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ABSTRACT
The detection of correlations between different features in a
set of feature vectors is a very important data mining task
because correlation indicates a dependency between the fea-
tures or some association of cause and effect between them.
This association can be arbitrarily complex, i.e. one or more
features might be dependent from a combination of several
other features. Well-known methods like the principal com-
ponents analysis (PCA) can perfectly find correlations which
are global, linear, not hidden in a set of noise vectors, and
uniform, i.e. the same type of correlation is exhibited in
all feature vectors. In many applications such as medical
diagnosis, molecular biology, time sequences, or electronic
commerce, however, correlations are not global since the
dependency between features can be different in different
subgroups of the set. In this paper, we propose a method
called 4C (Computing Correlation Connected Clusters) to
identify local subgroups of the data objects sharing a uni-
form but arbitrarily complex correlation. Our algorithm is
based on a combination of PCA and density-based cluster-
ing (DBSCAN). Our method has a determinate result and
is robust against noise. A broad comparative evaluation
demonstrates the superior performance of 4C over compet-
ing methods such as DBSCAN, CLIQUE and ORCLUS.

1. INTRODUCTION
The tremendous amount of data produced nowadays in

various application domains can only be fully exploited by
efficient and effective data mining tools. One of the primary
data mining tasks is clustering, which aims at partitioning
the objects (described by points in a high dimensional fea-
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ture space) of a data set into dense regions (clusters) sepa-
rated by regions with low density (noise). Knowing the clus-
ter structure is important and valuable because the differ-
ent clusters often represent different classes of objects which
have previously been unknown. Therefore, the clusters bring
additional insight about the stored data set which can be
exploited for various purposes such as improved marketing
by customer segmentation, determination of homogeneous
groups of web users through clustering of web logs, struc-
turing large amounts of text documents by hierarchical clus-
tering, or developing thematic maps from satellite images.

An interesting second kind of hidden information that
may be interesting to users are correlations in a data set.
A correlation is a linear dependency between two or more
features (attributes) of the data set. The most important
method for detecting correlations is the principal compo-
nents analysis (PCA) also known as Karhunen Loèwe trans-
formation. Knowing correlations is also important and valu-
able because the dimensionality of the data set can be con-
siderably reduced which improves both the performance of
similarity search and data mining as well as the accuracy.
Moreover, knowing about the existence of a relationship be-
tween attributes enables one to detect hidden causalities
(e.g. the influence of the age of a patient and the dose rate
of medication on the course of his disease or the coregulation
of gene expression) or to gain financial advantage (e.g. in
stock quota analysis), etc.

Methods such as PCA, however, are restricted, because
they can only be applied to the data set as a whole. There-
fore, it is only possible to detect correlations which are ex-
pressed in all points or almost all points of the data set. For
a lot of applications this is not the case. For instance, in
the analysis of gene expression, we are facing the problem
that a dependency between two genes does only exist under
certain conditions. Therefore, the correlation is visible only
in a local subset of the data. Other subsets may be either
not correlated at all, or they may exhibit completely differ-
ent kinds of correlation (different features are dependent on
each other). The correlation of the whole data set can be
weak, even if for local subsets of the data strong correlations
exist. Figure 1 shows a simple example, where two subsets
of 2-dimensional points exhibit different correlations.

To the best of our knowledge, both concepts of clustering
(i.e. finding densely populated subsets of the data) and cor-
relation analysis have not yet been addressed as a combined
task for data mining. The most relevant related approach is
ORCLUS [1], but since it is k-medoid-based, it is very sen-
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(a) 2D view.

attribute 1 attribute 2

(b) Transposed view.

Figure 1: 1-Dimensional Correlation Lines

sitive to noise and the locality of the analyzed correlations
is usually too coarse, i.e. the number of objects taken into
account for correlation analysis is too large (cf. Section 2
and 6 for a detailed discussion). In this paper, we develop
a new method which is capable of detecting local subsets
of the data which exhibit strong correlations and which are
densely populated (w.r.t. a given density threshold). We
call such a subset a correlation connected cluster.

In lots of applications such correlation connected clusters
are interesting. For example in E-commerce (recommenda-
tion systems or target marketing) where sets of customers
with similar behavior need to be detected, one searches for
positive linear correlations. In DNA microarray analysis
(gene expression analysis) negative linear correlations ex-
press the fact that two genes may be coregulated, i.e. if one
has a high expression level, the other one is very low and
vice versa. Usually such a coregulation will only exist in a
small subset of conditions or cases, i.e. the correlation will
be hidden locally in the data set and cannot be detected by
global techniques. Figures 1 and 2 show simple examples
how correlation connected clusters can look like. In Figure
1 the attributes exhibit two different forms of linear corre-
lation. We observe that if for some points there is a linear
correlation of all attributes, these points are located along
a line. Figure 2 presents two examples where an attribute z
is correlated to attributes x and y (i.e. z = a+ bx+ cy). In
this case the set of points forms a 2-dimensional plane.

As stated above, in this paper, we propose an approach
that meets both the goal of clustering and correlation anal-
ysis in order to find correlation connected clusters. The
remainder is organized as follows: In Section 2 we review
and discuss related work. In Section 3 we formalize our
notion of correlation connected clusters. Based on this for-
malization, we present in Section 4 an algorithm called 4C
(C omputing C orrelation C onnected C lusters) to efficiently
compute such correlation connected clusters. In Section 5
we analyze the computational complexity of our algorithm,
while Section 6 contains an extensive experimental evalua-
tion of 4C. Section 7 concludes the paper and gives some
hints at future work.

2. RELATED WORK
Traditional clustering algorithms such as k-means or the

EM-algorithm search for spatial clusters, which are spher-
ically shaped. In [10] and [5] two algorithms are proposed
which are able to find clusters of arbitrary shape. However,
these approaches are not able to distinguish between arbi-
trarily shaped clusters and correlation clusters. In [10] the
density-based algorithm DBSCAN is introduced. We will
describe the basic concepts of this approach in detail in the
next chapter. In [5] the authors propose the algorithm FC
(Fractal Clustering) to find clusters of arbitrary shape. The
paper presents only experiments for two-dimensional data
sets, so it is not clear whether the fractal dimension is re-
ally stable in higher dimensions. Furthermore, the shapes
of clusters depend on the type of correlation of the involved
points. Thus, in the case of linear correlations it is more
target-oriented to search for shapes like lines or hyperplanes
than for arbitrarily shaped clusters.

As most traditional clustering algorithms fail to detect
meaningful clusters in high-dimensional data, in the last
years a lot of research has been done in the area of sub-
space clustering. In the following we are examining to what
extent subspace clustering algorithms are able to capture lo-
cal data correlations and find clusters of correlated objects.
The principal axis of correlated data are arbitrarily oriented.
In contrast, subspace clustering techniques like CLIQUE [3]
and its successors MAFIA [11] or ENCLUS [9] or projected
clustering algorithms like PROCLUS [2] and DOC [17] only
find axis parallel projections of the data. In the evaluation
part we show that CLIQUE as one representative algorithm
is in fact not able to find correlation clusters. Therefore
we focus our attention to ORCLUS [1] which is a k-medoid
related projected clustering algorithm allowing clusters to
exist in arbitrarily oriented subspaces. The problem of this
approach is that the user has to specify the number of clus-
ters in advance. If this guess does not correspond to the
actual number of clusters the results of ORCLUS deterio-
rate. A second problem, which can also be seen in the eval-
uation part is noisy data. In this case the clusters found by
ORCLUS are far from optimal, since ORCLUS assigns each
object to a cluster and thus cannot handle noise efficiently.



(a) 3D view.
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(b) Transposed view of one plane.

Figure 2: 2-Dimensional Correlation Planes

Based on the fractal (intrinsic) dimensionality of a data
set, the authors of [15] present a global dimensionality re-
duction method. Correlation in the data leads to the phe-
nomenon that the embedding dimension of a data set (in
other words the number of attributes of the data set) and
the intrinsic dimension (the dimension of the spatial ob-
ject represented by the data) can differ a lot. The intrin-
sic (correlation fractal dimension) is used to reduce the di-
mensionality of the data. As this approach adopts a global
view on the data set and does not account for local data
distributions, it cannot capture local subspace correlations.
Therefore it is only useful and applicable, if the underly-
ing correlation affects all data objects. Since this is not the
case for most real-world data, in [8] a local dimensionality
reduction technique for correlated data is proposed which is
similar to [1]. The authors focus on identifying correlated
clusters for enhancing the indexing of high dimensional data
only. Unfortunately, they do not give any hint to what ex-
tent their heuristic-based algorithm can also be used to gain
new insight into the correlations contained in the data.

In [23] the move-based algorithm FLOC computing near-
optimal δ-clusters is presented. A transposed view of the
data is used to show the correlations which are captured by
the δ-cluster model. Each data object is shown as a curve
where the attribute values of each object are connected. Ex-
amples can be seen in Figure 1(b) and 2(b). A cluster is
regarded as a subset of objects and attributes for which the
participating objects show the same (or a similar) tendency
rather than being close to each other on the associated sub-
set of dimensions. The δ-cluster model concentrates on two
forms of coherence, namely shifting (or addition) and am-
plification (or production). In the case of amplification co-
herence for example, the vectors representing the objects
must be multiples of each other. The authors state that this
can easily be transformed to the problem of finding shift-
ing coherent δ-cluster by applying logarithmic function to
each object. Thus they focus on finding shifting coherent δ-
clusters and introduce the metric of residue to measure the
coherency among objects of a given cluster. An advantage
is that thereby they can easily handle missing attribute val-
ues. But in contrast to our approach, the δ-cluster model
limits itself to a very special form of correlation where all at-
tributes are positively linear correlated. It does not include

negative correlations or correlations where one attribute is
determined by two or more other attributes. In this cases
searching for a trend is no longer possible as can be seen in
Figure 1 and 2. Let us note, that such complex dependen-
cies cannot be illustrated by transposed views of the data.
The same considerations apply for the very similar p-cluster
model introduced in [21] and two extensions presented in
[16, 14].

3. THE NOTION OF CORRELATION CON-
NECTED CLUSTERS

In this section, we formalize the notion of a correlation
connected cluster. Let D be a database of d-dimensional
feature vectors (D ⊆ Rd). An element P ∈ D is called point
or object. The value of the i-th attribute (1 ≤ i ≤ d) of
P is denoted by pi (i.e. P = (p1, . . . , pd)

T). Intuitively, a
correlation connected cluster is a dense region of points in
the d-dimensional feature space having at least one principal
axis with low variation along this axis. Thus, a correlation
connected cluster has two different properties: density and
correlation. In the following, we will first address these two
properties and then merge these ingredients to formalize our
notion of correlation connected clusters.

3.1 Density-Connected Sets
The density-based notion is a common approach for clus-

tering used by various clustering algorithms such as DB-
SCAN [10], DBCLASD [22], DENCLUE [12], and OPTICS
[4]. All these methods search for regions of high density in a
feature space that are separated by regions of lower density.

A typical density-based clustering algorithm needs two pa-
rameters to define the notion of density: First, a parameter
µ specifying the minimum number of objects, and second,
a parameter ε specifying a volume. These two parameters
determine a density threshold for clustering.

Our approach follows the formal definitions of density-
based clusters underlying the algorithm DBSCAN. The for-
mal definition of the clustering notion is presented and dis-
cussed in full details in [10]. In the following we give a short
summary of all necessary definitions.

Definition 1 (ε-neighborhood).

Let ε ∈ R and O ∈ D. The ε-neighborhood of O, denoted



by Nε(O), is defined by

Nε(O) = {X ∈ D | dist(O,X) ≤ ε}.

Based on the two input parameters ε and µ, dense regions
can be defined by means of core objects:

Definition 2 (core object).

Let ε ∈ R and µ ∈ N. An object O ∈ D is called core
object w.r.t. ε and µ, if its ε-neighborhood contains at least
µ objects, formally:

Coreden(O)⇔ |Nε(O) | ≥ µ.

Let us note, that we use the acronym “den” for the density
parameters ε and µ. In the following, we omit the param-
eters ε and µ wherever the context is clear and use “den”
instead.

A core object O can be used to expand a cluster, with all
the density-connected objects of O. To find these objects
the following concepts are used.

Definition 3 (direct density-reachability).

Let ε ∈ R and µ ∈ N. An object P ∈ D is directly density-
reachable from Q ∈ D w.r.t. ε and µ, if Q is a core object
and P is an element of Nε(Q), formally:

DirReachden(Q,P )⇔ Coreden(Q) ∧ P ∈ Nε(Q).

Let us note, that direct density-reachability is symmetric
only for core objects.

Definition 4 (density-reachability).

Let ε ∈ R and µ ∈ N. An object P ∈ D is density-reachable
from Q ∈ D w.r.t. ε and µ, if there is a chain of objects
P1, . . . ,Pn ∈ D, P1 = Q, Pn = P such that Pi+1 is directly
density-reachable from Pi, formally:

Reachden(Q,P )⇔
∃P1, . . . ,Pn ∈ D : P1 = Q ∧ Pn = P ∧
∀i ∈ {1, . . . , n− 1} : DirReachden(Pi, Pi+1).

Density-reachability is the transitive closure of direct density-
reachability. However, it is still not symmetric in general.

Definition 5 (density-connectivity).

Let ε ∈ R and µ ∈ N. An object P ∈ D is density-connected
to an object Q ∈ D w.r.t. ε and µ, if there is an object
O ∈ D such that both P and Q are density-reachable from
O, formally:

Connectden(Q,P )⇔
∃O ∈ D : Reachden(O,Q) ∧ Reachden(O,P ).

Density-connectivity is a symmetric relation. A density-
connected cluster is defined as a set of density-connected
objects which is maximal w.r.t. density-reachability [10].

Definition 6 (density-connected set).

Let ε ∈ R and µ ∈ N. A non-empty subset C ⊆ D is
called a density-connected set w.r.t. ε and µ, if all objects
in C are density-connected and C is maximal w.r.t. density-
reachability, formally:

ConSetden(C)⇔
(1) Connectivity: ∀O,Q ∈ C : Connectden(O,Q)

(2) Maximality: ∀P,Q ∈ D : Q ∈ C∧Reachden(Q,P )⇒
P ∈ C.

Using these concepts DBSCAN is able to detect arbitrar-
ily shaped clusters by one single pass over the data. To do
so, DBSCAN uses the fact, that a density-connected cluster
can be detected by finding one of its core-objects O and com-
puting all objects which are density reachable from O. The
correctness of DBSCAN can be formally proven (cf. lem-
mata 1 and 2 in [10], proofs in [19]). Although DBSCAN
is not in a strong sense deterministic (the run of the algo-
rithm depends on the order in which the points are stored),
both the run-time as well as the result (number of detected
clusters and association of core objects to clusters) are de-
terminate. The worst case time complexity of DBSCAN is
O(n logn) assuming an efficient index and O(n2) if no index
exists.

3.2 Correlation Sets
In order to identify correlation connected clusters (regions

in which the points exhibit correlation) and to distinguish
them from usual clusters (regions of high point density only)
we are interested in all sets of points with an intrinsic di-
mensionality that is considerably smaller than the embed-
ding dimensionality of the data space (e.g. a line or a plane
in a three or higher dimensional space). There are several
methods to measure the intrinsic dimensionality of a point
set in a region, such as the fractal dimension or the prin-
cipal components analysis (PCA). We choose PCA because
the fractal dimension appeared to be not stable enough in
our first experiments.

The PCA determines the covariance matrix M = [mij ]
with mij =

∑
S∈S

sisj of the considered point set S, and de-

composes it into an orthonormal Matrix V called eigenvec-
tor matrix and a diagonal matrix E called eigenvalue matrix
such that M = VEVT. The eigenvectors represent the prin-
cipal axes of the data set whereas the eigenvalues represent
the variance along these axes. In case of a linear dependency
between two or more attributes of the point set (correla-
tion), one or more eigenvalues are close to zero. A set forms
a λ-dimensional correlation hyperplane if d − λ eigenvalues
fall below a given threshold δ ≈ 0. Since the eigenvalues
of different sets exhibiting different densities may differ a
lot in their absolute values, we normalize the eigenvalues by
mapping them onto the interval [0, 1]. This normalization is
denoted by Ω and simply divides each eigenvalue ei by the
maximum eigenvalue emax. We call the eigenvalues ei with
Ω(ei) ≤ δ close to zero.

Definition 7 (λ-dimensional linear correlation set).

Let S ⊆ D, λ ∈ N (λ ≤ d), EV = e1, ..., ed the eigen-
values of S in descending order (i.e. ei ≥ ei+1) and δ ∈ R
(δ ≈ 0). S forms an λ-dimensional linear correlation set
w.r.t. δ if at least d − λ eigenvalues of S are close to zero,
formally:

CorSet
λ
δ (S)⇔ |{ei ∈ EV |Ω(ei) ≤ δ}| ≥ d− λ.

where Ω(ei) = ei/e1.

This condition states that the variance of S along d − λ
principal axes is low and therefore the objects of S form an
λ-dimensional hyperplane. We drop the index λ and speak
of a correlation set in the following wherever it is clear from
context.
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Figure 3: Correlation ε-neighborhood of a point P according to (a) MP and (b) M̂P .

Definition 8 (Correlation dimension).

Let S ∈ D be a linear correlation set w.r.t. δ ∈ N. The
number of eigenvalues with ei > δ is called correlation di-
mension, denoted by CorDim(S).

Let us note, that if S is a λ-dimensional linear correlation
set, then CorDim(S) ≤ λ. The correlation dimension of a
linear correlation set S corresponds to the intrinsic dimen-
sion of S.

3.3 Clusters as Correlation-Connected Sets
A correlation connected cluster can be regarded as a max-

imal set of density-connected points that exhibit uniform
correlation. We can formalize the concept of correlation
connected sets by merging the concepts described in the pre-
vious two subsections: density-connected sets (cf. Definition
6) and correlation sets (cf. Definition 7). The intuition of
our formalization is to consider those points as core objects
of a cluster which have an appropriate correlation dimension
in their neighborhood. Therefore, we associate each point P
with a similarity matrix MP which is determined by PCA
of the points in the ε-neighborhood of P . For convenience
we call VP and EP the eigenvectors and eigenvalues of P ,
respectively. A point P is inserted into a cluster if it has
the same or a similar similarity matrix like the points in the
cluster. To achieve this goal, our algorithm looks for points
that are close to the principal axis (or axes) of those points
which are already in the cluster. We will define a similarity
measure M̂P for the efficient search of such points.

We start with the formal definition of the covariance ma-
trix MP associated with a point P .

Definition 9 (covariance matrix).

Let P ∈ D. The matrix MP = [mij ] with

mij =
∑

S∈Nε(P )

sisj (1 ≤ i, j ≤ d)

is called the covariance matrix of the point P . VP and EP

(with MP = VPEPVT
P ) as determined by PCA of MP are

called the eigenvectors and eigenvalues of the point P , re-
spectively.

We can now define the new similarity measure M̂P which
searches points in the direction of highest variance of MP

(the major axes). Theoretically, MP could be directly used
as a similarity measure, i.e.

distMP (P,Q) =
√

(P −Q)MP (P −Q)T where P,Q ∈ D.

Figure 3(a) shows the set of points which lies in an ε-
neighborhood of the point using MP as similarity measure.
The distance measure puts high weights on those axes with
a high variance whereas directions with a low variance are
associated with low weights. This is usually desired in sim-
ilarity search applications where directions of high variance
have a high distinguishing power and, in contrast, directions
of low variance are negligible.

Obviously, for our purpose of detecting correlation clus-
ters, we need quite the opposite. We want so search for
points in the direction of highest variance of the data set.
Therefore, we need to assign low weights to the direction
of highest variance in order to shape the ellipsoid such that
it reflects the data distribution (cf. Figure 3(b)). The solu-
tion is to change large eigenvalues into smaller ones and vice
versa. We use two fixed values, 1 and a parameter κ � 1
rather than e.g. inverting the eigenvalues in order to avoid
problems with singular covariance matrices. The number 1
is a natural choice because the corresponding semi-axes of
the ellipsoid are then epsilon. The parameter κ controls the
”thickness” of the λ-dimensional correlation line or plane,
i.e. the tolerated deviation.

This is formally captured in the following definition:

Definition 10 (correlation similarity matrix).

Let P ∈ D and VP , EP the corresponding eigenvectors
and eigenvalues of the point P . Let κ ∈ R be a constant
with κ � 1. The new eigenvalue matrix ÊP with entries êi
(i = 1, . . . d) is computed from the eigenvalues e1, . . . , ed in
EP according to the following rule:

êi =

{
1 if Ω(ei) > δ
κ if Ω(ei) ≤ δ

where Ω is the normalization of the eigenvalues onto [0, 1]

as described above. The matrix M̂P = VP ÊPVT
P is called

the correlation similarity matrix. The correlation similarity
measure associated with point P is denoted by

distP (P,Q) =

√
(P −Q) · M̂P · (P −Q)T.

Figure 3(b) shows the ε-neighborhood according to the

correlation similarity matrix M̂P . As described above, the
parameter κ specifies how much deviation from the corre-
lation is allowed. The greater the parameter κ, the tighter
and clearer the correlations which will be computed. It em-
pirically turned out that our algorithm presented in Section
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Figure 4: Symmetry of the correlation ε-neighborhood: (a) P ∈ N M̂Q
ε (Q). (b) P 6∈ N M̂Q

ε (Q).

4 is rather insensitive to the choice of κ. A good suggestion
is to set κ = 50 in order to achieve satisfying results, thus
— for the sake of simplicity — we omit the parameter κ in
the following.

Using this similarity measure, we can define the notions of
correlation core objects and correlation reachability. How-
ever, in order to define correlation-connectivity as a symmet-
ric relation, we face the problem that the similarity measure
in Definition 10 is not symmetric, because distP (P,Q) =
distQ(Q,P ) does in general not hold (cf. Figure 4(b)).
Symmetry, however, is important to avoid ambiguity of the
clustering result. If an asymmetric similarity measure is
used in DBSCAN a different clustering result can be ob-
tained depending on the order of processing (e.g. which
point is selected as the starting object) because the sym-
metry of density-connectivity depends on the symmetry of
direct density-reachability for core-objects. Although the
result is typically not seriously affected by this ambiguity
effect we avoid this problem easily by an extension of our
similarity measure which makes it symmetric. The trick is
to consider both similarity measures, distP (P,Q) as well as
distQ(P,Q) and to combine them by a suitable arithmetic
operation such as the maximum of the two. Based on these
considerations, we define the correlation ε-neighborhood as
a symmetric concept:

Definition 11 (correlation ε-neighborhood).

Let ε ∈ R. The correlation ε-neighborhood of an object

O ∈ D, denoted by N M̂O
ε (O), is defined by:

N M̂O
ε (O) = {X ∈ D | max{distO(O,X), distX(X,O)} ≤ ε}.

The symmetry of the correlation ε-neighborhood is illus-
trated in Figure 4. Correlation core objects can now be
defined as follows.

Definition 12 (correlation core object).

Let ε, δ ∈ R and µ, λ ∈ N. A point O ∈ D is called
correlation core object w.r.t. ε, µ, δ, and λ (denoted by
Core

cor
den(O)), if its ε-neighborhood is a λ-dimensional linear

correlation set and its correlation ε-neighborhood contains at
least µ points, formally:

Core
cor
den(O)⇔ CorSet

λ
δ (Nε(P )) ∧ |N M̂P

ε (P ) | ≥ µ.

Let us note that in Core
cor
den the acronym “cor” refers to

the correlation parameters δ and λ. In the following, we

omit the parameters ε, µ, δ, and λ wherever the context is
clear and use “den” and “cor” instead.

Definition 13 (Direct correlation-reachability).

Let ε, δ ∈ R and µ, λ ∈ N. A point P ∈ D is direct
correlation-reachable from a point Q ∈ D w.r.t. ε, µ, δ,
and λ (denoted by DirReach

cor
den(Q,P)) if Q is a correlation

core object, the correlation dimension of Nε(P ) is at least

λ, and P ∈ N M̂Q
ε (Q), formally:

DirReach
cor
den(Q,P )⇔

(1) Core
cor
den(Q)

(2) CorDim(Nε(P )) ≤ λ

(3) P ∈ N M̂Q
ε (Q).

Correlation-reachability is symmetric for correlation core
objects. Both objects P and Q must find the other object
in their corresponding correlation ε-neighborhood.

Definition 14 (correlation-reachability).

Let ε, δ ∈ R (δ ≈ 0) and µ, λ ∈ N. An object P ∈ D is
correlation-reachable from an object Q ∈ D w.r.t. ε, µ, δ,
and λ (denoted by Reach

cor
den(Q,P)), if there is a chain of

objects P1, · · ·Pn such that P1 = Q,Pn = P and Pi+1 is
direct correlation-reachable from Pi, formally:

Reach
cor
den(Q,P )⇔

∃P1, . . . ,Pn ∈ D : P1 = Q ∧ Pn = P ∧
∀i ∈ {1, . . . , n− 1} : DirReach

cor
den(Pi, Pi+1).

It is easy to see, that correlation-reachability is the tran-
sitive closure of direct correlation-reachability.

Definition 15 (correlation-connectivity).

Let ε ∈ R and µ ∈ N. An object P ∈ D is correlation-
connected to an object Q ∈ D if there is an object O ∈ D
such that both P and Q are correlation-reachable from O,
formally:

Connect
corr
den (Q,P )⇔

∃o ∈ D : Reach
corr
den (O,Q) ∧ Reach

corr
den (O,P ).

Correlation-connectivity is a symmetric relation. A correlation-
connected cluster can now be defined as a maximal correlation-
connected set:



Definition 16 (correlation-connected set).

Let ε, δ ∈ R and µ, λ ∈ N. A non-empty subset C ⊆ D is
called a density-connected set w.r.t. ε, µ, δ, and λ, if all
objects in C are density-connected and C is maximal w.r.t.
density-reachability, formally:

ConSet
cor
den(C)⇔

(1) Connectivity: ∀O,Q ∈ C : Connect
cor
den(O,Q)

(2) Maximality: ∀P,Q ∈ D : Q ∈ C∧Reach
cor
den(Q,P )⇒

P ∈ C.

The following two lemmata are important for validating
the correctness of our clustering algorithm. Intuitively, they
state that we can discover a correlation-connected set for
a given parameter setting in a two-step approach: First,
choose an arbitrary correlation core object O from the data-
base. Second, retrieve all objects that are correlation-reachable
from O. This approach yields the density-connected set con-
taining O.

Lemma 1.
Let P ∈ D. If P is a correlation core object, then the

set of objects, which are correlation-reachable from P is a
correlation-connected set, formally:

Core
cor
den(P ) ∧ C = {O ∈ D |Reach

cor
den(P,O)}

⇒ ConSet
cor
den(C).

Proof.

(1) C 6= ∅:
By assumption, Core

cor
den(P) and thus, CorDim(Nε(P )) ≤

λ.
⇒ DirReach

cor
den(P, P )

⇒ Reach
cor
den(P, P )

⇒ P ∈ C.
(2) Maximality:
Let X ∈ C and Y ∈ D and Reach

cor
den(X,Y ).

⇒ Reach
cor
den(P,X) ∧Reach

cor
den(X,Y )

⇒ Reach
cor
den(P, Y ) (since correlation reachability is a tran-

sitive relation).
⇒ Y ∈ C.
(3) Connectivity:
∀X,Y ∈ C : Reach

cor
den(P,X) ∧Reach

cor
den(P, Y )

⇒ Connect
cor
den(X,Y ) (via P ).

Lemma 2.
Let C ⊆ D be a correlation-connected set. Let P ∈ C be

a correlation core object. Then C equals the set of objects
which are correlation-reachable from P , formally:

ConSet
cor
den(C) ∧ P ∈ C ∧Core

cor
den(P )

⇒ C = {O ∈ D |Reach
cor
den(P,O)}.

Proof.

Let C̄ = {O ∈ D |Reach
cor
den(P,O)}. We have to show that

C̄ = C:
(1) C̄ ⊆ C: obvious from definition of C̄.
(2) C ⊆ C̄: Let Q ∈ C. By assumption, P ∈ C and
ConSet

cor
den(C).

⇒ ∃O ∈ C : Reach
cor
den(O,P ) ∧Reach

cor
den(O,Q)

⇒ Reach
cor
den(P,O) (since both O and P are correlation core

objects and correlation reachability is symmetric for corre-
lation core objects.
⇒ Reach

cor
den(P,Q) (transitivity of correlation-reachability)

⇒ Q ∈ C̄.

algorithm 4C(D, ε, µ, λ, δ)

// assumption: each object in D is marked as unclassified

for each unclassified O ∈ D do

STEP 1. test Core
cor
den(O) predicate:

compute Nε(O);
if |Nε(O)| ≥ µ then

compute MO;
if CorDim(Nε(O)) ≤ λ then

compute M̂O and N M̂O
ε (O);

test |N M̂O
ε (O)| ≥ µ;

STEP 2.1. if Core
cor
den(O) expand a new cluster:

generate new clusterID;

insert all X ∈ N M̂O
ε (O) into queue Φ;

while Φ 6= ∅ do
Q = first object in Φ;
compute R = {X ∈ D |DirReach

cor
den(Q,X)};

for each X ∈ R do
if X is unclassified or noise then

assign current clusterID to X
if X is unclassified then

insert X into Φ;
remove Q from Φ;

STEP 2.2. if not Core
cor
den(O) O is noise:

mark O as noise;

end.

Figure 5: Pseudo code of the 4C algorithm.

4. ALGORITHM 4C
In the following we describe the algorithm 4C, which per-

forms one pass over the database to find all correlation clus-
ters for a given parameter setting. The pseudocode of the
algorithm 4C is given in Figure 5. At the beginning each
object is marked as unclassified. During the run of 4C
all objects are either assigned a certain cluster identifier or
marked as noise. For each object which is not yet classified,
4C checks whether this object is a correlation core object
(see STEP 1 in Figure 5). If the object is a correlation core
object the algorithm expands the cluster belonging to this
object (STEP 2.1). Otherwise the object is marked as noise
(STEP 2.2). To find a new cluster 4C starts in STEP 2.1
with an arbitrary correlation core object O and searches for
all objects that are correlation-reachable from O. This is
sufficient to find the whole cluster containing the object O,
due to Lemma 2. When 4C enters STEP 2.1 a new cluster
identifier “clusterID” is generated which will be assigned to
all objects found in STEP 2.1. 4C begins by inserting all
objects in the correlation ε-neighborhood of object O into a
queue. For each object in the queue it computes all directly
correlation reachable objects and inserts those objects into
the queue which are still unclassified. This is repeated until
the queue is empty.

As discussed in Section 3 the results of 4C do not depend
on the order of processing, i.e. the resulting clustering (num-
ber of clusters and association of core objects to clusters) is
determinate.



5. COMPLEXITY ANALYSIS
The computational complexity with respect to the number

of data points as well as the dimensionality of the data space
is an important issue because the proposed algorithms are
typically applied to large data sets of high dimensionality.
The idea of our correlation connected clustering method is
founded on DBSCAN, a density based clustering algorithm
for Euclidean data spaces. The complexity of the original
DBSCAN algorithm depends on the existence of an index
structure for high dimensional data spaces. The worst case
complexity is O(n2), but the existence of an efficient index
reduces the complexity to O(n logn) [10]. DBSCAN is lin-
ear in the dimensionality of the data set for the Euclidean
distance metric. If a quadratic form distance metric is ap-
plied instead of Euclidean (which enables user adaptability
of the distance function), the time complexity of DBSCAN
is O(d2 · n logn). In contrast, subspace clustering methods
such as CLIQUE are known to be exponential in the number
of dimensions [1, 3].

We begin our analysis with the assumption of no index
structure.

Lemma 3. The overall worst-case time complexity of our
algorithm on top of the sequential scan of the data set is
O(d2 · n2 + d3 · n).

Proof. Our algorithm has to associate each point of the
data set with a similarity measure that is used for searching
neighbors (cf. Definition 10). We assume that the corre-
sponding similarity matrix must be computed once for each
point, and it can be held in the cache until it is no more
needed (it can be easily decided whether or not the similar-
ity matrix can be safely discarded). The covariance matrix
is filled with the result of a Euclidean range query which can
be evaluated in O(d · n) time. Then the matrix is decom-
posed using PCA which requires O(d3) time. For all points
together, we have O(d · n2 + d3 · n).
Checking the correlation core point property according to
Definition 12, and expanding a correlation connected clus-
ter requires for each point the evaluation of a range query
with a quadratic form distance measure which can be done
in O(d2 ·n). For all points together (including the above cost
for the determination of the similarity matrix), we obtain an
worst-case time complexity of O(d2 · n2 + d3 · n).

Under the assumption that an efficient index structure for
high dimensional data spaces [7, 6] is available, the complex-
ity of all range queries is reduced from O(n) to O(logn). Let
us note that we can use Euclidean range queries as a filter
step for the quadratic form range queries because no semi-
axis of the corresponding ellipsoid exceeds ε. Therefore, the
overall time complexity in this case is given as follows:

Lemma 4. The overall worst case time complexity of our
algorithm on top of an efficient index structure for high di-
mensional data is O(d2 · n logn+ d3 · n).

Proof. Analogous to Lemma 3.

6. EVALUATION
In this section, we present a broad evaluation of 4C. We

implemented 4C as well as the three comparative methods
DBSCAN, CLIQUE, and ORCLUS in JAVA. All experi-
ments were run on a Linux workstation with a 2.0 GHz
CPU and 2.0 GB RAM.
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Figure 6: Scalability against database size.

6.1 Efficiency
According to Section 5 the runtime of 4C scales super-

linear with the number of input records. This is illustrated
in Figure 6 showing the results of 4C applied to synthetic
2-dimensional data of variable size.

6.2 Effectiveness
We evaluated the effectiveness of 4C on several synthetic

data sets as well as on real world data sets including gene
expression data and metabolome data. In addition, we com-
pared the quality of the results of our method to the quality
of the results of DBSCAN, ORCLUS, and CLIQUE. In all
our experiments, we set the parameter κ = 50 as suggested
in Section 3.3.

6.2.1 Synthetic Data Sets
We first applied 4C on several synthetic data sets (with

2 ≤ d ≤ 30) consisting of several dense, linear correlations.
In all cases, 4C had no problems to identify the correlation-
connected clusters. As an example, Figure 7 illustrates the
transposed view of the three clusters and the noise 4C found
on a sample 10-dimensional synthetic data set consisting of
approximately 1,000 points.

6.2.2 Real World Data Sets
Gene Expression Data. We applied 4C to the gene

expression data set of [20]. The data set is derived from
time series experiments on the yeast mitotic cell cycle. The
expression levels of approximately 3000 genes are measured
at 17 different time slots. Thus, we face a 17-dimensional
data space to search for correlations indicating coregulated
genes. 4C found 60 correlation connected clusters with few
coregulated genes (10-20). Such small cluster sizes are quite
reasonable from a biological perspective. The transposed
views of four sample clusters are depicted in Figure 8. All
four clusters exhibit simple linear correlations on a sub-
set of their attributes. Let us note, that we also found
other linear correlations which are rather complex to visual-
ize. We also analyzed the results of our correlation clusters
(based on the publicly available information resources on
the yeast genome [18]) and found several biologically im-
portant implications. For example one cluster consists of
several genes coding for proteins related to the assembly
of the spindle pole required for mitosis (e.g. KIP1, SLI15,
SPC110, SPC25, and NUD1). Another cluster contains sev-
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Figure 7: Clusters found by 4C on 10D synthetic
data set. Parameters: ε = 10.0, µ = 5, λ = 2, δ = 0.1.

eral genes coding for structural constituents of the ribosome
(e.g. RPL4B, RPL15A, RPL17B, and RPL39). The func-
tional relationships of the genes in the clusters confirm the
significance of the computed coregulation.

Metabolome Data. We applied 4C on a metabolome
data set [13]. The data set consists of the concentrations
of 43 metabolites in 2,000 human newborns. The newborns
were labeled according to some specific metabolic diseases.
Thus, the data set consists of 2,000 data points with d =
43. 4C detected six correlation connected sets which are
visualized in Figure 9. Cluster one and two (in the lower left
corner marked with “control”) consists of healthy newborns
whereas the other clusters consists of newborns having one
specific disease (e.g. “PKU” or “LCHAD”). The group of
newborns suffering from “PKU” was split in three clusters.
Several ill as well as healthy newborns were classified as
noise.

6.2.3 Comparisons to Other Methods
We compared the effectiveness of 4C with related cluster-

ing methods, in particular the density-based clustering algo-
rithm DBSCAN, the subspace clustering algorithm CLIQUE,
and the projected clustering algorithm ORCLUS. For that
purpose, we applied these methods on several synthetic data-
sets including 2-dimensional datasets and higher dimensional
datasets (d = 10).

Comparison with DBSCAN. The clusters found by
DBSCAN and 4C applied on the 2-dimensional data sets
are depicted in Figure 10. In both cases, DBSCAN finds
clusters which do not exhibit correlations (and thus are not
detected by 4C). In addition, DBSCAN cannot distinguish
varying correlations which overlap (e.g. both correlations
in data set B in Figure 10) and treat such clusters as one
density-connected set, whereas 4C can differentiate such cor-
relations. We gain similar observations when we applied DB-
SCAN and 4C on the higher dimensional data sets. Let us
note, that these results are not astonishing since DBSCAN
only searches for density connected sets but does not search

Sample Cluster 1 Sample Cluster 2

Sample Cluster 4Sample Cluster 3

Figure 8: Sample clusters found by 4C on the gene
expression data set. Parameters: ε = 25.0, µ = 8,
λ = 8, δ = 0.01.

for correlations and thus cannot be applied to the task of
finding correlation connected sets.

Comparison with CLIQUE. A comparison of 4C with
CLIQUE gained similar results. CLIQUE finds clusters in
subspaces which do not exhibit correlations (and thus are
not detected by 4C). On the other hand, CLIQUE is usually
limited to axis-parallel clusters and thus cannot detect arbi-
trary correlations. These observations occur especially with
higher dimensional data (d ≥ 10 in our tests). Again, these
results are not astonishing since CLIQUE only searches for
axis-parallel subspace clusters (dense projections) but does
not search for correlations. This empirically supported the
suspicion that CLIQUE cannot be applied to the task of
finding correlation connected sets.

Comparison with ORCLUS. A comparison of 4C with
ORCLUS resulted in quite different observations. In fact,
ORCLUS computes clusters of correlated objects. However,
since it is a k-medoid based, it suffers from the following
two drawbacks: First, the choice of k is a rather hard task
for real-world data sets. Even for synthetic data sets, where
we knew the number of clusters beforehand, ORCLUS often
performs better with a slightly different value of k. Second,
ORCLUS is rather sensitive to noise which often appears in
real-world data sets. Since all objects have to be assigned
to a cluster, the locality of the analyzed correlations is often
too coarse (i.e. the subsets of the points taken into account
for correlation analysis are too large). As a consequence,
the correlation clusters are often blurred by noise objects
and thus are hard to obtain from the resulting output. Fig-
ure 11 illustrates a sample 3-dimensional synthetic data set,
the clusters found by 4C are marked by black lines. Figure
12 depicts the objects in each cluster found by ORCLUS
(k = 3 yields the best result) separately. It can be seen,
that the correlation clusters are — if detected — blurred by
noise objects. When we applied ORCLUS on higher dimen-
sional data sets (d = 10) the choice of k became even more
complex and the problem of noise objects blurring the clus-
ters (i.e. too coarse locality) simply cumulated in the fact
that ORCLUS often could not detect correlation clusters in
high-dimensional data.
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Figure 9: Clusters found by 4C on the metabolome
data set. Parameters: ε = 150.0, µ = 8, λ = 20, δ = 0.1.

6.2.4 Input Parameters
The algorithm 4C needs four input parameters which are

discussed in the following:
The parameter ε ∈ R specifies the size of the local areas

in which the correlations are examined and thus determines
the number of objects which contribute to the covariance
matrix and consequently to the correlation similarity mea-
sure of each object. It also participates in the determination
of the density threshold, a cluster must exceed. Its choice
usually depends on the volume of the data space (i.e. the
maximum value of each attribute and the dimensionality of
the feature space). The choice of ε has two aspects. First, it
should not be too small because in that case, an insufficient
number of objects contribute to the correlation similarity
measure of each object and thus, this measure can be mean-
ingless. On the other hand, ε should not be too large because
then some noise objects might be correlation reachable from
objects within a correlation connected cluster. Let us note,
that our experiments indicated that the second aspect is not
significant for 4C (in contrast to ORCLUS).

The parameter µ ∈ N specifies the number of neighbors an
object must find in an ε-neighborhood and in a correlation ε-
neighborhood to exceed the density threshold. It determines
the minimum cluster size. The choice of µ should not be to
small (µ ≥ 5 is a reasonable lower bound) but is rather
insensitive in a broad range of values.

Both ε and µ should be chosen hand in hand.
The parameter λ ∈ N specifies the correlation dimension

of the correlation connected clusters to be computed. As
discussed above, the correlation dimension of a correlation
connected cluster corresponds to its intrinsic dimension. In
our experiments, it turned out that λ can be seen as an

Clusters found
by DBSCAN

Clusters found
by 4C

Dataset A

Dataset B

Figure 10: Comparison between 4C and DBSCAN.

upper bound for the correlation dimension of the detected
correlation connected clusters. However, the computed clus-
ters tend to have a correlation dimension close to λ.

The parameter δ ∈ R (where 0 ≤ δ ≤ 1) specifies the
lower bound for the decision whether an eigenvalue is set to
1 or to κ � 1. It empirically turned out that the choice
of δ influences the tightness of the detected correlations,
i.e. how much local variance from the correlation is allowed.
Our experiments also showed that δ ≤ 0.1 is usually a good
choice.

7. CONCLUSIONS
In this paper, we have proposed 4C, an algorithm for com-

puting clusters of correlation connected objects. This algo-
rithm searches for local subgroups of a set of feature vectors
with a uniform correlation. Knowing a correlation is poten-
tially useful because a correlation indicates a causal depen-
dency between features. In contrast to well-known methods
for the detection of correlations like the principal compo-
nents analysis (PCA) our algorithm is capable to separate
different subgroups in which the dimensionality as well as
the type of the correlation (positive/negative) and the de-
pendent features are different, even in the presence of noise
points.

Our proposed algorithm 4C is determinate, robust against
noise, and efficient with a worst case time complexity be-
tween O(d2 · n logn + d3 · n) and O(d2 · n2 + d3 · n). In an
extensive evaluation, data from gene expression analysis and



Figure 11: Three correlation connected clusters
found by 4C on a 3-dimensional data set. Parame-
ters: ε = 2.5, µ = 8. δ = 0.1, λ = 2.

metabolic screening have been used. Our experiments show
a superior performance of 4C over methods like DBSCAN,
CLIQUE, and ORCLUS.

In the future we will integrate our method into object-
relational database systems and investigate parallel and dis-
tributed versions of 4C.
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