
Graph Representation and Cycle Detection

Introduction
Problems that can be represented with a graph and an algorithm show up frequently in
Computer Science. In this project, we will try two different ways to represent graphs:

Matrix representation

Adjacency list representation

Each representation have strong and weak spots, when considering space and operations, also
quite dependent on the characteristics of the graph (sparse or dense). Knowledge on this come
in handy in operating systems, when we study access matrices.

The problem we will use the graphs for are detecting cycles, as this can be usefull, for example
in determining if an operating system is in a deadlocked state.

Representing the Graph

Matrix Representation
The input graphs that you will be working on is in matrix representation. The first line has just
an integer, that tells the number of vertices are present in the graph. The next lines are the
matrix, where a one tels us there is a directed edge from the node on the line we are on, to the
edge in the column we are in.

A small example graph:

Which will be this graph:

5
01000
00010
00000
00100
10100

TEXT

Adjacency List Representation
You must store the graph in your program using the adjacency list representation. In this
representation, we only store the edges that are there, thus all the zeros in the matrix
representation are not stored.

In each vertex, you could just store a reference to the vertices that are pointed to, but as we
also need a fast way to determine who points to me, we store both a reference to vertices we
are pointing to, and let each of those vertices have a reference to the vertices that points to
them.

In the skeleton project, the header files for the graph and the vertex provides more input to
how you can store the graphs.

Cycle Detection
For cycle detection, you should use Kahn’s algorithm, which generates a topological sort in
time O(|V|+|E|). A topological sort is only possible if the graph does not have any cycles.

L ← Empty list that will contain the sorted elements
S ← Set of all nodes with no incoming edges
while S is non-empty do
 remove a node n from S
 add n to tail of L
 for each node m with an edge e from n to m do
 remove edge e from the graph
 if m has no other incoming edges then
 insert m into S
if graph has edges then
 return error (graph has at least one cycle)
else
 return L (a topologically sorted order)

C

If the graph is a DAG, a solution will be contained in the list L (the solution is not necessarily
unique). Otherwise, the graph must have at least one cycle and therefore a topological sorting
is impossible.

 You are allowed to destroy the graph in the proces of finding the DAG.

Requirements

Make�le
A Makefile is provided in the skeleton project. This should be used to output the binary, named
program

Input and Output
Your program should take the inputfile as its single parameter. You should be able to run the
compiled program as

./program ../graphs/graphmatrix-1.txt

after compiling the program in the `src` directory

Example

The graph below

Should have the vertices listed as a DAG, so the output should be

4, 0, 1, 3, 2

If a graph contains a cycle, the output should be:

CYCLE DETECTED!

Both of the outputs should be followed by a single newline character '\n'

Checking your solution
To verify your solution, you can use use the checker supplied with the skeleton project.

In the root of the project, use

./gradlew checkProgram

Each of the 9 tests will indicate if they have passed or not. The last of the input graphs:
graphmatrix-10.txt does not have cycles, but the DAG is not unique, so it is not included in the
automated tests.

Getting Started
Suggested steps to get started:

Download the skeleton project, that includes header files, Makefile, graphs to test on etc.

Create the linked list that you need to store the vertices and in the algorithm.

Read in the graph (specified on the command line) into a datastructure

Printout the graph (for debugging, remove this once you proceed).

Implement Kahn’s algorithm

You can remove edges from the graph in the proces.

Output the result

Report
The primary objective of this project is to program a lot of c-code.

You do not have to write a report, but should include a README file in your project, shortly
describing the status of your implementation. It should also describve if there is corner-cases
you do not handle, did you not complete everything, etc.

You should instead of the report focus on writing well formatted, easy understandable and
maintainable code. To do so, make sure formatting is consistent, you use descriptive variable
names, the code does not have compile warnings, you refactor large methods into smaller

ones etc.

What to turn in?
You must make sure the program compiles and runs on an IMADA machine in the terminal
room, and you have a file called README in your source folder as described above.

In your project source folder, run make clean. Place yourself above the Linux directory with
these files and pack it with

tar zcvf <your name>.tgz <directory name>

and upload the resulting .tgz file

Make sure you hand in the project, even if you did not complete it. I may approve projects if I
find a large enough efford to learn c-programming, even if the project does not pass all tests

Extra Challenges
The following are suggestions for extra challenges, that are not required for succesfull
completion of the project

Remove memory leaks/clean up your memory. This requires to free alle malloc’ed memory,
typically in the backwards order.

F.A.Q.
No questions yet :)

