated by its comparison partner and is more meaningful. So CLUSS provided
better results for navigational similarity search, for applications of visual data
mining, employing OPTICS is more appropriate, especially, if the application
calls for clustering solutions that detect clusters of different sizes and shapes.

6 Conclusions

In this chapter, we combined hierarchical clustering and data visualization tech-
niques to allow data analysis, comparison of data models and navigational simi-
larity search. The idea of comparing data spaces using hierarchical density-based
clustering is to display connected reachability plots and compare these to ref-
erence class models using color coding. Navigational similarity search describes
a novel approach to retrieve similar data objects. Instead of posing similarity
queries our new approach extracts a cluster hierarchy from a given set of data
objects and uses the resulting cluster tree to navigate between sets of similar
objects. To extract a cluster hierarchy from a reachability plot generated by the
density-based hierarchical clustering algorithm OPTICS, we introduced a new
method for cluster extraction called Gradient Clustering. OPTICS produces a
meaningful picture of the density distribution of a given data set and is thus
well suited for data analysis. However, in many applications the cluster hier-
archy derived from the reachability plot might not provide intuitive access for
navigational similarity search. Therefore, we described an alternative hierarchi-
cal clustering approach called CLUSS which facilitates the interactive similarity
search in large collections of data.

References

1. Jagadish, H.V.: “A Retrieval Technique for Similar Shapes”. In: Proc. ACM
SIGMOD Int. Conf. on Management of Data (SIGMOD’91), Denver, CO. (1991)
208–217

2. Agrawal, R., Faloutsos, C., Swami, A.: “Efficient Similarity Search in Sequence
Databases”. In: Proc. 4th. Int. Conf. on Foundations of Data Organization and
Algorithms (FODO’93), Evanston, ILL. Volume 730 of Lecture Notes in Computer
Science (LNCS)., Springer (1993) 69–84

3. Faloutsos, C., Barber, R., Flickner, M., Hafner, J., et al.: “Efficient and Effective
Querying by Image Content”. Journal of Intelligent Information Systems 3 (1994)
231–262

4. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: “Fast Subsequence Matching
in Time-Series Databases”. In: Proc. ACM SIGMOD Int. Conf. on Management
of Data (SIGMOD’94), Minneapolis, MN. (1994) 419–429

5. Agrawal, R., Lin, K.I., Sawhney, H.S., Shim, K.: “Fast Similarity Search in the
Presence of Noise, Scaling, and Translation in Time-Series Databases”. In: Proc.
21th Int. Conf. on Very Large Databases (VLDB’95). (1995) 490–501

6. Berchtold, S., Keim, D.A., Kriegel, H.P.: “Using Extended Feature Objects for
Partial Similarity Retrieval”. VLDB Journal 6 (1997) 333–348

7. Berchtold, S., Kriegel, H.P.: “S3: Similarity Search in CAD Database Systems”. In:
Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD’97), Tucson,
AZ. (1997) 564–567

8. Keim, D.A.: “Efficient Geometry-based Similarity Search of 3D Spatial Databases”.
In: Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD’99),
Philadelphia, PA. (1999) 419–430

9. Kriegel, H.P., Kröger, P., Mashael, Z., Pfeifle, M., Pötke, M., Seidl, T.: “Effective
Similarity Search on Voxelized CAD Objects”. In: Proc. 8th Int. Conf. on Database
Systems for Advanced Applications (DASFAA’03), Kyoto, Japan. (2003) 27–36

10. Kriegel, H.P., Brecheisen, S., Kröger, P., Pfeifle, M., Schubert, M.: “Using Sets of
Feature Vectors for Similarity Search on Voxelized CAD Objects”. In: Proc. ACM
SIGMOD Int. Conf. on Management of Data (SIGMOD’03), San Diego, CA. (2003)
587–598

11. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: “OPTICS: Ordering Points
to Identify the Clustering Structure”. In: Proc. ACM SIGMOD Int. Conf. on
Management of Data (SIGMOD’99), Philadelphia, PA. (1999) 49–60

12. McQueen, J.: “Some Methods for Classification and Analysis of Multivariate Ob-
servations”. In: 5th Berkeley Symp. Math. Statist. Prob. Volume 1. (1967) 281–297

13. Breunig, M.M., Kriegel, H.P., Kröger, P., Sander, J.: “Data Bubbles: Quality
Preserving Performance Boosting for Hierarchical Clustering”. In: Proc. ACM
SIGMOD Int. Conf. on Management of Data (SIGMOD’01), Santa Barbara, CA.
(2001) 79–90

14. Achtert, E., Böhm, C., Kriegel, H.P., Kröger, P.: “Online Hierarchical Clustering
in a Data Warehouse Environment”. In: Proc. 5th IEEE Int. Conf. on Data Mining
(ICDM’05), Houston, TX. (2005) 10–17

15. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: “A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise”. In: Proc. 2nd Int.
Conf. on Knowledge Discovery and Data Mining (KDD’96), Portland, OR, AAAI
Press (1996) 291–316

16. Sander, J., Qin, X., Lu, Z., Niu, N., Kovarsky, A.: “Automatic Extraction of
Clusters from Hierarchical Clustering Representations”. In: Proc. 7th Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD 2003), Seoul, Ko-
rea. (2003) 75–87

17. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H.,
Shindyalov, I.N., Bourne, P.E.: “The Protein Data Bank”. Nucleic Acids Research
28 (2000) 235–242

