
DM510 - Operating Systems, Weekly Notes, Week 10, 2015

Lecture

� In the lecture on March 02 we will recap and discuss the rest of Chapter 2, start

with Chapter 3 (Process Concept) and maybe start with Chapter 4 (Multithreaded

Programming).

� In the lecture on March 05, the rest of Chapter 3 will be discussed and we start with

Chapter 4 (Multithreaded Programming).

� Note, that you �nd even more exercises including solutions here :

http://codex.cs.yale.edu/avi/os-book/OS9/practice-exer-dir/index.html

� Prepare for the Tutorial Session on Wednesday, March 04, 2015:

All exercises not discussed so far. In addition:

3.1 Describe the di�erences among short-term, medium-term, and long-term schedul-

ing.

3.2 Describe the actions taken by a kernel to context-switch between processes.

3.4 Explain the role of the init process on UNIX and Linux systems in regards to

process termination.

3.5 Including the initial parent process, how many processes are created by the pro-

gram shown in the following program:

#include <stdio.h>

#include <unistd.h>

int main()

{

/* fork a child process */

fork();

/* fork another child process */

fork();

/* and fork another */

fork();

}

return 0;

3.6 Explain the circumstances when the line of code marked printf("LINE J") in the

Figure below is reached.

#include <sys/types.h>

#include <stdio.h>

http://codex.cs.yale.edu/avi/os-book/OS9/practice-exer-dir/index.html


DM510 - Operating Systems, Weekly Notes, Week 10, 2015

#include <unistd.h>

int main()

{

pid t pid;

/* fork a child process */

pid = fork();

if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");

return 1;

}

else if (pid == 0) { /* child process */

execlp("/bin/ls","ls",NULL);

printf("LINE J");

}

else { /* parent process */

/* parent will wait for the child to complete */

wait(NULL);

printf("Child Complete");

}

return 0;

}

3.7 Using the program in Figure below, identify the values of pid at lines A, B, C,

and D. (Assume that the actual pids of the parent and child are 2600 and 2603,

respectively.)

#include <sys/types.h >

#include <stdio.h >

#include < unistd.h >

int main()

{

pid t pid, pid1;

/* fork a child process */

pid = fork();

if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");

return 1;

}

else if (pid == 0) { /* child process */

pid1 = getpid();

printf("child: pid = %d",pid); /* A */

printf("child: pid1 = %d",pid1); /* B */



DM510 - Operating Systems, Weekly Notes, Week 10, 2015

}

else { /* parent process */

pid1 = getpid();

printf("parent: pid = %d",pid); /* C */

printf("parent: pid1 = %d",pid1); /* D */

wait(NULL);

}

return 0;

}

3.8 Give an example of a situation in which ordinary pipes are more suitable than

named pipes and an example of a situation in which named pipes are more suitable

than ordinary pipes.

3.9 Consider the RPC mechanism. Describe the undesirable consequences that could

arise from not enforcing either the "at most once" or "exactly once" semantic.

Describe possible uses for a mechanism that has neither of these guarantees.

3.10 Using the program shown in Figure below, explain what the output will be at lines

X and Y.

#include <sys/types.h>

#include <stdio.h>

#include <unistd.h>

#define SIZE 5

int nums[SIZE] = { 0,1,2,3,4 } ;

int main()

{

int i;

pid t pid;

pid = fork();

if (pid == 0) {

for (i = 0; i < SIZE; i++) {

nums[i] *= -i;

printf("CHILD: %d ",nums[i]); /* LINE X */

}

}

else if (pid > 0) {

wait(NULL);

for (i = 0; i < SIZE; i++)

printf("PARENT: %d ",nums[i]); /* LINE Y */

}

return 0;

}



DM510 - Operating Systems, Weekly Notes, Week 10, 2015

3.11 What are the bene�ts and the disadvantages of each of the following? Consider

both the system level and the programmer level.

� Synchronous and asynchronous communication

� Automatic and explicit bu�ering

� Send by copy and send by reference

� Fixed-sized and variable-sized messages


