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To my grandfather





Preface

The present text constitutes my dissertation for the PhD degree in mathematics
and consists of a detailed treatment of my work done during the period from May
2005 to April 2008. The guiding question throughout my time as a PhD student
has been the following.

How can one extend the theory of L2-invariants from the category of groups to
the category of quantum groups?

The thesis suggests one possible answer to this question and discusses its conse-
quences by doing concrete computations and extending classical results from the
group case to the quantum group case.

Thanks are due to many people; first of all to my adviser Ryszard Nest for
guiding, and to a great extend conducting, my mathematical education during
the last five years and for sharing with me his points of view on mathematics
in general. Secondly, I thank my fellow students in Copenhagen for keeping me
mathematical, as well as non-mathematical, company and the SNF center in non-
commutative geometry for the financial support during my first two years as a PhD
student. Finally, I thank E. Blanchard, A. Thom and S. Vaes for their instructive
comments and suggestions in connection with my work.
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Copenhagen, April 2008
David Kyed
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About this text

The main new results in the thesis all stem from the articles L2-homology for
compact quantum groups [Kye06] and L2-Betti numbers of coamenable quantum
groups [Kye07], which are included at the end of the thesis. These articles are
addressed to people working with L2-invariants and/or quantum groups, but the
present text aims at a broader audience — for instance students working in the
field of operator algebras. The thesis is therefore structured such that Chapter 1,
2 and 3 consist, to a great extend, of background material which, to the author’s
opinion, makes the primary contents of the thesis, contained in Chapter 4 and
Chapter 5, easier to digest. Almost no proofs are given throughout the text, but
any result stated without proof is followed by a reference — if possible to the
original source. The classical theory surveyed in Chapter 1, 2 and 3 deals with
the theory of L2-invariants, the theory of compact quantum groups and the theory
of fusion algebras, but is by no means a comprehensive treatment of any of these
subjects. The selection of the results presented is mainly based on what is needed
in order to understand the contents of Chapter 4 and Chapter 5, which contain
a presentation of the author’s results from the articles [Kye06] and [Kye07]. To
compensate for the sparse treatment of the above mentioned theories, a couple of
general references to sources treating the relevant subject in details will be given
in the beginning of each chapter.

The article [Kye06] is already accepted for publication in its current form and
therefore only minor changes will occur before publication. The article [Kye07]
is only submitted for publication and may therefore change dramatically before
publication.
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Chapter 1

Introduction to L2-invariants

The subject of L2-invariants deals, very roughly, with measuring the size of ho-
mological objects relative to an action of a tracial von Neumann algebra. The
philosophy is that although these homology modules may be very big and per-
haps difficult to compute, it might still be possible to make statements about
their sizes by having some suitable notion of dimension to replace the linear di-
mension in case this is infinite. In this chapter we shall introduce two examples of
L2-invariants, known as the L2-Betti numbers and the Novikov-Shubin invariants
respectively. A good general reference for the subject is W. Lück’s book [Lüc02].

1.1 L2-Betti numbers

The notion of L2-Betti numbers was introduced by M. F. Atiyah in a differential
geometrical setting, and for the sake of completeness we shall begin by introduc-
ing this classical approach. Consider a connected manifold X together with a
free, proper and cocompact action of a discrete, countable group Γ, and assume
moreover that X is endowed with a Γ-invariant Riemannian metric. The canonical
example of such an action is the action by deck transformations of the fundamental
group π1(N) of a compact, connected manifold N on the universal covering man-
ifold Ñ . Denote by ∆p the closed, densely defined, unbounded Laplacian acting
on the space of square integrable p-forms L2Ωp(X). The space Hp

(2)(X) of square

integrable, harmonic p-forms on X (i.e. the kernel of ∆p) becomes a finitely gen-
erated Hilbert module for the group von Neumann algebra L (Γ); i.e. there exists
an L (Γ)-equivariant embedding of Hp

(2)(X) into `2(Γ)⊕n for some n ∈ N. This

follows for instance from the L2-Hodge-de Rham Theorem ([Lüc02, 1.59]). The p-

th L2-Betti number, β
(2)
p (X, Γ), of the action is then defined as the unnormalized

trace of the projection q = (qij)
n
i,j=1 of `2(Γ)⊕n onto Hp

(2)(X). In symbols:

β(2)
p (X, Γ) = dimL (Γ)Hp

(2)(X) =
n∑

i=1

τ(qii).

1



Chapter 1

Here τ : B(`2(Γ)) → C is the tracial vector state corresponding to the identity in
the group Γ and the dimension dimL (Γ)(·) appearing in the definition is called the
Murray-von Neumann dimension of the Hilbert module Hp

(2)(X). In this analytic

setting one can derive formulas for computing the L2-Betti numbers. Applying
functional calculus to the self-adjoint, unbounded operator ∆p we get, for each
t ≥ 0, another operator e−t∆p . To this operator an integral kernel

(x, y) 7−→ k(x, y, t) ∈ HomR(∧pT ∗
y X,∧pT ∗

xX).

(called the heat kernel) is associated; i.e. this section has the property that for
every ω ∈ L2Ωp(X) and every x ∈ X

e−t∆p(ω)(x) =

∫
F

k(x, y, t)(ω(y)) dvol(y).

Here F is a fundamental domain for the cocompact action of Γ and vol is the
(lift to F of the) volume form on the compact manifold X/Γ. At each point on
the diagonal of X ×X, the heat kernel is a self-adjoint endomorphism of a finite
dimensional vector space and as such it has well defined (and real) trace, and one
can therefore consider the function θp : [0,∞[→ R given by

θp(t) =

∫
F

Tr(k(x, x, t)) dvol(x).

The p-th L2-Betti number can then be computed ([Lüc02, 3.136]) by the following
formula.

β(2)
p (X, Γ) = lim

t→∞
θp(t).

Although defined through analytic data, the L2-Betti numbers turn out to be
invariant under homotopy; so if M and N are homotopic, compact, connected
manifolds and Γ denotes π1(M) = π1(N) then

β(2)
p (M̃, Γ) = β(2)

p (Ñ , Γ),

for all p ≥ 0. See e.g. [Dod77] and [BMW97]. The L2-Betti numbers are there-
fore to be considered as a rather stable invariant and the homotopy invariance, of
course, also makes concrete computations easier. If one only allows contractible
manifolds to appear in the definition above, the L2-Betti numbers become in-
dependent of the choice of X and are therefore just invariants of the group Γ.
In case such a contractible, Riemannian manifold X exists, the L2-Betti num-
bers are referred to as the L2-Betti numbers of Γ; denoted β

(2)
p (Γ). However, not

every discrete group can act freely, properly and cocompactly on a contractible,
Riemannian manifold and hence the above definition does not cover all discrete
groups. For instance, if Γ acts freely, cocompactly and properly on a contractible
manifold X this forces X/Γ to be an Eilenberg-MacLane space for Γ. Since X/Γ
is also a manifold this, in turn, forces Γ to be torsion free ([Hat02, 2.45]). Histori-
cally, this problem was first circumvented by J. Cheeger and M. Gromov in [CG86],
by taking an inverse limit of certain free, cocompact, simplical Γ-complexes. We
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Introduction to L2-invariants

shall, however, use another method due to W. Lück to bypass the problem and will
therefore not elaborate further on the construction of Cheeger and Gromov. The
reader is referred to the original article [CG86] and to [Lüc02] for more details.
The idea of Lück is to transport the notion of Murray-von Neumann dimension
to an algebraic setting and thereafter extend the domain of definition to cover all
(algebraic) L (Γ)-modules. The details are carried out in the following subsection.

1.1.1 The extended dimension function

Consider a finite von Neumann algebra M endowed with a distinguished, faithful,
normal, tracial state τ . Any finitely generated, projective (algebraic) M -module
P has the form MnA for some idempotent matrix A = (aij)

n
i,j=1 in Mn(M), and

A may actually be chosen self-adjoint. The Murray-von Neumann dimension of
P is then defined as

dimM(P ) =
n∑

i=1

τ(aii) ∈ [0,∞[.

This dimension is independent of the chosen representation of P (as MnA) and
is a natural algebraic analogue of the classical notion of Murray-von Neumann
dimension of finitely generated Hilbert M -modules. Actually, [Lüc97, 0.1] shows
that there is an equivalence of categories

Finitely generated
projective M -modules with
M -linear homomorphisms

ν
GGGGGGGGGGA

∼

Finitely generated Hilbert
M -modules with

M -equivariant bounded
operators

In this language, the above definition boils down to dimM(P ) = dimM(ν(P )). On
the algebraic level, the dimension function is extended to arbitrary M -modules
by setting

dim′
M(X) = sup{dimM(P ) | P ⊆ X, P finitely generated, projective}.

Clearly the dimension function dim′
M(·) may attain the value infinity and, in

contrast to dimM(·), it is not faithful. I.e. there may exist non-trivial M -modules
with dimension zero. But, besides these problems the dimension function dim′

M(·)
is surprisingly well behaved, as the following theorem shows.

Theorem 1.1.1 ([Lüc98, 0.6]). The dimension function dim′
M(·) has the following

properties.

(i) Extension property; for any finitely generated, projective M-module P we
have dim′

M(P ) = dimM(P ).

3



Chapter 1

(ii) Additivity; for any short exact sequence 0 → X1 → X2 → X3 → 0 of
M-modules we have

dim′
M(X2) = dim′

M(X1) + dim′
M(X3).

(iii) Cofinality; for any M-module X and any directed family (Xi)i∈I of submod-
ules with X = ∪iXi we have

dim′
M(X) = sup

i
dim′

M(Xi).

For a submodule Y of a finitely generated M-module X, the algebraic closure of
Y inside X is defined as

Y
alg

=
⋂

f∈HomM (X,M)
Y⊆ker(f)

ker(f).

The algebraic closure has the following properties.

(iv) Continuity; if Y is a submodule of a finitely generated M-module X then

dim′
M(Y ) = dim′

M(Y
alg

).

(v) If Y is a submodule of a finitely generated M-module X then Y
alg

is a direct

summand in X and X/Y
alg

is finitely generated and projective.

(vi) For a finitely generated module X, one defines

T (X) = {0}
alg

and P (X) = X/T (X).

Then P (X) is finitely generated and projective, X splits as P (X) ⊕ T (X)
and

dim′
M(X) = dimM(P (X)) and dim′

M(T (X)) = 0.

Because of part (i) in the above theorem we will henceforth suppress the dis-
tinction between dimM(·) and dim′

M(·) and simply denote both dimension func-
tions by dimM(·). As the following theorem shows, the extended dimension func-
tion is also well behaved with respect to induction.

Theorem 1.1.2 ([Lüc98, 3.3],[Sau02, 3.18]). Let M and N be finite von Neumann
algebras endowed with faithful, normal, tracial states and assume that ϕ : N → M
is a trace preserving ∗-homomorphism. Then for any N-module X we have

dimM(M �N X) = dimN(X).

Here, and in what follows, the symbol � denotes algebraic tensor product.
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Introduction to L2-invariants

A finite von Neumann algebra M has the important ring-theoretical property
of being semihereditary, i.e. any finitely generated (left) ideal in M is projective
considered as an M -module. Nevertheless, from the point of view of homological
algebra, there is ring with even better properties containing M , namely the ∗-
algebra U (M) of operators affiliated with M . If M acts on the Hilbert space H
then a closed, (possibly unbounded), densely defined operator D on H is said to
be affiliated with M if the equation

U∗DU = D,

holds — as an equation of unbounded operators — for all unitaries U in the
commutant M ′. Because M is assumed to be finite, the set U (M) becomes a ∗-
algebra ([MVN36]) and M is naturally included in U (M) as its bounded elements.
From a ring theoretical point of view, the ring U (M) can be considered as the Ore
localization of M with respect to the set of all non-zerodivisors. It therefore has
fine ring theoretical properties, of which the most important is probably that it is
von Neumann regular. I.e. every U (M)-module is automatically flat. Moreover,
as shown by H. Reich, it is possible to obtain a dimension theory for U (M)-
modules with the following properties.

Theorem 1.1.3 ([Rei01, 3.11]). There exists a dimension function dimU (M)(·)
on the category of arbitrary U (M)-modules satisfying additivity and cofinality
(see Theorem 1.1.1). Moreover, the functor U (M)�M− is exact and dimension
preserving; i.e. for any M-module X we have

dimU (M)(U (M)�MX) = dimM(X).

With the machinery introduced so far, we may, in particular, consider the
dimension of an arbitrary module over a group von Neumann algebra, which
leads to the following definition.

Definition 1.1.4 ([Lüc98, 4.1]). For a discrete group Γ its p-th L2-homology is
defined as

H(2)
p (Γ) = TorCΓ

p (L (Γ), C),

and its p-th L2-Betti number as

β(2)
p (Γ) = dimL (Γ) H(2)

p (Γ).

The above definition requires a bit of explanation; there we consider C as a
left CΓ-module via the trivial representation and L (Γ) as a right CΓ-module via
the left regular representation. Each of the abelian groups TorCΓ

p (L (Γ), C) carries
a natural left L (Γ)-module structure, arising from multiplication from the left,
and it is with respect to this action, and the canonical trace, the dimension is
calculated.

Remark 1.1.5 (Comparison with the analytic approach). Assume that Γ acts
on a contractible, Riemannian manifold X in a free, proper and cocompact way.
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In this case we have ([Lüc02, 1.59, 6.53]) an isomorphism of finitely generated
Hilbert L (Γ)-modules

Hp
(2)(X) ' Hp

sing(X, L (Γ)),

where the right hand side is the singular cohomology of X with coefficients in
L (Γ). More precisely, the action of Γ on X induces an action on the singular
cochains C∗

sing(X, Z) and Hp
sing(X, L (Γ)) is then defined as the cohomology of the

complex
(L (Γ) �

ZΓ
C∗

sing(X), id⊗∂∗sing).

Note that the tensor product is over the group ring ZΓ and not the integers. The
cohomology groups Hp

sing(X, L (Γ)) carry a natural action of L (Γ) inherited from
multiplication (from the left) on the first tensor factor. Since X is assumed to be
contractible, the singular cohomology complex becomes a free ZΓ-resolution of Z,
and we therefore have isomorphisms of L (Γ)-modules

Hp
sing(X, L (Γ)) ' TorZΓ

p (L (Γ), Z) ' TorCΓ
p (L (Γ), C),

proving that the homological algebraic definition of H
(2)
p (Γ) and β

(2)
p (Γ) extends

the classical analytic definition.

Another, essentially equivalent, approach to the generalization of L2-invariants
from the analytic setting to a more algebraic one, was suggested by M.S. Faber
in [Far96]. We have chosen to present the approach of W. Lück since this seems
to be the one most used among people working within the area of L2-invariants.

1.2 Novikov-Shubin invariants

In this section we introduce the so-called Novikov-Shubin invariants. As with L2-
Betti numbers, these were first defined ([NS86]) in a differential geometrical setting
and later ([Lüc97],[LRS99]) transported and generalized to the setting of algebraic
modules over a tracial von Neumann algebra M . According to Theorem 1.1.1,
every finitely generated M -module X splits as P (X) ⊕ T (X) and the dimension
function dimM(·) measures the size of P (X). The Novikov-Shubin invariants are
complementary, in the sense that they are concocted to measure the size of T (X).
We here first sketch the classical analytic approach and then proceed with a more
detailed treatment of the algebraic one.

1.2.1 The analytic approach

As we saw in the previous section, the p-th L2-Betti number of a free, proper, co-
compact, Riemannian Γ-manifold X measures the size of the kernel of the Lapla-
cian ∆p acting on L2Ωp(X). Or, in other words, the size of the range of its

6



Introduction to L2-invariants

spectral projection at zero. The Novikov-Shubin invariants, which we are about
to introduce, measures how fast the spectral projections approaches the zeroth
one. To make this statement precise we need a few definitions. The spectral
density function Fp : [0,∞[→ [0,∞] for ∆p is defined by

Fp(λ) = dimL (Γ) rg(χ[0,λ2](∆
∗
p∆p)).

This function turns out to be non-decreasing and right continuous, and in case
Fp(λ) > Fp(0) for all λ > 0, the p-th Novikov-Shubin invariant of the pair (X, Γ)
is defined as

αp(X, Γ) = lim inf
λ↘0

log(Fp(λ)− Fp(0))

log(λ)
= sup

µ>0
inf

µ≥λ>0

{ log(Fp(λ)− Fp(0))

log(λ)

}
∈ [0,∞].

The p-th L2-Betti number can also be expressed using the spectral density function
by means of the following simple formula

β(2)
p (X, Γ) = Fp(0).

This formula, together with the definition of the Novikov-Shubin invariants, makes
precise what is meant by the introductory statement about the L2-Betti number
measuring the size of the spectral projection at zero and the Novikov-Shubin
invariant measuring how fast the spectral projections approaches the zeroth one.
As with the L2-Betti numbers, Novikov-Shubin invariants turn out to be invariant
under homotopy ([Lüc02, 2.68],[GS91]) which is far from obvious and makes them
interesting invariants of the manifold.

As we saw in the previous section, the theory of L2-Betti numbers has been put
into a purely algebraic framework by W. Lück, and a similar procedure has been
carried out by W. Lück, H. Reich and T. Schick for the theory of Novikov-Shubin
invariants — this is done using the language of capacities, which are essentially
inverses of Novikov-Shubin invariants.

1.2.2 Capacities

Let again M be a finite von Neumann algebra with a distinguished, normal,
faithful, tracial state τ and consider an operator T ∈ M . Its spectral density
function FT : [0,∞[→ [0, 1] is defined by

FT (λ) = τ(χ[0,λ2](T
∗T )),

and this function turns out to be non-decreasing and right continuous. The
Novikov-Shubin invariant of T is then defined as

α(T ) = lim inf
λ↘0

log(FT (λ)− FT (0))

log(λ)
= sup

µ>0
inf

µ≥λ>0

{ log(FT (λ)− FT (0))

log(λ)

}
,

if FT (λ) > FT (0) for all λ > 0. Otherwise we put α(T ) = ∞+, where ∞+ is a new
formal symbol. We order the set [0,∞]∪{∞+} by the standard ordering on [0,∞]

7
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and the convention that t < ∞+ for all t ∈ [0,∞]. It will also be convenient to
introduce a formal multiplicative inverse of ∞+, called 0−, and extend the order
to [0,∞]+− = [0,∞] ∪ {0−,∞+} by setting 0− < t for all t ∈ [0,∞] ∪ {∞+}.
Moreover we will extend the usual rules of addition and multiplication to [0,∞]+−
by declaring

t +∞+ = ∞+ for all t ∈ [0,∞]+−,

t + 0− = t for all t ∈ [0,∞]+−,

and
1

0
= ∞,

1

∞
= 0,

1

0−
= ∞+ and

1

∞+
= 0−.

The number c(T ) = 1
α(T )

∈ [0,∞]+− is called the capacity of T . Consider now

a finitely presented, zero-dimensional M -module Z. Then there exists ([Lüc97,
3.4]) a short exact sequence of the form

0 −→ Mn f−→ Mn −→ Z −→ 0,

where f is multiplication from the right with some matrix T ∈ Mn(M). The
Novikov-Shubin invariant (respectively capacity) of Z is defined as α(Z) = α(T )
(respectively c(Z) = c(T )), computed relative to the von Neumann algebra Mn(M)
with trace state

τn((aij)
n
i,j=1) =

1

n

n∑
i=1

τ(aii).

If the von Neumann algebra, with respect to which the capacity is computed,
is not clear from the context we shall decorate the capacity function suitably;
i.e. write cM(Z) or cM,τ (Z) instead of just c(Z). The values of α(Z) and c(Z) are
independent of the choice of short exact sequence, as can be seen from [Lüc97,
3.6,3.9]. Following the approach in [LRS99], we will now describe how the notion
of capacity can be extended to the category of all M -modules. In order to do this,
some definitions will be convenient.

Definition 1.2.1 ([LRS99, 2.1]). Denote by FP0(M) the category of all finitely
presented, zero-dimensional M-modules considered as a full subcategory of the
category of all M-modules. An M-module X is said to be

• measurable, if it is a quotient of some module in FP0(M).

• cofinal measurable, if every finitely generated submodule of X is measurable.

It is not difficult to see that a measurable M -module is also cofinal measurable.
This is due to the fact that the category of finitely presented M -modules is abelian
([Lüc97, 0.2]), which is true because M is semihereditary. Now two (a priori
different) capacity functions are defined in the following way.

8



Introduction to L2-invariants

Definition 1.2.2 ([LRS99, 2.2]). For a measurable M-module X its capacity is
defined as

c′(X) = inf{c(Z) | Z ∈ FP0(M) and X is a quotient of Z}.

For an arbitrary module X its capacity is defined as

c′′(X) = sup{c′(Y ) | Y measurable and Y ⊆ X}.

These definitions are justified by the following theorem.

Theorem 1.2.3 ([LRS99, 2.2,2.4]). The capacity functions c, c′ and c′′ have the
following properties.

(i) If Z ∈ FP0(M) then c′(Z) = c(Z) and if X is a measurable module then
c′(X) = c′′(X).

(ii) If 0 → X1 → X2 → X3 → 0 is a short exact sequence of M-modules then

• c′′(X1) ≤ c′′(X2);

• c′′(X3) ≤ c′′(X2) if X2 is cofinal measurable;

• c′′(X2) ≤ c′′(X1) + c′′(X3) if dimM(X2) = 0.

(iii) If X is a directed union of submodules (Xi)i∈I then c′′(X) = supi∈I c′′(Xi).

(iv) If (Xi)i∈I is any family of modules then c′′(⊕i∈IXi) = supi∈I c′′(Xi).

(v) If X is finitely presented then c′′(P (X)) = 0− and c′′(X) = c′′(T (X)).

Part (v) is not mentioned explicitly in [LRS99], but follows easily: since X =
P (X)⊕ T (X) and P (X) is finitely generated and projective (Theorem 1.1.1) we
have c′′(P (X)) = 0−. Part (iv) then gives

c′′(X) = max{c′′(P (X)), c′′(T (X))} = max{0−, c′′(T (X))} = c′′(T (X)).

Because of part (i) in the above theorem, we will henceforth omit the primes on
the different capacity functions and simply write c(X) for an arbitrary M -module
X. Comparing part (vi) in Theorem 1.1.1 with part (v) in Theorem 1.2.3 one
sees that, for a finitely generated M -module X, the dimension function measures
the size of the projective part P (X) while the capacity measures the size of its
complement T (X). Having extended the notion of capacity to arbitrary modules
the following definition is natural.

Definition 1.2.4 ([LRS99, 3.1]). For a discrete group Γ its p-th capacity is defined
as

cp(Γ) = c(H(2)
p (Γ)),

where the capacity on the right hand side is calculated with respect to the natural
action of L (Γ) on H

(2)
p (Γ).

9
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Due to work of W. Lück, H. Reich, T. Schick in [LRS99], R. Sauer in [Sau02]
and L. Vaš in [Vaš05] it is also known that the capacity function is well behaved
with respect to induction.

Theorem 1.2.5 ([Vaš05, 7.1]). If N and M are finite von Neumann algebras with
distinguished, faithful, normal, tracial states and ϕ : N → M is a trace preserving
∗-homomorphism, then for any N-module X

cM(M �N X) = cN(X).

In general, computations of capacities are difficult. We quote here a compu-
tational result about the zeroth capacity, in order for the reader to get a feeling
for the behavior of capacities.

Theorem 1.2.6 ([LRS99, 3.2]). Let Γ be a finitely generated, discrete group.
Then

c0(Γ) =


0− if Γ is finite or non-amenable;
1
n

if Γ has polynomial growth of degree n;
0 if Γ is infinite and amenable but not virtually nilpotent.

Since the growth rate of Zn is exactly n, the above theorem in particular gives
c0(Zn) = 1

n
. We shall later prove that this result has a natural generalization to

the context of abelian, compact quantum groups. See e.g. Theorem 5.1.6 and the
remarks preceding it.

1.3 L2-homology for tracial algebras

In [CS05], A. Connes and D. Shlyakhtenko developed a theory of L2-homology for
certain subalgebras of finite von Neumann algebras. We recapitulate their theory
and its main properties in this section.

Consider a finite von Neumann algebra M endowed with a faithful, normal
tracial state τ and let A be a weakly dense, unital ∗-subalgebra of M . Then the
p-th L2-homology of the pair (A, τ) is defined as

H(2)
p (A, τ) = TorA�Aop

p (M⊗̄Mop, A).

Here Aop denotes the opposite algebra and A is considered a left A�Aop-module
via the action (a ⊗ bop) · x = axb. The symbol M⊗̄Mop denotes the von Neu-
mann algebraic tensor product of M and Mop; i.e. the weak operator closure of
M�Mop acting on the tensor product of the representation spaces of M and Mop

respectively. The p-th L2-Betti number of the pair (A, τ) is then defined as

β(2)
p (A, τ) = dimM⊗̄Mop H(2)

p (A, τ),

where the dimension is computed with respect to the tracial state τ⊗̄τ op on
M⊗̄Mop. This extends the definition for groups by means of the following.

10
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Proposition 1.3.1 ([CS05, 2.3]). For a discrete group Γ we have

β(2)
p (CΓ, τ) = β(2)

p (Γ),

when CΓ is considered as a ∗-subalgebra of L (Γ) with its natural trace τ .

One can of course hope for the relation β
(2)
p (L (Γ), τ) = β

(2)
p (Γ), but at this mo-

ment this is still unproven and seems out of reach with the current methods. If this
relation holds true, one would obtain a solution to the famous non-isomorphism
conjecture for the free group factors L (Fn), stating that L (Fn) 6' L (Fm) when

n 6= m. This is due to the fact that β
(2)
1 (Fn) = n − 1. As an intermedi-

ate result between the relation β
(2)
1 (CΓ, τ) = β

(2)
1 (Γ) and the desired relation

β
(2)
1 (L (Γ), τ) = β

(2)
1 (Γ), A. Thom ([Tho06, 4.6]) proved that whenever A is

a weakly dense C∗-algebra inside a tracial von Neumann algebra (M, τ) then

β
(2)
1 (A, τ) = β

(2)
1 (M, τ).

The main properties of the Connes-Shlyakhtenko L2-Betti numbers are gath-
ered in the following theorem.

Theorem 1.3.2 ([CS05, 2.4,2.5,2.6]). The L2-Betti numbers satisfy the following
properties.

(i) For i = 1, . . . , n let Ai ⊆ (Mi, τi) be a weakly dense ∗-algebra and endow
A = ⊕n

i=1Ai and M = ⊕n
i=1Mi with the trace

τ(x1, . . . , xn) =
n∑

i=1

siτi(xi),

for some s1, . . . , sn > 0 with
∑

i si = 1. Then

β(2)
p (A, τ) =

n∑
i=1

s2
i β

(2)
p (Ai, τi).

(ii) If M is a factor and e ∈ M is a projection with τ(e) = λ > 0 then

β(2)
p (eMe, 1

λ
τ
∣∣
eMe

) =
1

λ2
β(2)

p (M, τ).

(iii) If M is a II1 factor then H
(2)
0 (M, τ) 6= 0 if and only if M is the hyper finite

factor.

In general, these L2-Betti numbers are very hard to compute and (to the best of
the author’s knowledge) so far no complete calculation of the L2-Betti numbers of
any II1 factor has been conducted. Partial results can be obtained for instance for
the hyper finite factor R using the compression formula (ii) from Theorem 1.3.2.

11
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More precisely, since the fundamental group of R is all of R×
+, we can choose

a projection e ∈ R of trace 1
2

such that eRe ' R, and then the compression

formula (ii) implies that β
(2)
p (R, τ) ∈ {0,∞}. The exact values of the L2-Betti

numbers of the hyper finite factor are still unknown.

If the center of the von Neumann algebra is sufficiently big, the L2-Betti num-
bers can also be computed, as the following theorem shows.

Theorem 1.3.3 ([Tho06, 2.2]). If (M, τ) is a tracial von Neumann algebra with

diffuse center then β
(2)
p (M, τ) = 0 for all p ≥ 0.

r tr
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Chapter 2

Compact quantum groups

In this chapter we review Woronowicz’s theory of compact quantum groups. There
are many good expositions of the basics of the theory; here we choose the original
source [Wor98] and the lecture notes [MVD98],[KT99] as standard references.
Throughout the chapter, the symbol⊗ will be used to denote the minimal (spatial)
tensor product of C∗-algebras.

2.1 Definitions

We take here Woronowicz’s original definition of a compact quantum group.

Definition 2.1.1 ([Wor98, 1.1]). A compact quantum group G is a pair (A, ∆)
where A is a separable, unital C∗-algebra and ∆: A −→ A ⊗ A is a ∗-homomor-
phism satisfying

(id⊗∆)∆ = (∆⊗ id)∆ (coassociativity)

[∆(A)(1⊗ A)] = [∆(A)(A⊗ 1)] = A⊗ A (non-degeneracy)

Here, for a subset S of a normed space, [S] denotes the closed linear span of
the elements in S. The basic example of a compact quantum group, on which the
above definition is based, is the following: Let G be a compact, second countable,
Hausdorff, topological group and consider its Gelfand dual C(G) of continuous
functions on G. Define ∆c : C(G) → C(G)⊗ C(G) = C(G×G) by

∆c(f)(s, t) = f(st).

Then coassociativity of ∆c is equivalent to associativity of the multiplication in
G. The more subtle non-degeneracy condition is a noncommutative analogue of
the existence of inverse elements in a group. In the case when A = C(G) the non-
degeneracy condition is equivalent to the fact that the group multiplication in G
has the cancellation property. Since it is well-known that a compact semigroup
with cancellation is actually a group, the following result is to be expected.

13
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Proposition 2.1.2 ([Wor98, Rem. 3]). If G = (A, ∆) is a compact quantum
group and A is an abelian C∗-algebra then there exists a compact, second countable,
Hausdorff topological group G and a ∗-isomorphism α : A → C(G) such that ∆c =
(α⊗ α)∆α−1.

Example 2.1.3. If Γ is a discrete, countable group its reduced C∗-algebra C∗
red(Γ)

becomes a compact quantum group when endowed with comultiplication given by

∆red(λγ) = λγ ⊗ λγ.

Here λ : Γ → B(`2(Γ)) denotes the left regular representation.

Definition 2.1.4. A compact quantum group G = (A, ∆) is called cocommutative
if σ ◦∆ = ∆, where σ : A⊗ A → A⊗ A is the flip-automorphism.

Note that (C∗
red(Γ), ∆red) is an example of a cocommutative, compact quantum

group, and one can prove ([KT99, p. 53]) that every compact, cocommutative
quantum group (whose Haar state is faithful (see Theorem 2.1.7)) has this form.
As an example of a compact quantum group that is neither of the form (C(G), ∆c)
nor of the form (C∗

red(Γ), ∆red) we now present Woronowicz’s quantum SU(2)
introduced and studied in [Wor87b]. This is probably the most classical among
such examples.

Example 2.1.5 (Quantum SU(2)). Let q ∈ [−1, 1] \ {0} be given and denote by
A0 the universal, unital ∗-algebra generated by the symbols α and γ subject to
the following relations.

α∗α + γ∗γ = 1

αα∗ + q2γγ∗ = 1

γγ∗ − γ∗γ = 0

αγ − qγα = 0

αγ∗ − qγ∗α = 0

These relations are easily seen to be equivalent to the requirement that the 2× 2
matrix (

α −qγ∗

γ α∗

)
is unitary. This unital ∗-algebra can be endowed with comultiplication ∆, an-
tipode S and counit ε which on the generators are given by the formulas

∆(α) = α⊗ α− qγ∗ ⊗ γ

∆(γ) = γ ⊗ α + α∗ ⊗ γ

S(α) = α∗

S(α∗) = α

S(γ) = −qγ

S(γ∗) = −1
q
γ

ε(α) = 1

ε(γ) = 0

14
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It is not difficult to prove ([KT99, p. 37]) that (A0, ∆) becomes a Hopf ∗-algebra
with counit ε and antipode S. Using the defining relations, one sees that the norm

‖a‖u = sup{‖π(a)‖ | π unital ∗-representation of A0}

is finite. Moreover, one can explicitly construct ([KT99, p. 39]) a faithful repre-
sentation of A0 and therefore ‖ · ‖u becomes a C∗-norm. By construction of the
norm, the comultiplication ∆ extends to the ‖ · ‖u-completion A of A0, turning
it into a compact quantum group. This compact quantum group is Woronowicz’s
famous quantum SU(2), denoted SUq(2) in the following. The reason for the
name is that SU1(2) equals (C(SU(2)), ∆c).

Similar to the construction of SUq(2), one can also deform other compact
Lie groups to obtain noncommutative, compact quantum groups. Another way to
obtain examples of compact quantum groups is by construction of the free versions
of the orthogonal groups O(n) and unitary groups U(n), which will be discussed
in the following example. These were first introduced by S. Wang and A. van
Daele in [Wan95], [VDW96] and studied intensively by T. Banica in [Ban96] and
[Ban97].

Example 2.1.6. Let n ≥ 2 and denote by A0 the universal, unital ∗-algebra
generated by n2 symbols {vij | 1 ≤ i, j ≤ n} subject to the relations making the
matrix v = (vij) orthogonal. I.e. vij = v∗ij and the transpose vt is the inverse of v.
We endow A0 with a comultiplication ∆: A0 → A0�A0 by setting

∆(vij) =
n∑

k=1

vik ⊗ vkj,

and defining S : A0 → A0 and ε : A0 → C by

S(vij) = v∗ji = vji and ε(vij) = δij,

turns (A0, ∆, S, ε) into a Hopf ∗-algebra. By considering the matrix products vtv
and vvt, one sees that this ∗-algebra admits a universal enveloping C∗-algebra A,
and by construction ∆ extends to A yielding a compact quantum group. This
quantum group is called the free orthogonal quantum group, denoted Ao(n). The
reason for the name is that the abelianization of A, together with the induced
comultiplication, is (C(O(n)), ∆c).

If, instead, we begin with the the universal, unital ∗-algebra generated by
n2 symbols {uij | 1 ≤ i, j ≤ n} subject to the relations making the matrix
u = (uij) as well as ū = (u∗ij) unitary, the same formulas — with vij replaced with
uij — yield a comultiplication, antipode and counit. The universal enveloping
C∗-algebra exists and the comultiplication extends boundedly, giving rise to the
so-called free unitary quantum group Au(n). Again, the reason for the name is
that the abelianization of Au(n) equals (C(U(n)), ∆c).

In the theory of compact groups, the existence and uniqueness of the Haar
measure is a deep result with many important implications. The following theorem
is to be considered as a quantum analogue of this result.
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Theorem 2.1.7 ([Wor98, 1.3]). Let G = (A, ∆) be a compact quantum group.
There exists a unique state h : A → C which is both left and right invariant in the
sense that

(id⊗h)∆(a) = h(a)1A = (h⊗ id)∆(a),

for all a ∈ A. The state h is called the Haar state of G.

As it should be expected, when G = (C(G), ∆c) the Haar state is given by
integration with respect to the unique Haar probability measure on G.

2.2 Theory of corepresentations

As with compact groups, it turns out that compact quantum groups have a rich
(co)representation theory, of which we will survey the highlights in the following.
A corepresentation of a compact quantum group G = (A, ∆) on a finite dimen-
sional (complex) Hilbert space H is an invertible element v ∈ B(H)⊗A satisfying

(id⊗∆)v = v(12)v(13). (2.1)

Here we use the so-called leg-numbering convention; if v = x⊗ y then for instance
v(12) = x ⊗ y ⊗ 1 and v(13) = x ⊗ 1 ⊗ y. By choosing a basis e1, . . . , en for H
we get an identification of B(H)⊗A with Mn(A). If, under this identification, v
becomes the matrix (vij) the defining property (2.1) becomes

∀i, j ∈ {1, . . . , n} : ∆vij =
n∑

k=1

vik ⊗ vkj.

The elements vij ∈ A are called the matrix coefficients of v with respect to the
basis e1, . . . , en. Another choice of basis yields a different system of matrix coeffi-
cients, but two such sets will always generate the same linear subspace of A. The
corepresentation v is called unitary if v is a unitary in B(H)⊗ A.

Example 2.2.1. Assume that G = (C(G), ∆c) for some compact group G and
let v : G → GLn(C) be a finite dimensional representation. Then the matrix
coefficients vij are in C(G) and the matrix (vij) ∈ Mn(C(G)) is a corepresentation
of G. One easily checks that every finite dimensional corepresentation of G is
obtained in this way. Note also that the matrices (vij) and (uij), used to define
Ao(n) and Au(n) respectively, are corepresentations by construction.

Given two finite dimensional corepresentations v =
∑

i Ti ⊗ ai ∈ B(H) ⊗ A
and w =

∑
j Sj ⊗ bj ∈ B(K) ⊗ A their direct sum v ⊕ w ∈ B(H ⊕ K) ⊗ A is

defined as

v ⊕ w =
∑

i

(
Ti 0
0 0

)
⊗ ai +

∑
j

(
0 0
0 Sj

)
⊗ bj.
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Their tensor product v T©w in B(H ⊗K)⊗ A is defined as

v T©w = v(13)w(23) =
∑
i,j

Ti ⊗ Sj ⊗ aibj.

An element X ∈ B(H, K) is called a morphism (or intertwiner) from v to w if
(X ⊗ 1)v = w(X ⊗ 1). We denote the set of morphisms from v to w by Mor(v, w)
and v and w are called equivalent if Mor(v, w) contains an invertible operator. A
subspace H0 of H is called v-invariant if{ ∑

i

Ti(ξ)⊗ ai | ξ ∈ H0

}
⊆ H0 ⊗ A,

and v is called irreducible if it allows only the trivial invariant subspaces. The
following quantum version of Schur’s lemma is of great importance in the theory
of corepresentations.

Lemma 2.2.2 ([MVD98, 6.6]). If u and v are unitary, irreducible corepresenta-
tions then Mor(u, v) = {0} if u and v are not equivalent and dimC Mor(u, v) = 1
if u and v are equivalent.

Just as with classical representations of compact groups, the corepresentations
of compact quantum groups have the following decomposability property.

Theorem 2.2.3 ([Wor98, 3.4],[MVD98, 6.4]). Every corepresentation is equiva-
lent to a direct sum of irreducible, unitary corepresentations. In particular, every
irreducible corepresentation is equivalent to a unitary one.

Consider now a complete set {uα}α∈I of representatives for the equivalence
classes of irreducible, unitary corepresentations. That is, the elements in {uα}α∈I

are pairwise inequivalent and every irreducible corepresentation is equivalent to
(exactly) one of the uα’s. Denote by Hα the representation space of uα and by nα

its dimension, and choose a basis for Hα to identify B(Hα)⊗A with Mnα(A). Then
the following quantum version of the Peter-Weyl orthogonality relations holds.

Theorem 2.2.4 ([Wor98, Section 6]). For each α ∈ I there exists a unique, posi-
tive, invertible matrix Fα ∈ Mnα(C) with the properties that Tr(Fα) = Tr((Fα)−1)
and

h(uα∗
ij uβ

kl) =
1

Tr(Fα)
δα,βδj,l(F

α)ik,

h(uα
iju

β∗
kl ) =

1

Tr(Fα)
δα,βδi,k((F

α)−1)jl.

If h is a trace, Theorem 2.2.4 implies that the set

{
√

nαuα
ij | α ∈ I, 1 ≤ i, j ≤ nα}

is an orthonormal basis for the GNS space L2(A, h).
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Remark 2.2.5. For the sake of simplicity, we have restricted our attention to
finite dimensional corepresentations in the above. However, there is a well devel-
oped theory of infinite dimensional corepresentations; these are invertible elements
in the multiplier algebra of K(H) ⊗ A for an infinite dimensional Hilbert space
H satisfying (2.1). By [Wor98], every irreducible unitary corepresentation is fi-
nite dimensional and Theorem 2.2.3 holds true also in the infinite dimensional
case. Considering only finite dimensional corepresentations is therefore not very
restrictive.

For a compact quantum group G = (A, ∆), we will denote by A0 the uni-
tal ∗-algebra generated by the matrix coefficients arising from a complete set of
representatives (uα)α∈I for the equivalence classes of irreducible, unitary corepre-
sentations of G. One easily checks that if u and v are equivalent, n-dimensional,
unitary corepresentations then

spanC{uij | 1 ≤ i, j ≤ n} = spanC{vij | 1 ≤ i, j ≤ n},

and the definition of A0 is therefore independent of the choice of representatives.
The set

{uα
ij | α ∈ I, 1 ≤ i, j ≤ nα}

turns out to be a a linear basis for A0 ([MVD98, 7.3]) and we can therefore define
linear maps S : A0 → A0 and ε : A0 → C by

S(uα
ij) = uα∗

ji and ε(uα
ij) = δij.

With the above notation the following holds.

Theorem 2.2.6 ([Wor98, 1.2]). The quadruple (A0, ∆, S, ε) is a Hopf ∗-algebra
and A0 is dense in A.

The reader is referred to [KS97] for a definition of Hopf algebras.

Definition 2.2.7. If G allows a unitary corepresentation u ∈ Mn(A) such that
the matrix coefficients of u generate A0 as a ∗-algebra then G is called a compact
matrix quantum group and u is called a fundamental corepresentation.

Remark 2.2.8. Consider again the commutative example (C(G), ∆c). Since rep-
resentations of G is the same as corepresentations of C(G), the algebra C(G)0

is nothing but the algebra of representative functions. The antipode becomes
S(f)(g) = f(g−1) and the counit is given by ε(f) = f(e). It is not difficult to
see that (C(G), ∆c) is a compact matrix quantum group exactly when G is a Lie
group. For the cocommutative example (C∗

red(Γ), ∆red) it is clear that each λγ

is a one-dimensional, unitary corepresentation and we will prove later (Propo-
sition 5.1.1) that there are no other irreducible ones — up to equivalence. So,
in this case we get C∗

red(Γ)0 = λ(CΓ) with (the linear extension of) inversion as
antipode and (the linear extension of) the trivial representation as counit. More-
over, (C∗

red(Γ), ∆red) is seen to be a compact matrix quantum group exactly when
Γ is finitely generated.
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Since it will be of importance to us later on, we end this section by introducing
the so-called contragredient corepresentation. Consider again a finite dimensional,
unitary corepresentation u ∈ B(H)⊗ A and define

uc = ((−)′)⊗ S)u,

where, for an operator S ∈ B(H), S ′ ∈ B(H ′) denotes the dual operator on
the dual Hilbert space H ′. This is still a corepresentation, but it is in general
not unitary — although equivalent to a unitary corepresentation, according to
Theorem 2.2.3. Assume that an orthonormal basis e1, . . . , en has been chosen for
H in which u is identified with the matrix (uij) ∈ Mn(A). By endowing the dual
space H ′ with the dual basis e′1, . . . , e

′
n, the contragredient corepresentation uc is

identified with the matrix ū = (u∗ij).

2.3 Coamenability

Corresponding to the notion of amenability for groups we find, in the setting of
quantum groups, the notion of coamenability which we shall study in this section.
Amenability and coamenability of quantum groups have been studied by many
different authors in different settings — a number of references are [BMT01],
[Voi79], [Rua96], [Ban99a], [Ban99b], [ES92] and [BS93]. Since we are dealing
with compact quantum groups, the approach in [BMT01] is the most natural and
we will follow this reference throughout this section.

Consider a compact quantum group G = (A, ∆) and denote by h its Haar state
with corresponding GNS representation πh. The reduced C∗-algebra Ared = πh(A)
inherits the structure of a compact quantum group from G ([BMT01, 2.1]) and we
will denote this quantum group by Gred = (Ared, ∆red). The state induced by h on
Ared is the Haar state on Gred and is faithful by construction. Since h is faithful
on A0 ([MVD98]), πh injects A0 into Ared and in the following we will consider
A0 as a subalgebra of Ared via this embedding. Also the universal C∗-envelope
Au (see e.g. Example 2.1.5) of A0 exists and inherits the structure of a compact
quantum group from G; we denote this quantum group by Gu = (Au, ∆u). The
reader is referred to [BMT01] for the details on these constructions.

Definition 2.3.1 ([BMT01]). A compact quantum group G = (A, ∆) is said to be
coamenable if the counit ε : A0 → C extends boundedly to the reduced C∗-algebra
Ared.

Example 2.3.2. If G is abelian, i.e. of the form (C(G), ∆c) for some compact
group G, then G is coamenable since the counit is given by evaluation at the
identity and hence globally defined and bounded. Note, however, that the coa-
menability of G has nothing to do with the amenability of the underlying compact
group G.

Example 2.3.3. Since a discrete group is amenable if and only if its trivial
representation factorizes through its left regular representation, we see that
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(C∗
red(Γ), ∆red) is coamenable if and only if Γ is amenable. For readers not familiar

with amenability for discrete groups, we refer to the remarks following Theorem
3.2.5 for the definition and to [Gre69] for a detailed treatment.

Example 2.3.4. The compact quantum groups SUq(2) defined in Example 2.1.5
are all coamenable. For q = 1 this is clear from Example 2.3.2 and for q 6= 1
this can be deduced using the results presented in Chapter 4, since the so-called
corepresentation ring (see Section 3.1.1) of SUq(2) is identical to the representation
ring of SU(2). See e.g. [Wor88] for this fact. Another proof of the coamenability
of SUq(2), using different methods, can be found in [KT99, 2.12].

The following example discusses the coamenability properties of the free uni-
tary and orthogonal quantum groups introduced in Example 2.1.6.

Example 2.3.5. The free orthogonal quantum group Ao(n) is coamenable only
for n = 2. The proof of this relies on the fact that the so-called fusion rules
for Ao(n) (see e.g. Section 3.1.1) can be explicitly computed. See [Ban96] for
the computation of the fusion rules and [Ban99a] for a proof of the claim about
coamenability. The corresponding free unitary quantum group Au(n) is not coa-
menable for any n. This follows from the fact that its reduced C∗-algebra is simple
([Ban97]) and therefore, in particular, does not allow a nontrivial one-dimensional
representation.

Remark 2.3.6. The choice of terminology may require a bit of explanation. Most
of the quantum group notation is set up to have the following property: A compact
group/space G has property ? if and only if (C(G), ∆c) has property co- ? . This
is the case with multiplication versus comultiplication, inverses versus coinverse
(antipode), unit versus counit, commutative versus cocommutative etc. However,
any compact group is amenable so choosing the definition of coamenability for
compact quantum groups according to this Gelfand duality principle does not
make much sense. Instead focus is put on the natural compact quantum group
(C∗

red(Γ), ∆red) associated to a discrete group Γ and the definition is chosen such
that this quantum group is coamenable exactly when Γ is amenable. So, if we
were to insist that the natural quantum group associated to a (locally) compact
group G is (C0(G), ∆c), and not (C∗

red(G), ∆red), then the above defined notion
of coamenability should have been called amenability. And coamenability should
then have been defined by requiring the dual quantum group to be amenable.
This convention is used, for instance, in the work of T. Banica ([Ban99b]). We
have chosen to stick with the above definition of coamenability, partially since it
seems that this terminology is the dominant one at the moment and partially to
be notation-wise synchronized with our primary source [BMT01] on the subject.

Some of the main results from [BMT01] are summarized in the following the-
orem.

Theorem 2.3.7 ([BMT01, 2.2,2.4,3.6]). Let G = (A, ∆) be a compact quantum
group. Then the following are equivalent.
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(i) G is coamenable.

(ii) The Haar state h is faithful on A and the counit is bounded with respect to
the norm on A.

(iii) The canonical surjection Au −→ Ared is an isomorphism.

If G is a compact matrix quantum group and u ∈ Mn(A) is a fundamental corep-
resentation for G then the above statements are also equivalent to the following.

(iv) The integer n belongs to σ(πh(Re(χ(u)))) where χ(u) =
∑n

i=1 uii.

Here, and in the sequel, σ(T ) denotes the spectrum of a given operator T .
The condition (iv) above is G. Skandalis’s quantum analogue of the so-called
Kesten condition for groups (see [Kes59],[Ban99a]) which is proved by T. Banica
in [Ban99b]. The next result is a generalization of the Kesten condition to the
case where a fundamental corepresentation is not (necessarily) present.

Theorem 2.3.8 ([Kye07, 4.4]). Let G = (A, ∆) be a compact quantum group.
Then the following are equivalent.

(i) G is coamenable.

(ii) For any finite dimensional, unitary corepresentation u ∈ Mnu(A) we have
nu ∈ σ(πh(Re(χ(u)))).

The reason for our interest in the generalized Kesten condition is that it al-
lows us to prove (see Chapter 4) that a compact quantum group is coamenable ex-
actly when its so-called fusion algebra of irreducible corepresentations is amenable.
This, in turn, provides us with a Følner condition for compact quantum groups
which is needed in the study of L2-Betti numbers for coamenable quantum groups.

r tr
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Chapter 3

Fusion algebras

In this chapter we introduce the notion of fusion algebras and establish the basic
properties of these objects. We then proceed by studying the concept of amenabil-
ity within the class of fusion algebras. The meaning of the word ”fusion algebra”
is not completely settled in the literature, but the overall structure behind the
different definitions is basically the same. Also the terminology is not completely
settled, for instance in the work of V. Sunder ([Sun92]) the word hypergroup is
used to describe the structure we will refer to as a fusion algebra. Here we take
the approach introduced in the work of F. Hiai and M. Izumi ([HI98]), and further
developed in [Yam99], since [HI98] will be our primary reference on the subject
of amenability for fusion algebras.

3.1 Definitions and basic properties

We first give the definition of a fusion algebra in the sense of [HI98]. Here, and in
what follows, the set of non-negative integers is denoted N0.

Definition 3.1.1 ([HI98, 1.1]). A fusion algebra is a unital ring R which is free as
a Z-module, of at most countable dimension, together with a distinguished Z-basis
I such that the following holds.

• The unit e of R = Z[I] is an element of I.

• For all ξ, η ∈ I the structure constants (Nα
ξη)α∈I satisfying

ξ · η =
∑
α∈I

Nα
ξηα,

are non-negative. I.e. the monoid N0[I] ⊆ Z[I] is closed under multiplica-
tion.

• There exists an anti-multiplicative Z-linear map R 3 r 7→ r̄ ∈ R of pe-
riod two, called the involution (or conjugation) of R, preserving the basis I
globally.
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• The structure constants satisfy Frobenius reciprocity, i.e. for all α, ξ, η ∈ I
we have

Nα
ξη = Nη

ξ̄α
= N ξ

αη̄.

• There exists a ring homomorphism d : R → R, called the dimension function
of R, such that d(ξ) > 0 and d(ξ) = d(ξ̄) for all ξ ∈ I.

Note that both the choice of basis, conjugation and dimension function are
parts of the data constituting the fusion algebra. The reason for requiring the
basis I to be at most countable is mainly to avoid unnecessary technicalities,
since we will not encounter examples without this property. Our main example of
interest will be the corepresentation ring of a compact quantum group (described
in detail in Section 3.1.1 below), and since we require a compact quantum group
to have a separable underlying C∗-algebra, its corepresentation ring will always
have an at most countable basis.

Fusion algebras have the following basic properties.

(i) Each fusion algebra R = Z[I] comes with a canonical tracial state given by

τ(
∑
ξ∈I

kξξ) = ke.

(ii) Note also that N e
ξη = δξ̄,η because Frobenius reciprocity yields

N e
ξη = Nη

ξ̄e
= δξ̄,η.

(iii) From the multiplicativity of d it follows that d(e) = 1 and (ii) implies that
e = ē. Moreover, since N e

ξξ̄
= 1 we get that

1 ≤ d(ξξ̄) = d(ξ)2,

so that d(ξ) ≥ 1 for all ξ ∈ I.

(iv) From the anti-multiplicativity of the conjugation it follows that Nα
ξη = N ᾱ

η̄ξ̄
.

(v) The requirement that the conjugation is an involution (i.e. that ¯̄r = r) is
actually redundant since Frobenius reciprocity implies that

N e
ξ̄ ¯̄ξ

= N ξ̄

eξ̄
= 1,

and by (ii) we therefore get ¯̄ξ = ξ for all ξ ∈ I.

(vi) We shall often pass to the complexified fusion algebra C[I] = C�ZZ[I], and
C[I] will always be considered with the induced ∗-ring structure, dimension
function and trace.

24



Fusion algebras

Example 3.1.2. For any discrete, countable group Γ the integral group ring ZΓ
becomes a fusion algebra when endowed with (the Z-linear extension of) inversion
as involution and trivial dimension function given by d(γ) = 1 for all γ ∈ Γ.

For a compact group G its irreducible representations constitute the basis in
a fusion algebra where the tensor product of representations is the product. We
shall not go into details with this construction since it will be contained in a more
general example, presented in the following subsection.

3.1.1 The ring of corepresentations

If G = (A, ∆) is a compact quantum group its irreducible corepresentations con-
stitute the basis of a fusion algebra with tensor product as multiplication. Since
this example will play a prominent role later, we shall now elaborate on the con-
struction. Denote by Irred(G) = (uα)α∈I a complete family of representatives
for the equivalence classes of irreducible, unitary corepresentations of G. As ex-
plained in Chapter 2, for all uα, uβ ∈ Irred(G) there exist a finite subset I0 ⊆ I
and a family (Nγ

αβ)γ∈I0 of positive integers such that uα
T©uβ is equivalent to⊕

γ∈I0

(uγ)⊕Nγ
αβ .

Thus, a product can be defined on the free Z-module Z[Irred(G)] by setting

uα · uβ =
∑
γ∈I0

Nγ
αβuγ,

and the trivial corepresentation e = 1A ∈ Irred(G) is a unit for this product. If we
denote by uᾱ ∈ Irred(G) the unique representative equivalent to the contragredient
(uα)c then the map uα 7→ uᾱ extends to a conjugation on the ring Z[Irred(G)],
and since each uα is an element of Mnα(A) for some nα ∈ N we can also define a
dimension function d : Z[Irred(G)] → [1,∞[ by d(uα) = nα.

When endowed with this multiplication, conjugation and dimension function
Z[Irred(G)] becomes a fusion algebra. The only thing that is not clear at this
moment is that Frobenius reciprocity holds. To see this, we first note that for any
α ∈ I and any finite dimensional corepresentation v we have (by Schur’s Lemma
(2.2.2)) that uα occurs exactly

dimC Mor(uα, v)

times in the decomposition of v. Moreover, we have for any two unitary corepre-
sentations v and w that

dimC Mor(v, w) = dimC((Vw ⊗ V ′
v)

w T#vc

) (3.1)

dimC Mor(vcc, w) = dimC((V ′
v ⊗ Vw)vc T#w) (3.2)

25



Chapter 3

Here the right hand side denotes the linear dimension of the space of invariant
vectors under the relevant corepresentation; a vector ξ ∈ H is said to be invariant
under a corepresentation u =

∑
i Ti ⊗ ai ∈ B(H)⊗ A if∑

i

Ti(ξ)⊗ ai = ξ ⊗ 1.

These formulas are proved in [Wor87a, 3.4] for compact matrix quantum groups,
but the same proof carries over to the case where the compact quantum group in
question does not necessarily possess a fundamental corepresentation. Using the
formula (3.1), we get for α, β, γ ∈ I that

Nγ
αβ = dimC Mor(uγ, uα

T©uβ)

= dimC(Vα ⊗ Vβ ⊗ V ′
γ)

uα T#uβ T#(uγ)c

= dimC(Vγ ⊗ V ′
β ⊗ V ′

α)uγ T#(uβ)c T#(uα)c

= dimC Mor(uα, uγ
T©(uβ)c)

= Nα
γβ̄

The remaining identity in Frobenius reciprocity follows similarly using the formula
(3.2). The fusion algebra Z[Irred(G)] is called the corepresentation ring (or fusion
ring) of G and is denoted R(G). Abusing notation a bit, we shall sometimes also
use the symbol R(G) to denote the complexified fusion algebra C[Irred(G)].

Recall that the character of a corepresentation u ∈ Mn(A) is defined as χ(u) =∑n
i=1 uii. It follows from the classical work of Woronowicz ([Wor87b]) that the

Z-linear extension
χ : Z[Irred(G)] −→ A0

is an injective homomorphism of ∗-rings. I.e. χ is additive and multiplicative with
χ(uᾱ) = (χ(uα))∗. This gives a link between the two ∗-algebras R(G) and A0

which will be of importance later.

Remark 3.1.3. Other interesting examples of fusion algebras arise from inclu-
sions N ⊆ M of II1-factors of finite index by considering classes of certain irre-
ducible Hilbert bimodules over the pairs (N, N) and (M, M). See [HI98] and
[JS97] for more details.

Consider again an abstract fusion algebra R = Z[I]. For ξ, η ∈ I we define the
(weighted) convolution of the corresponding Dirac measures, δξ and δη, as

δξ ∗ δη =
∑
α∈I

d(α)

d(ξ)d(η)
Nα

ξηδα ∈ C[I].

For f ∈ `∞(I) and ξ ∈ I we define λξ(f), ρξ(f) : I → C by

λξ(f)(η) =
∑
α∈I

f(α)(δξ̄ ∗ δη)(α),

ρξ(f)(η) =
∑
α∈I

f(α)(δη ∗ δξ)(α).
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Denote by σ the counting measure on I scaled with d2; that is σ(ξ) = d(ξ)2.
Combining Proposition 1.3, Remark 1.4 and Theorem 1.5 in [HI98] we get the
following.

Proposition 3.1.4 ([HI98]). For each f ∈ `∞(I) we have λξ(f) ∈ `∞(I) and for
each p ∈ N ∪ {∞} the map λξ : `∞(I) → `∞(I) restricts to a bounded operator on
`p(I, σ) denoted λp,ξ. By linear extension, we therefore obtain a map λp,− : Z[I] →
B(`p(I, σ)). The map λp,− respects the weighted convolution product. Moreover,
for p = 2 the operator U : `2(I) → `2(I, σ) given by U(δη) = 1

d(η)
δη is unitary and

intertwines λ2,ξ with the operator

lξ : δη 7−→
1

d(ξ)

∑
α

Nα
ξηδα.

Remark 3.1.5. Under the natural identification of the GNS space L2(C[I], τ)
with `2(I) we see that πτ (ξ) = d(ξ)lξ. In particular, the GNS representation con-
sists of bounded operators. Here τ denotes the trace defined just after Definition
3.1.1.

3.2 Amenability for fusion algebras

In this section we introduce the notion of amenability for fusion algebras following
the approach in [HI98]. An equivalent notion was treated by T. Hayashi and S. Ya-
magami ([HY00]) in the context of so-called C∗-tensor categories with Frobenius
duality — these are categories that in a natural way give rise to fusion algebras.
In [HI98] only finitely generated fusion algebras are considered; a fusion algebra
R = Z[I] is called finitely generated if there exists a finitely supported probability
measure µ on I such that

I =
⋃
n∈N

supp(µ∗n) and ∀ξ ∈ I : µ(ξ̄) = µ(ξ).

That is, if the union of the supports of all powers of µ, with respect to convolution,
equals I and if µ is invariant under the involution. The first condition is referred
to as nondegeneracy of µ and the second condition is referred to as symmetry of
µ.

Definition 3.2.1 ([HI98, 4.3]). A finitely generated fusion algebra R = Z[I] is
called amenable if ‖λp,µ‖ = 1 for some finitely supported, symmetric, nondegener-
ate probability measure µ on I and some 1 < p < ∞.

From [HI98, 4.1], it follows that this is independent of the choice of µ and
p. The above property is in [HI98] referred to as strong amenability of the fusion
algebra, in contrast to weak amenability which is defined by requiring the existence
of a state m on `∞(I) such that m(λξ(f)) = m(f) for all f ∈ `∞(I) and all ξ ∈ I.
However, since we will not need the notion of weak amenability we have chosen
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to suppress the adjective ”strong”. We will have to treat fusion algebras that
are not necessarily finitely generated and, to accommodate this, the definition of
amenability is modified in the following way.

Definition 3.2.2 ([Kye07, 3.1]). A fusion algebra R = Z[I] is called amenable if
1 ∈ σ(λ2,µ) for each finitely supported, symmetric probability measure µ on I.

Here, and in what follows, σ(T ) denotes the spectrum of a given operator T.
This definition is justified by the following result.

Proposition 3.2.3 ([Kye07]). Definition 3.2.2 extends Definition 3.2.1

This result was remarked briefly in [Kye07] and, for the convenience of the
reader, we therefore include a proof.

Proof. A straight forward calculation reveals that for a finitely supported function
ϕ : I → C we have λ∗2,ϕ = λ2,ϕ̃, where ϕ̃ : I → C is given by

ϕ̃(ξ) = ϕ(ξ̄).

Therefore, if µ is a finitely supported, symmetric probability measure then λ2,µ

is self-adjoint and by [HI98, 1.3] we have ‖λ2,µ‖ ≤ ‖µ‖1 = 1. Assume now that
R is finitely generated and satisfies the requirement in Definition 3.2.1. It then
follows from [HI98, 4.1] that 1 ∈ σ(λ2,µ) for every finitely supported, symmetric
probability measure µ on I. Conversely, if R satisfies the condition in Definition
3.2.2 then, in particular, we have that 1 ∈ σ(λ2,µ) for all finitely supported, sym-
metric, nondegenerate probability measures µ and since ‖λ2,µ‖ ≤ 1 we conclude
that ‖λ2,µ‖ = 1.

Next we shall introduce Følner-type conditions for fusion algebras, and for
that we will need the following notion of boundary.

Definition 3.2.4 ([Kye07, 3.2]). Let R = Z[I] be a fusion algebra. For two finite
subsets S, F ⊆ I we define the boundary of F relative to S as the set

∂S(F ) = {α ∈ F | ∃ ξ ∈ S : supp(αξ) * F}∪{α ∈ F c | ∃ ξ ∈ S : supp(αξ) * F c}.

Here, and in the sequel, F c denotes the complement of F in I.

In [HI98], several equivalent conditions for amenability is given in Theorem
4.1 and Theorem 4.6, the latter including two Følner-type conditions for finitely
generated fusion algebras. The following theorem generalizes Theorem 4.6, by
removing the requirement that the fusion algebra be finitely generated and by
adding a third type of Følner condition (FC3) which will turn out to be important
in connection with deriving a Følner condition for coamenable, compact quantum
groups.
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Theorem 3.2.5 ([Kye07, 3.3]). Let R = Z[I] be a fusion algebra with dimension
function d. Then the following are equivalent.

(A) The fusion algebra is amenable.

(FC1) For every finitely supported, symmetric probability measure µ with e in
supp(µ) and every ε > 0 there exists a finite subset F ⊆ I such that∑

ξ∈supp(χF ∗µ)

d(ξ)2 < (1 + ε)
∑
ξ∈F

d(ξ)2.

(FC2) For every finite, non-empty subset S ⊆ I and every ε > 0 there exists a
finite subset F ⊆ I such that

∀ ξ ∈ S : ‖ρ1,ξ(χF )− χF‖1,σ < ε‖χF‖1,σ.

(FC3) For every finite, non-empty subset S ⊆ I and every ε > 0 there exists a
finite subset F ⊆ I such that∑

ξ∈∂S(F )

d(ξ)2 < ε
∑
ξ∈F

d(ξ)2.

Classically, amenability is a property that can be possessed by a group, and
we will now show how the definition of amenability for fusion algebras generalizes
the notion of amenability for groups. Consider a discrete, countable group Γ and
recall that Γ is said to be amenable if it admits a left invariant (equivalently bi-
invariant) mean; i.e. a state m : `∞(Γ) → C such that for every f ∈ `∞(Γ) and
every γ ∈ Γ we have m(λγ(f)) = m(f). A fundamental result due to E. Følner
([Føl55]) says that Γ is amenable if and only if it satisfies a certain geometric
condition called the Følner condition. There are many equivalent formulations of
this condition. Here we will present the following, found in [BP92, F.6].

Theorem 3.2.6 ([Føl55]). The group Γ is amenable if and only if the following
holds: For every ε > 0 and every finite, non-empty subset S ⊆ Γ there exists a
finite subset F ⊆ Γ such that

|{a ∈ F | ∃s ∈ S : as /∈ F}| < ε|F |.

Here, and in what follows, |F | denotes the cardinality of a given set F . An
easy exercise shows that Γ satisfies the condition given by Theorem 3.2.6 exactly
when the fusion algebra Z[Γ] satisfies (FC3) from Theorem 3.2.5. This means that
Γ is amenable if and only if the fusion algebra Z[Γ] is amenable.

r tr
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A Følner condition for quantum
groups

Følner’s condition for discrete groups (Theorem 3.2.6) has turned out to be effec-
tive when proving statements about amenable groups; for instance it enters in the
proof of the fact that the full and the reduced group C∗-algebra of an amenable
group coincide, as well as in the proof of nuclearity of the reduced group C∗-
algebra. It is therefore desirable to obtain a quantum analogue of this result.
The aim of this short chapter is to introduce such a Følner condition for compact
quantum groups and, of course, to relate it to the notion of coamenability. Before
presenting the condition, we remind the reader that for a corepresentation u, of a
compact quantum group G, nu denotes the matrix size of u.

Definition 4.1.7 ([Kye07, 4.9]). A compact quantum group G = (A, ∆) is said
to satisfy Følner’s condition if the following holds. For every finite, non-empty
subset S ⊆ Irred(G) and every ε > 0 there exists a finite set F ⊆ Irred(G) such
that ∑

u∈∂S(F )

n2
u < ε

∑
u∈F

n2
u.

Here ∂S(F ) is the boundary of F relative to S, as defined in Definition 3.2.4.

In other words, G satisfies Følner’s condition exactly when the fusion algebra
R(G) = Z[Irred(G)] satisfies (FC3) from Theorem 3.2.5, which in turn is equiva-
lent to the fusion algebra R(G) being amenable. The main result in this chapter
is the following which was remarked, without proof, in [HI98] in the restricted
context of matrix quantum groups with tracial Haar states.

Theorem 4.1.8 ([Kye07, 4.5]). A compact quantum group G = (A, ∆) is coa-
menable if and only if the fusion algebra R(G) is amenable.

The proof of Theorem 4.1.8 has two main ingredients; the first one is the quan-
tum Kesten condition (Proposition 2.3.8) and the second is the following lemma
which is of interest in itself. Before stating the lemma we introduce some notation.
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Let G be any compact quantum group and consider the complex corepresentation
ring R(G) = C[Irred(G)] with its natural trace τ defined in the remarks following
Definition 3.1.1. By Remark 3.1.5, the GNS representation πτ consists of bounded
operators and we may therefore consider the enveloping C∗-algebra

C∗
red(R(G)) = πτ (R(G))

‖·‖τ ⊆ B(L2(R(G), τ)).

The statement, which was mentioned without proof in [Ban99a], now is the fol-
lowing.

Lemma 4.1.9 ([Kye07, 4.6]). The character map χ : R(G) −→ A0 (described in
Section 3.1.1) extends to a bounded, injective ∗-homomorphism

χ : C∗
red(R(G)) −→ Ared.

Having Theorem 4.1.8, we immediately obtain the following.

Corollary 4.1.10 ([Kye07, 4.10]). A compact quantum group is coamenable if
and only if it satisfies Følner’s condition.

An important consequence of Theorem 4.1.8 is that the answer to the question
of whether a compact quantum group is coamenable or not, is only depending on
its corepresentation theory (a fact already noted by T. Banica ([Ban99a]) in the
case of compact matrix quantum groups). For instance, if the corepresentation
theory of a compact quantum group coincides with the representation theory of
a compact group, then the quantum group is automatically coamenable since
this is the case for the Gelfand dual of the compact group. This is the case for
Woronowicz’s quantum SU(2) groups discussed in Example 2.1.5. Formulated
precisely, the following holds.

Corollary 4.1.11. Let G1 and G2 be compact quantum groups and assume that
G1 is coamenable. If there exists a dimension preserving bijection ϕ : Irred(G1) →
Irred(G2) whose Z-linear extension ϕ : R(G1) → R(G2) is a unital ∗-ring isomor-
phism, then G2 is also coamenable.

For another application of the quantum Følner condition, the reader is referred
to Theorem 5.2.1, and the corollaries following it, whose proof depends heavily on
Følner’s condition and it being equivalent to coamenability.

r tr
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L2-invariants for quantum groups

In this chapter we give an introduction to L2-invariants for compact quantum
groups, based on the author’s work in the articles [Kye06] and [Kye07]. The aim
is to introduce the theory and present the results in a unified way, and therefore
very few proofs will be presented. The reader is referred to the articles [Kye06]
and [Kye07], found at the end of the thesis, for proofs of the theorems presented.

5.1 Definitions and computational results

The results presented in this section all stem from the article [Kye06]. Although
parts of the results, e.g. Theorem 5.1.7, will be contained in a more general result
(Theorem 5.2.1) discussed at the end of the present chapter, we present it here as
well for the sake of giving a comprehensive introduction to the article [Kye06].

Consider a compact quantum group G = (A, ∆) with Haar state h. Denote
by (A0, ∆, S, ε) the Hopf ∗-algebra generated by the matrix coefficients arising
from irreducible corepresentations of G, and by H the GNS space L2(A, h) with
corresponding GNS representation πh. Let M denote the enveloping von Neumann
algebra πh(A)′′ ⊆ B(H). To motivate our definitions we first present the following
well-known result.

Proposition 5.1.1. Assume that G = (C∗
red(Γ), ∆red) for a discrete, countable

group Γ with unit e and left regular representation λ. We then have the following.

• The Haar state h is the natural trace τ(x) = 〈xδe |δe〉.

• The Hopf ∗-algebra A0 becomes λ(CΓ).

• The enveloping von Neumann algebra M becomes L (Γ).

• The counit ε is the linear extension of the trivial representation of Γ.

Proposition 5.1.1 seems to be a folklore-type result and, for the convenience
of the reader, we therefore include a proof.

33



Chapter 5

Proof. For γ ∈ Γ we have

(τ ⊗ id)∆red(λγ) = (τ ⊗ id)(λγ ⊗ λγ)

= δe,γλγ

= δe,γλe

= τ(λγ)1

= (id⊗τ)∆red(λγ).

By linearity and continuity we see that τ satisfies the defining property for the
Haar state; thus h = τ . For the computation of A0, first note that each λγ is
a 1-dimensional, unitary corepresentation and therefore λ(CΓ) ⊆ A0. If u is an
irreducible, unitary corepresentation not equivalent to any of the λγ’s then, by
Theorem 2.2.4, each of its matrix coefficients uij is orthogonal in L2(C∗

red(Γ), h) to
the dense set λ(CΓ). Hence h(u∗ijuij) = 0 and since h is faithful on A0 this forces
uij to be zero — contradicting the fact that u is unitary. Thus A0 = λ(CΓ). It is a
routine to check that the map λγ 7→ δγ extends to a unitary U : L2(C∗

red(Γ), h) →
`2(Γ) intertwining the GNS representation πh with the left regular representation
λ; hence M = L (Γ).

The above proposition supplies us with the following guiding dictionary which
we shall use to extend the notion of L2-homology from groups to quantum groups.

Discrete Group Γ Compact Quantum Group G = (A, ∆)

Trivial representation of Γ Counit ε : A0 → C

Von Neumann trace τ(x) = 〈xδe |δe〉 Haar state h

Group algebra CΓ Algebra of matrix coefficients A0

Reduced C∗-algebra C∗
red(Γ) Reduced C∗-algebra Ared = πh(A)

Group von Neumann algebra L (Γ) M = A′′
red ⊆ B(L2(A, h))

Drawing inspiration from this analogy table , we now make the following definition.

Definition 5.1.2 ([Kye06, 1.1,1.2]). The p-th L2-homology of G is defined as

H(2)
p (G) = TorA0

p (M, C),

where C is considered a left A0-module via the counit ε : A0 → C and M is con-
sidered a right A0-module via the GNS representation πh. If h is tracial it extends
to a faithful, normal, tracial state on M and the p-th L2-Betti number and p-th
capacity of G is then defined as

β(2)
p (G) = dimM(H(2)

p (G)) and cp(G) = cM(H(2)
p (G)),

respectively. Both the dimension and the capacity are calculated with respect to
the extended trace-state h : M → C.
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Note that both the commutative and cocommutative examples satisfy that
the Haar state is tracial, and one can also prove that this is the case for the free
orthogonal and unitary quantum groups Ao(n) and Au(n) introduced in Example
2.1.6. However, there are also important examples of quantum groups with non-
tracial Haar state; for instance SUq(2) for q 6= ±1.

As a direct consequence of Proposition 5.1.1 and Definition 1.1.4 we obtain
the following.

Proposition 5.1.3 ([Kye06, 1.3]). If G = (C∗
red(Γ), ∆red) then for all p ≥ 0 we

have β
(2)
p (G) = β

(2)
p (Γ) and cp(G) = cp(Γ).

Since computing L2-invariants for groups is generally hard, computing L2-
invariants for quantum groups must also be expected to be difficult, but as in
the classical case the zeroth invariants are the most manageable. In the case of a
discrete group Γ, one has β

(2)
0 (Γ) = 1

|Γ| ∈ [0,∞[ and the following two results can
therefore be viewed as the quantum group analogue of this result.

Proposition 5.1.4 ([Kye06, 2.9]). Let G = (A, ∆) be a quantum group and

assume that A has finite linear dimension N . Then β
(2)
0 (G) = 1

N
and β

(2)
p (G) = 0

for p ≥ 1. Moreover, cp(G) = 0− for all p ≥ 0.

Note that, in the above proposition, we do not have to require that the Haar
state is tracial since this is automatic ([VD97]) for finite quantum groups, i.e. quan-
tum groups whose underlying C∗-algebra is finite dimensional. As the following
proposition shows, the statement about the zeroth L2-Betti number from Propo-
sition 5.1.4 holds true also in the infinite case.

Proposition 5.1.5 ([Kye06, 2.2]). Let G = (A, ∆) be a compact quantum group

with tracial Haar state. If dimC(A) = ∞ then β
(2)
0 (G) = 0.

Proposition 5.1.5 is proved in [Kye06, 2.2] in the case where the enveloping
von Neumann algebra M is a factor. It was later pointed out by S. Vaes that the
result remains true also without the factor assumption and we therefore include
a proof of Proposition 5.1.5 here. The proof uses the duality theory of locally
compact quantum groups, which is a more general quantum group theory than
the one described in Chapter 2. One of its main advantages is that every locally
compact group has a dual which is again a locally compact quantum group. We
refer the reader to [KV03] for an introduction to this theory.

Proof of Proposition 5.1.5. First note that

TorA0
0 (M, C) ' M �

A0

C ' M/J,

where J is the left ideal in M generated by πh(ker(ε)). Denote by J̄ the strong
operator closure of J and note that

J ⊆ J̄ ⊆ J
alg

=
⋂

f∈HomM (M,M)
J⊆ker(f)

ker(f).
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Since M is finitely (actually singly) generated as an M -module, Theorem 1.1.1

implies that dimM(J) = dimM(J
alg

) and thus

β
(2)
0 (G) = 1− dimM(J) = 1− dimM(J̄).

Our aim now is to prove that J̄ = M . Assume, conversely, that that J̄ 6= M and
note that since J is convex, J̄ is weak operator closed as well. Because 1 /∈ J̄ , the
counit ε extends naturally to the weakly closed subspace

C + J̄ = {λ1 + x | λ ∈ C, x ∈ J̄} ⊆ M,

by setting ε(λ1 + x) = λ. To see that this extends ε, just note that each element
a ∈ A0 can be written uniquely as the sum of a scalar and an element from J :

a = ε(a)1 + (a− ε(a)1).

The extension ε : C + J̄ → C is weakly continuous since its kernel J̄ is weakly
closed ([KR83, 1.2.5]). By the Hahn-Banach Theorem, we may therefore extend
ε to a weakly continuous functional, also denoted ε, on B(H) where H denotes
the GNS space L2(A, h). In particular, ε is weakly continuous on the unit ball of
B(H) and thus ε ∈ B(H)∗. Denote by η the natural inclusion A0 ⊆ H and by
W ∈ B(H⊗̄H) the multiplicative unitary for (M, ∆) given by

W ∗(η(x)⊗ η(y)) = (η ⊗ η)(∆(y)(x⊗ 1)).

For any ω ∈ B(H)∗ and any x ∈ A0 we have

(ω ⊗ id)(W ∗)(η(x)) = η((ω ⊗ id)∆(x)). (†)

This can be proved by a direct calculation when ω has the form T 7→ 〈Tη(a)|η(b)〉
and the general case follows from this since B(H)∗ is the norm closure of the linear
span of such functionals ([KR86, 7.4.4]). See e.g. [KV00, 2.10] for more details.
Using the formula (†) with ω = ε we therefore obtain

(ε⊗ id)(W ∗) = 1.

Since ε is weakly continuous, ε⊗id restricts to a ∗-homomorphism from M⊗̄B(H)
to B(H) and since W ∈ M⊗̄B(H) it follows that (ε⊗ id)(W ) = 1. This implies
that the C∗-algebra of the reduced, C∗-algebraic, dual quantum group Ĝ, given
by

Â = C∗{(ω ⊗ id)W | ω ∈ B(H)∗} ⊆ B(H),

is unital. Therefore Ĝ is compact and G thus both discrete and compact. This
forces A to be finite dimensional, contradicting the assumptions.

Recall from Theorem 1.2.6 that c0(Zn) = 1
n
. Using Pontryagin duality, this

translates into the following identity:

1

n
= c0(C

∗
red(Zn), ∆red) = c0(C(Tn), ∆c),

where Tn denotes the n-torus. The following theorem generalizes this result from
the class of connected, compact, abelian Lie groups (i.e. tori) to the class of all
compact Lie groups.
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Theorem 5.1.6 ([Kye06, 2.4]). Let G be a compact Lie group of positive dimen-

sion with Haar probability measure µ and put G = (C(G), ∆c). Then H
(2)
0 (G) is

a finitely presented, zero-dimensional L∞(G, µ)-module and

c0(G) =
1

dim(G)
.

Here dim(G) is the dimension of G considered as a manifold.

Note that Theorem 5.1.6 implies that β
(2)
0 (C(G), ∆c) = 0; a fact that also

follows directly from Proposition 5.1.5. Of course the geometry of the underlying
Lie group is used to prove Theorem 5.1.6, and if this geometry is exploited in
another way we obtain the following vanishing result.

Theorem 5.1.7 ([Kye06, 3.3]). If G = (C(G), ∆c) for a compact, connected Lie
group G then for any C(G)0-module Z and any p ≥ 1 we have

dimL∞(G,µ) TorC(G)0
p (L∞(G, µ), Z) = 0.

In particular, β
(2)
p (G) = 0 for every p ≥ 1.

As before, µ denotes the Haar probability measure on G and the dimension is
computed with respect to the corresponding trace-state given by f 7→

∫
G

f dµ.

By construction, the theory of L2-homology for compact quantum groups is
linked to the corresponding theory for discrete groups via Proposition 5.1.3. It is
of course also desirable to connect the theory to the approach of A. Connes and
D. Shlyakhtenko explained in Section 1.3. This is done in the following proposition
which should be considered as a quantum group analogue of Proposition 1.3.1.

Proposition 5.1.8 ([Kye06, 4.1]). If G = (A, ∆) is a compact quantum group

with tracial Haar state h then β
(2)
p (G) = β

(2)
p (A0, h), where the right hand side is

the p-th Connes-Shlyakhtenko L2-Betti number of the tracial ∗-algebra (A0, h).

The Connes-Shlyakhtenko L2-Betti numbers have turned out to be very diffi-
cult to compute in general (see e.g. the discussion in Section 1.3) and because of

that, one should probably consider the formula β
(2)
p (G) = β

(2)
p (A0, h) as a formula

to compute the Connes-Shlyakhtenko L2-Betti numbers of certain Hopf ∗-algebras
— rather than a formula to compute the L2-Betti numbers of the corresponding
compact quantum group. For instance, combining Theorem 5.1.7 and Proposition
5.1.8 we obtain the following.

Corollary 5.1.9. If G is a compact, connected Lie group with Haar measure µ
and A0 denotes the algebra of representative functions on G then β

(2)
p (A0, dµ) = 0

for all p ≥ 1.

Recall from Remark 2.2.8 that the algebra of representative functions on G is
the same as the algebra of matrix coefficients of (C(G), ∆c).
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5.2 The coamenable case

In this final section, we present the main theorem in [Kye07] which served as
the motivation for introducing the quantum Følner condition since this condition
enters, in an essential way, in the proof.

Theorem 5.2.1 ([Kye07, 6.1]). Let G = (A, ∆) be a coamenable, compact quan-
tum group with tracial Haar state. Then for any A0-module Z and any p ≥ 1 we
have

dimM TorA0
p (M, Z) = 0.

As usual, the dimension is computed with respect to the extension of the Haar
state h to M . If M were flat as a module over A0 we would have TorA0

p (M, Z) = 0
for any Z and any p ≥ 1, and the property in Theorem 5.2.1 is therefore referred
to as dimension flatness of the von Neumann algebra over the algebra of matrix
coefficients. Theorem 5.2.1 is a quantum group analogue of the following theorem
of W. Lück which we obtain as a corollary.

Corollary 5.2.2 ([Lüc98, 5.1]). If Γ is an amenable, countable, discrete group
then for any CΓ-module Z and any p ≥ 1 we have

dimL (Γ) TorCΓ
p (L (Γ), Z) = 0.

Proof. Put G = (C∗
red(Γ), ∆red). Then G is coamenable if and only if Γ is amenable

and the result now follows from Theorem 5.2.1.

In [CG86], J. Cheeger and M. Gromov prove that an amenable, discrete group
has vanishing L2-Betti numbers in all positive degrees; a result that also follows
from Corollary 5.2.2 by setting Z = C. Similarly, we obtain from Theorem 5.2.1
the following.

Corollary 5.2.3 ([Kye07, 6.2]). If G is a coamenable, compact quantum group

with tracial Haar state then β
(2)
p (G) = 0 for all p ≥ 1.

Noting that abelian, compact quantum groups are coamenable, we obtain the
following (slight) generalization of Theorem 5.1.7 as a corollary.

Corollary 5.2.4. If G = (C(G), ∆c) for a compact group G then for any C(G)0-
module Z and any p ≥ 1 we have

dimL∞(G,µ) TorC(G)0
p (L∞(G, µ), Z) = 0.

In particular, β
(2)
p (G) = 0 for every p ≥ 1.

Here µ denotes the Haar probability measure on G and the dimension is com-
puted with respect to the corresponding trace-state given by f 7→

∫
G

f dµ.

Combining Theorem 5.2.1 and Proposition 5.1.8 we get.
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Corollary 5.2.5. Let G = (A, ∆) be a compact, coamenable quantum group with

tracial Haar state h. Then β
(2)
p (A0, h) = 0 for all p ≥ 1, where β

(2)
p (A0, h) is the

p-th Connes-Shlyakhtenko L2-Betti number of the tracial ∗-algebra (A0, h).

The knowledge of dimension-flatness also gives genuine homological informa-
tion about the ring extension A0 ⊆ M . More precisely, the following holds.

Corollary 5.2.6. If G = (A, ∆) is compact and coamenable with tracial Haar
state then the induction functor M�A0− is an exact functor from the category
of finitely generated, projective A0-modules to the category of finitely generated,
projective M-modules.

Since this is not made explicit in [Kye07] we present the proof.

Proof. Let X and Y be finitely generated, projective A0-modules and let f : X →
Y be an injective homomorphism. Then

0 −→ X
f−→ Y −→ Y/rg(f) −→ 0,

is a projective resolution of Y/rg(f). Thus TorA0
1 (M, Y/rg(f)) = ker(idM ⊗f) and

from Theorem 5.2.1 we conclude that dimM(ker(idM ⊗f)) = 0. Because idM ⊗f is

a map of finitely generated projective M -modules, ker(idM ⊗f) = ker(idM ⊗f)
alg

and by Theorem 1.1.1 we conclude that ker(idM ⊗f) is finitely generated and
projective. But, since the dimension function is faithful on the category of finitely
generated, projective modules this forces ker(idM ⊗f) = {0} and the claim follows.

Corollary 5.2.6 in particular implies the following result, which was pointed
out to us by A. Thom.

Corollary 5.2.7. If G = (A, ∆) is compact and coamenable with tracial Haar
state and x ∈ A0 is a non-zerodivisor in A0 then x is also a non-zerodivisor in M .

Proof. This follows by using Corollary 5.2.6 on the injective map a 7−→ ax.

We end this section by discussing some open problems concerning the theory of
L2-invariants for quantum groups. First of all, the theory lacks examples in which
the L2-invariants can be explicitly computed. For instance, except for the trivial
cases, i.e. where the quantum group is cocommutative or finite, there are no known
examples of a compact quantum groups with a non-vanishing L2-Betti number.
As Corollary 5.2.3 shows, such an example has to be non-coamenable and natural
candidates are therefore the free unitary quantum groups Au(n). However, so far
no manageable projective resolution of C, as a module over the Hopf ∗-algebra of
matrix coefficients Au(n)0, is known. Unpublished work of B. Collins, J. Härtel
and A. Thom shows that in the case of Ao(n), the trivial module C allows a
resolution of length 4 consisting of finitely generated, free modules. It is likely
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that their methods may be generalized to give a manageable resolution also in
the case of Au(n). Using the above mentioned resolution, it is not difficult to see

that β
(2)
p (Ao(n)) = 0 for p /∈ {1, 2}. The values of β

(2)
1 (Ao(n)) and β

(2)
2 (Ao(n)) are

still unknown except in the case n = 2 where the coamenability of Ao(n) together

with Corollary 5.2.3 gives β
(2)
1 (Ao(2)) = β

(2)
2 (Ao(2)) = 0.

Secondly, it is a considerable drawback that the numerical L2-invariants are
only defined when the Haar state is a trace. There are many interesting examples
where this is not the case — most famous among these is probably SUq(2) for
q 6= ±1 — and it is therefore desirable to find a way of extending the definition to
cover also the non-tracial case. At the moment, it is not clear how to obtain such
an extension, but it might be that the trace on the corepresentation ring can be
used to measure the sizes of some, perhaps modified, L2-homology modules of a
generic, compact quantum group. This, however, is only speculations. As an even
more ambitious project, one could hope some day to find a unifying definition of
L2-invariants covering the whole class of locally compact quantum groups.

r tr

40



Bibliography
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groups. Ann. Sci. École Norm. Sup. (4), 33(6):837–934, 2000.

42



[KV03] Johan Kustermans and Stefaan Vaes. Locally compact quantum groups
in the von Neumann algebraic setting. Math. Scand., 92(1):68–92, 2003.

[Kye06] David Kyed. L2-homology for compact quantum groups. Preprint (to
appear in Math. Scand.), 2006. arXiv: math/0605240.

[Kye07] David Kyed. L2-Betti numbers of coamenable quantum groups.
Preprint, 2007. arXiv:0704.1582v2.

[LRS99] Wolfgang Lück, Holger Reich, and Thomas Schick. Novikov-Shubin
invariants for arbitrary group actions and their positivity. In Tel Aviv
Topology Conference: Rothenberg Festschrift (1998), volume 231 of
Contemp. Math., pages 159–176. Amer. Math. Soc., Providence, RI,
1999.
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L2-HOMOLOGY FOR COMPACT QUANTUM GROUPS

DAVID KYED

Abstract
A notion of L2-homology for compact quantum groups is introduced, generalizing the classical
notion for countable, discrete groups. If the compact quantum group in question has tracial Haar
state, it is possible to define its L2-Betti numbers and Novikov-Shubin invariants/capacities. It is
proved that these L2-Betti numbers vanish for the Gelfand dual of a compact Lie group and that
the zeroth Novikov-Shubin invariant equals the dimension of the underlying Lie group. Finally,
we relate our approach to the approach of A. Connes and D. Shlyakhtenko by proving that the
L2-Betti numbers of a compact quantum group, with tracial Haar state, are equal to the Connes-
Shlyakhtenko L2-Betti numbers of its Hopf ∗-algebra of matrix coefficients.

1. Introduction and definitions

The notion of L2-invariants was introduced by M. F. Atiyah in [1] in the setting
of a Riemannian manifold endowed with a free, proper and cocompact action of
a discrete, countable group. Later this notion was generalized by J. Cheeger and
M. Gromov in [4] and by W. Lück in [16]. The latter of these generalizations
makes it possible to define L2-homology and L2-Betti numbers of an arbitrary
topological space equipped with an arbitrary action of a discrete, countable group
Γ. In particular, the L2-homology and L2-Betti numbers of Γ, which are defined in
[16] using the action of Γ on EΓ, make sense and can be expressed in the language
of homological algebra as

H(2)
n (Γ) = TorCΓ

n (L (Γ),C) and β(2)
n (Γ) = dimL (Γ)H

(2)
n (Γ),

where dimL (Γ)(·) is W. Lück’s generalized Murray-von Neumann dimension intro-
duced in [16]. A detailed introduction to this dimension theory can be found in [17].

Consider now a compact quantum group G = (A,∆) in the sense of S. L. Woro-
nowicz; i.e. A is a unital C∗-algebra and ∆: A → A ⊗ A is a unital, coassociative
∗-homomorphism satisfying a certain non-degeneracy condition. We shall not elab-
orate further on the notion of compact quantum groups, but refer the reader to the
survey articles [19] and [13] for more details. Denote by h the Haar state on G and
by (A0,∆, S, ε) the Hopf ∗-algebra of matrix coefficients arising from irreducible
corepresentations of G. We recall ([19, Prop. 7.8]) that h is faithful on A0. Con-
sider the GNS-representation πh of A on L2(A, h) and denote by M the enveloping
von Neumann algebra πh(A)′′. We then make the following definition:

Definition 1.1. The n-th L2-homology of the compact quantum group G =
(A,∆) is defined as

H(2)
n (G) = TorA0

n (M ,C).
Here C is considered a left A0-module via the counit ε and M is considered a
right A0-module via the natural inclusion πh : A0 → M . The groups H(2)

n (G) have
a natural left M -module structure and when the Haar state h is tracial we may
therefore define the n-th L2-Betti number of G as

β(2)
n (G) = dimM H(2)

n (G),

where dimM (·) is W. Lück’s extended dimension function arising from the extension
to M of the tracial Haar state h.
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Similar to the algebraic extension of the notion of Murray-von Neumann dimen-
sion, the classical notion of Novikov-Shubin invariants was transported to an alge-
braic setting by W. Lück ([15]) using finitely presented modules, and generalized to
arbitrary modules by W. Lück, H. Reich and T. Schick in [18]. This generalization
was worked out using capacities which are essentially inverses of Novikov-Shubin
invariants (cf. [18, Section 2]). In particular, they defined the n-th capacity of a
discrete countable group Γ as cn(Γ) = c(H(2)

n (Γ)), the right-hand side being the ca-
pacity of the n-th L2-homology of Γ considered as a left module over the group von
Neumann algebra L (Γ). Following this approach we make the following definition:

Definition 1.2. If h is tracial we define the n-th capacity of G as cn(G) =
c(H(2)

n (G)).

To justify Definition 1.1 and Definition 1.2 we prove the following:

Proposition 1.3. Let Γ be a countable discrete group and consider the compact
quantum group G = (C∗red(Γ),∆red) where ∆red is defined by ∆redλγ = λγ ⊗ λγ

and λ denotes the left regular representation of Γ. Then H
(2)
n (G) = H

(2)
n (Γ) and in

particular
β(2)
n (G) = β(2)

n (Γ) and cn(G) = cn(Γ),
for all n ∈ N0.

Here, and in what follows, N0 denotes the set of non-negative integers.

Proof. Since the Haar state on G is the trace state τ(x) = 〈xδe |δe〉, the GNS-
action of C∗red(Γ) on L2(C∗red(Γ), τ) is naturally identified with the standard action
of C∗red(Γ) on `2(Γ). Note that each λγ is a one-dimensional (hence irreducible)
corepresentation of G and that these span a dense subspace in L2(C∗red(Γ), h) '
`2(Γ). It now follows from the quantum Peter-Weyl Theorem (cf. [13, Thm. 3.2.3])
that the Hopf ∗-algebra of matrix coefficients coincides with λ(CΓ) and from this
we see that the counit coincides with the trivial representation of Γ. Thus

H(2)
n (G) = Tor(C

∗
red(Γ))0

n (L (Γ),C) = TorCΓ
n (L (Γ),C) = H(2)

n (Γ).

In the following sections we shall focus on computations of L2-invariants for some
concrete compact quantum groups. More precisely, the paper is organized as follows:
In Section 2 we focus on the zeroth L2-Betti number and capacity and prove that
if the compact quantum group in question is the Gelfand dual C(G) of a compact
Lie group G with dim(G) ≥ 1, then the zeroth L2-Betti number vanishes and the
zeroth capacity equals the inverse of dim(G). Section 3 is devoted to proving that
also the higher L2-Betti numbers of the abelian quantum group C(G) vanish in the
case when G is a compact, connected Lie group. In Section 4 we prove that the
L2-Betti numbers of a compact quantum group G = (A,∆) with tracial Haar state
h are equal to the Connes-Shlyakhtenko L2-Betti numbers (see [6]) of the tracial
∗-algebra (A0, h).

Acknowledgements. I wish to thank my supervisor Ryszard Nest for suggesting that
I study L2-invariants in the context of quantum groups, and for the many discussions
and ideas about the subject along the way. Moreover, I thank the people at the
Mathematics department in Göttingen for their hospitality during the early summer
of 2006 where parts of the work were carried out.

Notation. All tensor products between C∗-algebras occurring in the following are
assumed to be minimal/spatial. These will be denoted ⊗ while tensor products in
the category of Hilbert spaces and the category of von Neumann algebras will be
denoted ⊗̄. Algebraic tensor products will be denoted �.
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2. The zeroth L2-invariants

In this section we focus on the zeroth L2-Betti number and capacity. The first aim
is to prove that the zeroth L2-Betti number of a compact quantum group, whose
enveloping von Neumann algebra is a finite factor, vanishes. After that we compute
the zeroth L2-Betti number and capacity for Gelfand duals of compact Lie groups
and finally we study the L2-invariants of finite dimensional quantum groups.

2.1. The factor case
In this subsection we investigate the case when the enveloping von Neumann algebra
is a finite factor. First a small observation.

Observation 2.1. Let M be a von Neumann algebra and let A0 be a strongly
dense ∗-subalgebra of M . Let J0 be a two-sided ideal in A0 and denote by J the
left ideal in M generated by J0. Then the strong operator closure J̄ is a two-sided
ideal in M . Clearly J̄ is a left ideal and because A0 is dense in M we get that
xm ∈ J̄ whenever x ∈ J and m ∈ M . From this it follows that J̄ is also a right
ideal in M .

The following proposition should be compared to [6, Cor. 2.8].

Proposition 2.2. Let G = (A,∆) be a compact quantum group with tracial Haar
state h. Denote by πh the GNS-representation of A on L2(A, h) and assume that
M = πh(A0)′′ is a factor. If A 6= C then β

(2)
0 (G) = 0.

Proof. First note that

H
(2)
0 (G) = TorA0

0 (M ,C) ' M �
A0

C ' M /J,

where J is the left ideal in M generated by πh(ker(ε)). Since the counit ε : A0 → C
is a ∗-homomorphism its kernel is a two-sided ideal in A0, and by Observation 2.1
we conclude that the strong closure J̄ is a two-sided ideal in M . Since A 6= C the
kernel of ε is non-trivial and hence J̄ is nontrivial. Any finite factor is simple ([10,
Cor. 6.8.4]) and therefore J̄ = M . Now note that

J ⊆ J̄ ⊆ J
alg

=
⋂

f∈HomM (M ,M )
J⊆ker(f)

ker(f).

Since M is finitely (singly) generated as an M -module, [16, Thm. 0.6] implies that
dimM (J) = dimM (J

alg
) and thus

dimM (J) = dimM (J̄) = dimM (M ) = 1.

Additivity of the dimension function ([16, Thm. 0.6]) now yields the desired con-
clusion.

Denote by Ao(n) the free orthogonal quantum group. The underlying C∗-algebra
A is the universal, unital C∗-algebra generated by n2 elements {uij | 1 ≤ i, j ≤ n}
subject to the relations making the matrix (uij) orthogonal. The comultiplication
is defined by

∆(uij) =
n∑
k=1

uik ⊗ ukj

and the antipode S : A0 → A0 by S(uij) = uji. These quantum groups were
discovered by S. Wang in [24] and studied further by T. Banica in [2]. See also [3]
and [22].

Corollary 2.3. For n ≥ 3 we have β(2)
0 (Ao(n)) = 0.
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Proof. Denote by (uij) the fundamental corepresentation of Ao(n). Since
S(uij) = uji we have S2 = idA0 and therefore the Haar state h is tracial ([11,
p. 424]). By [22, Thm. 7.1] the enveloping von Neumann algebra πh(A0)′′ is a
II1-factor and Proposition 2.2 applies.

2.2. The commutative case
Next we want to investigate the commutative quantum groups. Consider a compact
group G and the associated abelian, compact quantum group G = (C(G),∆c).
Recall that the comultiplication ∆c : C(G) → C(G)⊗C(G) = C(G×G) is defined
by

∆c(f)(s, t) = f(st),
and that the Haar state and counit are given, respectively, by integration against
the Haar probability measure and by evaluation at the identity. In the case when
G is a connected abelian Lie group then G is isomorphic to Tm for some m ∈ N
([12, Cor. 1.103]) and therefore the Pontryagin dual group is Zm. Moreover, the
Fourier transform is an isomorphism of quantum groups between G = (C(Tm),∆c)
and (C∗red(Zm),∆red). In particular we have, by Proposition 1.3, that β(2)

0 (G) =
β

(2)
0 (Zm) = 0 and

c0(G) = c0(Zm) =
1
m

=
1

dim(G)
,

where the second equality follows from [18, Thm. 3.7]. This motivates the following
result.

Theorem 2.4. Let G be a compact Lie group with dim(G) ≥ 1 and Haar probabil-
ity measure µ. Denote by G the corresponding compact quantum group (C(G),∆c).
Then H

(2)
0 (G) is a finitely presented and zero-dimensional L∞(G,µ)-module, in

particular β(2)
0 (G) = 0, and

c0(G) =
1

dim(G)
.

Here dim(G) is the dimension of G considered as a real manifold.

For the proof we will need a couple of lemmas/observations probably well known
to most readers. The first one is a purely measure theoretic result.

Lemma 2.5. Let (X,µ) be measure space and consider [f1], . . . , [fn] ∈ L∞(X,R).
If we denote by f the function

X 3 x 7−→
√
f1(x)2 + · · ·+ fn(x)2 ∈ R,

then the ideal 〈[f1], . . . , [fn]〉 in L∞(X,C) generated by the [fi]’s is equal to the ideal
〈[f ]〉 generated by [f ].

Here, and in the sequel, [g] denotes the class in L∞(X,C) of a given function g.

Proof. Consider the real-valued representatives f1, . . . , fn. Put Ni = {x ∈
X | fi(x) = 0} and N = ∩iNi. Note that N is exactly the set of zeros for f .

”⊆”. Let i ∈ {1, . . . , n} be given. We seek [T ] ∈ L∞(X,C) such that [fi] = [T ][f ].
The set N may be disregarded since fi is zero here. Outside of N we may write

fi(x) =
fi(x)
f(x)

f(x),

and we have | fi(x)
f(x) | =

√
fi(x)2P
j fj(x)2

≤ 1. The function

T (x) =

{
0 if x ∈ N ;
fi(x)
f(x) if x ∈ X \N ,
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therefore defines a class [T ] in L∞(X,C) with the required properties.

”⊇”. We must find [T1], . . . , [Tn] ∈ L∞(X,C) such that

f(x) = T1(x)f1(x) + · · ·+ Tn(x)fn(x) for µ-almost all x ∈ X.(1)

For any choice of T1, . . . , Tn both left- and right-hand side of (1) is zero when x ∈ N ,
and it is therefore sufficient to define T1, . . . , Tn outside of N . Choose a disjoint
measurable partition of X \N into n sets A1, . . . , An such that

|fk(x)| = max
i
|fi(x)| > 0 when x ∈ Ak.

Then 1− χ
N

=
∑n
i=1 χAi

and for x /∈ N we therefore have

f(x) =
n∑
i=1

χ
Ai

(x)f(x) =
n∑
i=1

(
χ

Ai
(x)

f(x)
fi(x)

)
fi(x),

and

|χ
Ai

(x)
f(x)
fi(x)

| = χ
Ai

(x)

√∑
j fj(x)2

fi(x)2
≤
√
n.

Hence the functions T1, . . . , Tn defined by

Ti(x) =

{
0 if x ∈ N ;
χ

Ai
(x) f(x)

fi(x)
if x ∈ X \N ,

determines classes [T1], . . . , [Tn] in L∞(X,C) with the required properties.

Observation 2.6. Every compact Lie group G has a faithful representation in
GLn(C) for some n ∈ N and for such a representation π it holds that the algebra
of all matrix coefficients C(G)0 is generated by the real and imaginary parts of the
matrix coefficients of π. The existence of a faithful representation π follows from
[12, Cor. 4.22]. Denote by πkl its complex matrix coefficients. The fact that C(G)0
is generated by the set

{Re(πkl), Im(πkl) | 1 ≤ k, l ≤ n}
is the content of [5, VI, Prop. 3].

Observation 2.7. Let A be a unital C-algebra generated by elements x1, . . . , xn.
If ε : A → C is a unital algebra homomorphism then ker(ε) is the two-sided ideal
generated by the elements x1 − ε(x1), . . . , xn − ε(xn). This essentially follows from
the formula

ab− ε(ab) = (a− ε(a))b+ ε(a)(b− ε(b))

Observation 2.8. Denote by gln(C) = Mn(C) the Lie algebra of GLn(C) and
by exp the exponential function

gln(C) 3 X 7−→
∞∑
k=0

Xk

k!
∈ GLn(C),

and consider the map f : Mn(C) → Mn(C) given by f(X) = exp(X) − 1. For any
norm ‖ · ‖ on Mn(C) there exist r,R > 0 and λ0 ∈]0, 1

2 ] such that the following
holds: If X ∈ Mn(C) has ‖X‖∞ ≤ 1

2 then for all λ ∈ [0, λ0] we have
• ‖X‖ ≤ λ⇒ ‖f(X)‖ ≤ Rλ

• ‖f(X)‖ ≤ λ⇒ ‖X‖ ≤ rλ

In the case when the norm in question is the operator norm ‖ · ‖∞ this is proven,
with λ0 = 1

2 and R = r = 2, by considering the Taylor expansion around 0 for
the scalar versions (i.e. n = 1) of f and f−1. Since all norms on finite dimensional
vector spaces are equivalent, the general statement follows from this.
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We are now ready to give the proof of Theorem 2.4.

Proof of Theorem 2.4. By Observation 2.6, we may assume that G is con-
tained in GLn(C) so that each g ∈ G can be written as g = (xkl(g) + iykl(g))kl ∈
GLn(C). Again by Observation 2.6, we have that A0 ⊆ A = C(G) is given by

A0 = AlgC(xkl, ykl | 1 ≤ k, l ≤ n),

where xkl and ykl are now considered as functions on G. Since ε : A0 → C is given
by evaluation at the identity have

ε(xkl) = ε(ykl) = 0 when k 6= l,

ε(xkk) = ε(1) = 1,

ε(ykk) = 0.

From Observation 2.7 we now get

ker(ε) = 〈xkl, ykl, xkk − 1, ykk | 1 ≤ k, l ≤ n, k 6= l〉 ⊆ A0

Thus
H

(2)
0 (G) = TorA0

0 (L∞(G),C) ' L∞(G) �
A0

C ' L∞(G)/〈ker(ε)〉,

where 〈ker(ε)〉 is the ideal in L∞(G) generated by ker(ε) ⊆ A0. That is, the ideal

〈xkl, ykl, 1− xkk, ykk | 1 ≤ k, l ≤ n, k 6= l〉 ⊆ L∞(G),

which by Lemma 2.5 is the principal ideal generated by the (class of the) function

f(g) =
√∑

k,l

(xkl(g)− δkl)2 + ykl(g)2

Note that the zero-set for f consists only of the identity 1 ∈ G and is therefore a
null-set with respect to the Haar measure. Hence we have a short exact sequence

0 −→ L∞(G)
·f−→ L∞(G) −→ H

(2)
0 (G) −→ 0.(2)

By additivity of the dimension function ([16, Thm. 0.6]), this means that β(2)
0 (G) =

0. Moreover, the short exact sequence (2) is a finite presentation of H(2)
0 (G) and

hence this module has a Novikov-Shubin invariant α(H(2)
0 (G)) (in the sense of [15,

Section 3]) which can be computed using the spectral density function

λ 7−→ h(χ
[0,λ2]

(f2)) = µ({g ∈ G | f(g)2 ≤ λ2}).

Put Aλ = {g ∈ G | f(g)2 ≤ λ2}. Since the zero-set for f is a µ-null-set we have

α(H(2)
0 (G)) =

 lim inf
λ↘0

log(µ(Aλ))
log(λ)

if ∀λ > 0 : µ(Aλ) > 0;

∞+ otherwise.

Put m = dim(G) and choose a linear identification of the Lie algebra g of G with
Rm. By [25, Thm. 3.31], we can choose neighborhoods V ⊆ g and U ⊆ G, around
0 and 1 respectively, such that exp: V → U is a diffeomorphism. This means that

ϕ = (exp |V )−1 : U → V ⊆ g = Rm,

constitutes a chart around 1 ∈ G. Assume without loss of generality that

V ⊆ g ∩ {x ∈ gln(C) | ‖x‖∞ ≤ 1
2}.

For g ∈ G we have

g ∈ Aλ ⇔
∑
k,l

(xkl(g)− δkl)2 + ykl(g)2 ≤ λ2

⇔ ‖1− g‖22 ≤ λ2

⇔ g ∈ Bλ(1),
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where Bλ(1) is the closed λ-ball in (R2n2
, ‖·‖2) with center 1. Thus Aλ = G∩Bλ(1)

and we can therefore choose λ0 ∈]0, 1
2 ] such that Aλ0 ⊆ U . Let ω denote the unique,

positive, probability Haar volume form on G (see e.g. [12, Thm. 8.21, 8.23] or [14,
Cor. 15.7]) and let λ ∈ [0, λ0]. Then

µ(Aλ) =
∫
G

χ
Aλ

dµ

=
∫
U

χ
Aλ
ω

=
∫
V

(χ
Aλ
◦ ϕ−1)(x1, . . . , xm)F (x1, . . . , xm) dx1 · · ·dxm

=
∫
ϕ(Aλ)

F (x1, . . . , xm) dx1 · · ·dxm,

where F : V → R is the unique positive function describing ω in the local coordinates
(U,ϕ). By construction we have F > 0 on all of V and since ϕ(Aλ0) is a compact
set there exist C, c > 0 such that

c ≤ F (x1, . . . , xm) ≤ C for all (x1, . . . , xm) ∈ ϕ(Aλ0)

For any λ ∈ [0, λ0] we therefore have

cνm(ϕ(Aλ)) ≤ µ(Aλ) ≤ Cνm(ϕ(Aλ)),(3)

where νm denotes the Lebesgue measure in Rm = g. Since Aλ = G∩Bλ(1) and ϕ is
(exp |V )−1, it follows from Observation 2.8 that there exist d,D > 0 and λ1 ∈]0, λ0]
such that for all λ ∈ [0, λ1]

Bdλ(0) ∩ V ⊆ ϕ(Aλ) ⊆ BDλ(0) ∩ V.

Hence there exist d′, D′ > 0 such that for all λ ∈ [0, λ1]

d′λm ≤ νm(ϕ(Aλ)) ≤ D′λm.(4)

From (3) and (4) we see that µ(Aλ) > 0 for λ ∈]0, λ1] and since

lim
λ↘0

log(d′λm)
log(λ)

= lim
λ↘0

log(D′λm)
log(λ)

= m,

we also conclude that

α(H(2)
0 (G)) = lim inf

λ↘0

log(µ(Aλ))
log(λ)

= m = dim(G).

By definition ([18, Def. 2.2]), the capacity of a finitely presented zero-dimensional
module is the inverse of its Novikov-Shubin invariant and thus

c0(G) = c(H(2)
0 (G)) =

1
dim(G)

.

2.3. The finite dimensional case
In Theorem 2.4 above we only considered compact Lie groups of positive dimension.
What is left is the case when G is finite. When G is finite the algebra C(G) is finite
dimensional and we have C(G)0 = C(G) = L∞(G), which implies vanishing of
H

(2)
n (C(G),∆c) for n ≥ 1. For n = 0 we get

H
(2)
0 (C(G),∆c) = C(G) �

C(G)
C ' C(G)δe.

This proves that H(2)
0 (C(G),∆c) is a finitely generated projective C(G)-module and

hence
β

(2)
0 (C(G),∆c) = h(δe) =

∫
G

δe(g) dµ(g) =
1
|G|

.
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Projectivity of H(2)
0 (C(G),∆c) implies (cf. [18]) that c0(C(G),∆c) = 0−.

This argument generalizes in the following way.

Proposition 2.9. Let G = (A,∆) be a quantum group and assume that A has
finite linear dimension N . Then

β
(2)
0 (G) =

1
N
,

and β(2)
n (G) = 0 for all n ≥ 1. Moreover, cn(G) = 0− for all n ∈ N0.

Proof. We first note that for a finite dimensional (hence compact) quantum
group the Haar state is automatically tracial ([23, Thm. 2.2]), so that the numerical
L2-invariants make sense. The fact that the higher L2-Betti numbers vanish is a
trivial consequence of the fact that A is finite dimensional and therefore equal to
both A0 and its enveloping von Neumann algebra. To compute the zeroth L2-Betti
number we compute the zeroth L2-homology as

H
(2)
0 (G) = TorA0 (A,C) ' A�

A
C = Ae,

where e is the projection in A projecting onto the C-summand A/ ker(ε). Hence

β
(2)
0 (G) = dimAAe = h(e) =

1
N
,

where the last equality follows, for instance, from [26, A.2].
Each finite dimensional C∗-algebra is a semisimple ring and therefore all modules
over it are projective. Hence all capacities of finite dimensional compact quantum
groups are 0−.

3. A vanishing result in the commutative case

Throughout this section, G denotes a compact, connected Lie group of dimension
m ≥ 1 and µ denotes the Haar probability measure on G. We will also use the
following notation:

G = (C(G),∆c)

A = C(G)
A0 = The algebra of matrix coefficients
A = L∞(G,µ)
U = The algebra of µ-measurable functions on G finite almost everywhere

We aim to prove that β(2)
n (G) = 0 for all n ≥ 1. Before doing this, a few comments

on the objects defined above. We first note that U may be identified with the
algebra of operators affiliated with A by [9, Thm. 5.6.4]. In [20] it is proved that
there is a well defined dimension function dimU (·) for modules over U satisfying
properties similar to those enjoyed by dimM (·) (cf. [16, Thm. 0.6]). Moreover, by
[20, Thm. 3.1, Prop. 2.1] the functor U �A − is exact and dimension-preserving
from the category of A -modules to the category of U -modules.
By [12, Cor. 4.22], we know that G can be faithfully represented in GLn(C) for some
n ∈ N. Since GLn(C) is a real analytic group (in the sense of [5]), this implies that G
has a unique analytic structure making any faithful representation π analytic in the
following sense: For any g ∈ G and any function ϕ analytic around π(g) the function
ϕ ◦ π is analytic around g. This is the content of [5] Chapter IV, §XIV Proposition
1 and §XIII Proposition 1. We now choose some fixed faithful representation of
G in GLn(C) which will be notationally suppressed in the following. That is, we
consider G as an analytic subgroup of GLn(C). Denote by {xkl, ykl | 1 ≤ k, l ≤ n}
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the natural 2n2 real functions on GLn(C) determining the analytic structure. As
noted in Observation 2.6, the algebra A0 is generated by the restriction of the
functions xkl and ykl to G. Consider some polynomial in the variables xkl and ykl;
this is clearly an analytic function on GLn(C) and it therefore defines an analytic
function on G by restriction. Thus every function in A0 is analytic.
The following result is probably well known to experts in Lie theory, but we were
unable to find a suitable reference.

Proposition 3.1. If f ∈ A0 is not constantly zero then

µ({g ∈ G | f(g) = 0}) = 0.

Hence f is invertible in U .

For the proof we will need the following:

Observation 3.2. Let V ⊆ Rn be connected, convex and open and assume that
f : V → R is analytic. If f is not constantly zero on V then N = {x ∈ V | f(x) = 0}
is a set of Lebesgue measure 0. This is well known in the case n = 1, since in this
case N is at most countable. The general case now follows from this by induction
on n.

Proof of Proposition 3.1. Since f(x) = 0 iff Re(f(x)) = Im(f(x)) = 0 we
may assume that f is real valued. Cover G with finitely many precompact, con-
nected, analytic charts

(U1, ϕ1), . . . , (Ut, ϕt),
such that ϕ(Ui) ⊆ Rm is convex for each i ∈ {1, . . . , t}. Using the local coordinates
and the Haar volume form on G, it is not hard to see that

µ({g ∈ Ui | f(g) = 0}) = 0 ⇔ νm({x ∈ ϕi(Ui) | (f ◦ ϕ−1
i )(x) = 0}) = 0.(5)

Here νm denotes the Lebesgue measure in Rm. Since f ◦ ϕ−1
i is analytic it is (by

Observation 3.2) sufficient to prove that f is not identically zero on any chart.
Assume that f is constantly zero on some chart (Ui1 , ϕi1). We then aim to show
that f is zero on all of G, contradicting the assumption. If G = Ui1 there is nothing
to prove. If not, there exists i2 6= i1 such that Ui1 ∩ Ui2 6= ∅, since otherwise we
could split G as the union

Ui1 ∪ (
⋃
i 6=i1

Ui)

of to disjoint, non-empty, open sets, contradicting the fact that G is connected.
Since the intersection Ui1∩Ui2 is of positive measure and f is zero on it we conclude,
by Observation 3.2 and (5), that f is zero on all of Ui2 . If G = Ui1 ∪ Ui2 we are
done. If not, there exists i3 /∈ {i1, i2} such that

Ui1 ∩ Ui3 6= ∅ or Ui2 ∩ Ui3 6= ∅,
since otherwise G would be the union of two disjoint, non-empty, open sets. In
either case we conclude that f is zero on all of Ui3 . Continuing in this way we
conclude that f is zero on all of G since there are only finitely many charts.

The main result in this section is the following, which should be compared to [6,
Thm. 5.1].

Theorem 3.3. Let Z be any A0-module. Then for all n ≥ 1 we have

dimA TorA0
n (A , Z) = 0.

Proof. As noted in the beginning of this section, we have

dimA TorA0
n (A , Z) = dimU (U ⊗

A
TorA0

n (A , Z))

= dimU TorA0
n (U , Z).
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We now aim to prove that TorA0
n (U , Z) = 0. For this we first prove the following

claim:

Each finitely generated A0-submodule in U is contained in a finitely generated free
A0-submodule.

Let F be a non-trivial, finitely generated A0-submodule in U . We prove the claim
by (strong) induction on the minimal number n of generators. If n = 1 then F is
generated by a single element ϕ 6= 0, and since all elements in A0 \{0} are invertible
in U (Proposition 3.1) the function ϕ constitutes a basis for F . Hence F itself is
free. Assume now that the result is true for all submodules that can be generated by
n elements, and assume that F is a submodule with minimal number of generators
equal to n+ 1. Choose such a minimal system of generators ϕ1, . . . , ϕn+1. If these
are linearly independent over A0 there is nothing to prove. So assume that there
exists a non-trivial tuple (a1, . . . , an+1) ∈ An+1

0 such that

a1ϕ1 + · · ·+ an+1ϕn+1 = 0,

and assume, without loss of generality, that a1 6= 0. Define F1 to be the A0-
submodule in U generated by

a−1
1 ϕ2, · · · , a−1

1 ϕn+1.

Then F ⊆ F1 and the minimal number of generators for F1 is a most n. By the in-
duction hypothesis, there exists a finitely generated free submodule F2 with F1 ⊆ F2

and in particular F ⊆ F2. This proves the claim.

Denote by (Fi)i∈I the system of all finitely generated free A0-submodules in U .
By the above claim, this set is directed with respect to inclusion. Since any module
is the inductive limit of its finitely generated submodules, the claim also implies
that U , as an A0-module, is the inductive limit of the system (Fi)i∈I . But, since
each Fi is free (in particular flat) and since Tor commutes with inductive limits we
get

TorA0
n (U , Z) = lim

→
i

TorA0
n (Fi, Z) = 0,

for all n ≥ 1.

Combining the results of Theorem 3.3 and Theorem 2.4 we get the following.

Corollary 3.4. If G is a compact, non-trivial, connected Lie group then

β(2)
n (C(G),∆c) = 0,

for all n ∈ N0.

4. Relation to the Connes-Shlyakhtenko approach

In [6], A. Connes and D. Shlyakhtenko introduced a notion of L2-homology and L2-
Betti numbers in the setting of tracial ∗-algebras. More precisely, if A is a weakly
dense ∗-subalgebra of a finite von Neumann algebra M with faithful, normal, trace-
state τ , they defined ([6, Def. 2.1])

H(2)
n (A) = TorA�A

op

n (M ⊗̄M op, A) and β(2)
n (A, τ) = dimM ⊗̄Mop H(2)

n (A).

This generalizes the notion of L2-Betti numbers for groups in the sense that for
a discrete group Γ we have β(2)

n (CΓ, τ) = β
(2)
n (Γ), as proven in [6, Prop. 2.3]. In

this section we relate the notion of L2-Betti numbers for quantum groups to the
Connes-Shlyakhtenko approach. More precisely we prove the following:
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Theorem 4.1. Let G = (A,∆) be a compact quantum group with tracial Haar
state h and algebra of matrix coefficients A0. Then, for all n ∈ N0, we have
β

(2)
n (G) = β

(2)
n (A0, h), where the latter is the L2-Betti numbers of the tracial ∗-

algebra (A0, h) in the sense of [6].

For the proof of Theorem 4.1 we will need two small results. Denote by S : A0 →
A0 the antipode and by ε : A0 → C the counit. Recall ([11, p. 424]) that the trace
property of h implies that S2 = idA0 and hence that S is a ∗-anti-isomorphism of
A0. Denote by M the enveloping von Neumann algebra πh(A0)′′. In the following
we suppress the GNS-representation πh and put H = L2(A, h). Denote by H̄ the
conjugate Hilbert space, on which the opposite algebra Aop

0 acts as aop : ξ̄ 7→ a∗ξ.

Lemma 4.2. There exists a unitary V : H → H̄ such that the map

B(H ) ⊇ A0 3 x
ψ7−→ (Sx)op ∈ Aop

0 ⊆ B(H̄ )

takes the form ψ(x) = V xV ∗. In particular, ψ extends to a normal ∗-isomorphism
from M to M op.

Proof. Denote by η the inclusion A0 ⊆ H and note that since A0 is norm
dense in A the set η(A0) is dense in H . We now define the map V by

η(A0) 3 η(x)
V7−→ η(Sx∗) ∈ η(A0).

It is easy to see that V is linear and

‖V η(x)‖22 = ‖η(Sx∗)‖22
= 〈η(Sx∗) |η(Sx∗)〉
= h((Sx∗)∗S(x∗))

= h(S(x∗x))

= h(x∗x)

= ‖η(x)‖22,

and hence V maps the dense subspace η(A0) isometrically onto the dense subspace
η(A0). Thus, V extends to a unitary which will also be denoted V . Clearly the
adjoint of V is determined by

η(x) V ∗7−→ η(Sx∗).

To see that V implements ψ we choose some a ∈ A0 and calculate:

η(x) V ∗7−→ η(Sx∗)
a7−→ η(aS(x∗))
V7−→ η(S(aS(x∗))∗)

= η((Sa∗)x)

= ψ(a)η(x).

Proposition 4.3. The map (id⊗ψ) ◦ ∆: A0 → A0 � Aop
0 extends to a trace-

preserving ∗-homomorphism ϕ : M −→ M ⊗̄M op. Here ψ is the map constructed
in Lemma 4.2 and M ⊗̄M op is endowed with the natural trace-state h⊗ hop.

Proof. The comultiplication is implemented by a multiplicative unitary W ∈
B(H ⊗̄H ) in the sense that

∆(a) = W ∗(1⊗ a)W,
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([13, page 60]) and it therefore extends to a normal ∗-homomorphism, also denoted
∆, from M to M ⊗̄M . By Lemma 4.2, the map ψ : M → M op is normal and
therefore ϕ : M → M ⊗̄M op is well defined and normal. Since ϕ is normal and A0

is ultra-weakly dense in M it suffices to see that ϕ is trace-preserving on A0. So,
let a ∈ A0 be given and write ∆a =

∑
i xi ⊗ yi ∈ A0 �A0. We then have

(h⊗ hop)ϕ(a) = (h⊗ hop)(1⊗ ψ)(
∑
i

xi ⊗ yi)

= (h⊗ hop)(
∑
i

xi ⊗ (Syi)op)

=
∑
i

h(xi)h(yi)(h ◦ S = h)

= h(h⊗ id)∆(a)

= h(h(a)1A)(invariance of h)
= h(a).

We are now ready to give the proof of Theorem 4.1.

Proof of Theorem 4.1. By Proposition 4.3, we have that ϕ is a trace-pre-
serving ∗-homomorphism from M to M ⊗̄M op. Via ϕ we can therefore consider
M ⊗̄M op as a right M -module and by [21, Thm. 1.48, 3.18] we have that the
functor (M ⊗̄M op) �M − is exact and dimension-preserving from the category of
M -modules to the category of M ⊗̄M op-modules. Hence

β(2)
n (G) = dimM TorA0

n (M ,C)

= dimM ⊗̄Mop(M ⊗̄M op) �
M

TorA0
n (M ,C)

= dimM ⊗̄Mop TorA0
n (M ⊗̄M op,C)

By [8, Prop. 2.3] (see also [7]), we have an isomorphism of vector spaces

TorA0
n (M ⊗̄M op,C) ' TorA0�Aop

0
n (M ⊗̄M op, A0),(6)

where on the right-hand side A0 � Aop
0 acts on A0 in the trivial way and on

M ⊗̄M op via the natural inclusion M ⊗̄M op ⊇ A0�Aop
0 . This isomorphism respects

the natural left action of M ⊗̄M op, since on both sides of (6) only the multiplication
from the right on M ⊗̄M op is used to compute the Tor-groups. The right-hand side
of (6) is, by definition, equal to the L2-homology of A0 in the sense of [6] and the
statement follows.

Corollary 4.4. Let G be a non-trivial, compact, connected Lie group with Haar
measure µ and denote by A0 the algebra of matrix coefficients arising from irre-
ducible representations of G. Then, for all n ∈ N0, we have β(2)

n (A0,dµ) = 0.

Proof. This follows from Theorem 4.1 and Corollary 3.4 in conjunction
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L2-BETTI NUMBERS OF COAMENABLE QUANTUM
GROUPS

DAVID KYED

Abstract. We prove that a compact quantum group is coamen-
able if and only if its corepresentation ring is amenable. We further
propose a Følner condition for compact quantum groups and prove
it to be equivalent to coamenability. Using this Følner condition,
we prove that for a coamenable compact quantum group with tra-
cial Haar state, the enveloping von Neumann algebra is dimension
flat over the Hopf algebra of matrix coefficients. This generalizes a
theorem of Lück from the group case to the quantum group case,
and provides examples of compact quantum groups with vanishing
L2-Betti numbers.

0. Introduction

The theory of L2-Betti numbers for discrete groups is originally due
to Atiyah and dates back to the seventies [Ati76]. These L2-Betti num-
bers are defined for those discrete groups that permit a free, proper
and cocompact action on some contractible, Riemannian manifold X.
If Γ is such a group, the space of square integrable p-forms on X
becomes a finitely generated Hilbert module for the group von Neu-
mann algebra L (Γ). As such it has a Murray-von Neumann dimen-
sion which turns out to be independent of the choice of X and is called
the p-th L2-Betti number of Γ, denoted β

(2)
p (Γ). More recently, Lück

([Lüc97],[Lüc98a],[Lüc98b]) transported the notion of Murray-von Neu-
mann dimension to the setting of finitely generated projective (alge-
braic) L (Γ)-modules and extended thereafter the domain of definition
to the class of all modules — accepting the possibility of having in-
finite dimension. With this extended dimension function, dimL (Γ)(·),
it is possible to extend the notion of L2-Betti numbers to cover all
discrete groups Γ by setting

β(2)
p (Γ) = dimL (Γ) TorCΓ

p (L (Γ),C).

For more details on the relations between the different definitions of L2-
Betti numbers and the extended dimension function we refer to Lück’s
book [Lüc02].

2000 Mathematics Subject Classification. 16W30,43A07, 46L89, 16E30.
Key words and phrases. Quantum groups, Amenability, Fusion algebras, L2-

Betti numbers.
1
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All the ingredients in the homological algebraic definition above have
fully developed analogues in the world of compact quantum groups, and
using this dictionary the notion of L2-Betti numbers was generalized
to the quantum group setting in [Kye06]. Since this generalization will
be used later in this paper, we shall now explain it in greater detail.

Consider a compact quantum group G = (A,∆) and assume that
its Haar state h is a trace. If we denote by A0 the unique dense Hopf
∗-algebra and by M the enveloping von Neumann algebra of A in the
GNS representation arising from h, then the p-th L2-Betti number of
G is defined as

β(2)
p (G) = dimM TorA0

p (M,C).

Here C is considered an A0-module via the counit ε : A0 → C and
dimM(·) is Lück’s extended dimension function arising from (the ex-
tension of) the trace-state h. This definition extends the classical one
([Kye06, 4.2]) in the sense that

β(2)
p (G) = β(2)

p (Γ),

when G = (C∗
red(Γ),∆red).

The aim of this paper is to investigate the L2-Betti numbers of the
class of coamenable, compact quantum groups. In the classical case
we have that β(2)

p (Γ) = 0 for all p ≥ 1 whenever Γ is an amenable
group. This can be seen as a special case of [Lüc98a, 5.1] where it is
proved that the von Neumann algebra L (Γ) is dimension flat over CΓ,
meaning that

dimL (Γ) TorCΓ
p (L (Γ), Z) = 0 (p ≥ 1)

for any CΓ-module Z — provided, of course, that Γ is still assumed
amenable. We generalize this result to the quantum group setting in
Theorem 6.1. More precisely, we prove that if G = (A,∆) is a compact,
coamenable quantum group with tracial Haar state and Z is any (left)
module for the algebra of matrix coefficients A0, then

dimM TorA0
p (M,Z) = 0. (p ≥ 1)

Here M is again the enveloping von Neumann algebra in the GNS rep-
resentation arising from the Haar state. In order to prove this result
we need a Følner condition for compact quantum groups. The classical
Følner condition for groups ([Føl55]) is a geometrical condition, on the
action of the group on itself, which is equivalent to amenability of the
group. In order to obtain a quantum analogue of Følner’s condition a
detailed study of the ring of corepresentations, associated to a compact
quantum group, is needed. The ring of corepresentations is a special
case of a so-called fusion algebra and we have therefore devoted a sub-
stantial part of this paper to the study of abstract fusion algebras and
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their amenability. Amenability for (finitely generated) fusion algebras
was introduced by Hiai and Izumi in [HI98] where they also gave two
equivalent Følner-type conditions for fusion algebras. We generalize
their results to the non-finitely generated case and prove that a com-
pact quantum group is coamenable if and only if its corepresentation
ring is amenable. From this we obtain a Følner condition for compact
quantum groups which is equivalent to coamenability. Using this Følner
condition we prove our main result, Theorem 6.1, which implies that
coamenable compact quantum groups have vanishing L2-Betti numbers
in all positive degrees.

Structure. The paper is organized as follows. In the first section we re-
capitulate (parts of) Woronowicz’s theory of compact quantum groups.
The second and third section is devoted to the study of abstract fu-
sion algebras and amenability of such. In the fourth section we discuss
coamenability of compact quantum groups and investigate the relation
between coamenability of a compact quantum group and amenability of
its corepresentation ring. The fifth section is an interlude in which the
necessary notation concerning von Neumann algebraic compact quan-
tum groups and their discrete duals is introduced. The sixth section is
devoted to the proof of our main theorem (6.1) and the seventh, and
final, section consists of examples.

Acknowledgements. I wish to thank my supervisor Ryszard Nest for
the many discussions about quantum groups and their (co)amenability,
and Andreas Thom for pointing out to me that the bicrossed product
construction could be used to generate examples of quantum groups
satisfying Følner’s condition.

Notation. Throughout the paper, the symbol � will be used to denote
algebraic tensor products while the symbol ⊗̄ will be used to denote
tensor products in the category of Hilbert spaces or the category of
von Neumann algebras. All tensor products between C∗-algebras are
assumed minimal/spatial and these will be denoted by the symbol ⊗.

1. Preliminaries on compact quantum groups

In this section we briefly recall Woronowicz’s theory of compact
quantum groups. Detailed treatments, and proofs of the results stated,
can be found in [Wor98], [MVD98] and [KT99].

A compact quantum group G is a pair (A,∆) where A is a unital
C∗-algebra and ∆: A −→ A ⊗ A is a unital ∗-homomorphism from A
to the minimal tensor product of A with itself satisfying:

(id⊗∆)∆ = (∆⊗ id)∆ (coassociativity)

∆(A)(1⊗ A) = ∆(A)(A⊗ 1) = A⊗ A (non-degeneracy)
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For such a compact quantum group G = (A,∆), there exists a unique
state h : A → C, called the Haar state, which is invariant in the sense
that

(h⊗ id)∆(a) = (id⊗h)∆(a) = h(a)1,

for all a ∈ A. Let H be a Hilbert space and let u ∈ M(K(H)⊗ A) be
an invertible multiplier. Then u is called a corepresentation if

(id⊗∆)u = u(12)u(13),

where we use the standard leg numbering convention; for instance
u(12) = u⊗1. Intertwiners, direct sums and equivalences between corep-
resentations as well as irreducibility are defined in a straight forward
manner. See e.g. [MVD98] for details. We shall denote by Mor(u, v) the
set of intertwiners from u to v. It is a fact that each irreducible corepre-
sentation is finite dimensional and equivalent to a unitary corepresen-
tation. Moreover, every unitary corepresentation is unitarily equivalent
to a direct sum of irreducible corepresentations. For two finite dimen-
sional unitary corepresentations u, v their tensor product is defined as

u T©v = u(13)v(23).

This is again a unitary corepresentation of G.

The algebra A0 generated by all matrix coefficients arising from irre-
ducible corepresentations becomes a Hopf ∗-algebra (with the restricted
comultiplication) which is dense in A. We denote its antipode by S
and its counit by ε. We also recall that the restriction of the Haar
state to the ∗-algebra A0 is always faithful. The quantum group G is
called a compact matrix quantum group if there exists a fundamental
unitary corepresentation; i.e. a finite dimensional, unitary corepresen-
tation whose matrix coefficients generate A0 as a ∗-algebra.

Each finite dimensional, unitary corepresentation u defines a con-
tragredient corepresentation uc on the dual Hilbert space H ′. If u ∈
B(H) � A0 for some finite dimensional Hilbert space H then uc ∈
B(H ′) � A0 is given by uc = (( · )′ ⊗ S)u, where for T ∈ B(H) the
operator T ′ ∈ B(H ′) is the natural dual (T ′(y′))(x) = y′(Tx). In gen-
eral uc is not a unitary, but it is a corepresentation; i.e. it is invertible
and satisfies (id⊗∆)uc = uc

(12)u
c
(13) and is therefore equivalent to a uni-

tary corepresentation. By choosing an orthonormal basis e1, . . . , en for
H we get an identification of B(H) � A0 and Mn(A0). If, under this
identification, u becomes the matrix (uij) then uc is identified with the
matrix ū = (u∗ij), where we identify B(H ′)�A0 with Mn(A0) using the
dual basis e′1, . . . , e′n. From this it follows that ucc is equivalent to u.
Note also that one has (u ⊕ v)c = uc ⊕ vc and (u T©v)c = vc T©uc for
unitary corepresentations u and v (see e.g. [Wor87]). If u ∈ B(H)�A0



L2-BETTI NUMBERS OF COAMENABLE QUANTUM GROUPS 5

is a finite dimensional corepresentation its character is defined as

χ(u) = (Tr⊗ id)u ∈ A0,

where Tr is the unnormalized trace on B(H). The character map has
the following properties.

Proposition 1.1 ([Wor87]). If u and v are finite dimensional, unitary
corepresentations then

χ(u T©v) = χ(u)χ(v), χ(u⊕v) = χ(u)+χ(v) and χ(uc) = χ(u)∗.

Moreover, if u and v are equivalent then χ(u) = χ(v).

We end this section with the two basic examples of compact quantum
groups arising from actual groups.

Example 1.2. If G is a compact, Hausdorff topological group then the
Gelfand dual C(G) becomes a compact quantum group with comultipli-
cation ∆c : C(G) −→ C(G)⊗ C(G) = C(G×G) given by

∆c(f)(s, t) = f(st).

The Haar state is in this case given by integration against the Haar
probability measure on G, and the finite dimensional unitary corepre-
sentations of C(G) are exactly the finite dimensional unitary represen-
tations of G.

Example 1.3. If Γ is a discrete, countable group then the reduced group
C∗-algebra C∗

red(Γ) becomes a compact quantum group when endowed
with comultiplication given by

∆red(λγ) = λγ ⊗ λγ.

Here λ denotes the left regular representation of Γ. In this case, the
Haar state is just the natural trace on C∗

red(Γ), and a complete family of
irreducible, unitary corepresentations is given by the set {λγ | γ ∈ Γ}.

Remark 1.4. All compact quantum groups to be considered in the fol-
lowing are assumed to have a separable underlying C∗-algebra. The
quantum Peter-Weyl theorem ([KT99, 3.2.3]) then implies that the GNS
space arising from the Haar state is separable and, in particular, that
there are at most countable many (pairwise inequivalent) irreducible
corepresentations.

2. Fusion Algebras

In this section we introduce the notion of fusion algebras and amen-
ability of such objects. This topic was treated by Hiai and Izumi in
[HI98] and we will follow this reference closely throughout this sec-
tion. Other references on the subject are [Yam99], [HY00] and [Sun92].
Throughout the section, N0 will denote the non-negative integers.
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Definition 2.1 ([HI98]). Let R be a unital ring and assume that R is
free as Z-module with basis I. Then R is called a fusion algebra if the
unit e is an element of I and the following holds:

(i) The abelian monoid N0[I] is stable under multiplication. That
is; for all ξ, η ∈ I, the unique family (Nα

ξ,η)α∈I of integers (only
finitely many non-zero) satisfying

ξη =
∑
α∈I

Nα
ξ,ηα,

consists of non-negative numbers.
(ii) The ring R has a Z-linear anti-multiplicative involution x 7→ x̄

preserving the basis I globally.
(iii) Frobenius reciprocity holds, that is for ξ, η, α ∈ I we have

Nα
ξ,η = Nη

ξ̄,α
= N ξ

α,η̄.

(iv) There exists a Z-linear multiplicative function d : R → [1,∞[
such that d(ξ) = d(ξ̄) for all ξ ∈ I. This function is called the
dimension function.

Note that both the distinguished basis, involution and dimension
function are included in the data defining a fusion algebra. Each fusion
algebra comes with a natural trace τ given by∑

α∈I

kαα
τ7−→ ke.

We shall use this trace later to define a C∗-envelope of a fusion algebra.
Note also that the multiplicativity of d implies

1 =
∑
α∈I

d(α)

d(ξ)d(η)
Nα

ξ,η,

for all ξ, η ∈ I. For an element r =
∑

α∈I kαα ∈ R, the set {α ∈ I |
kα 6= 0} is called the support of r and denoted supp(r). We shall also
consider the complexified fusion algebra C⊗ZZ[I] which will be denoted
C[I] in the following. Note that this becomes complex ∗-algebra with
the induced algebraic structures.

Example 2.2. For any discrete group Γ the integral group ring Z[Γ]
becomes a fusion algebra when endowed with (the Z-linear extension of)
inversion as involution and trivial dimension function given by d(γ) =
1 for all γ ∈ Γ.

For a compact group G its irreducible representations constitute the
basis in a fusion algebra where the tensor product of representations is
the product. We shall not go into details with this construction, since
it will be contained in the following more general example.
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Example 2.3. If G = (A,∆) is a compact quantum group its irre-
ducible corepresentations constitute the basis of a fusion algebra with
tensor product as multiplication. Since this example will play a promi-
nent role later, we shall now elaborate on the construction. Denote by
Irred(G) = (uα)α∈I a complete family of representatives for the equi-
valence classes of irreducible, unitary corepresentations of G. As ex-
plained in Section 1, for all uα, uβ ∈ Irred(G) there exists a finite subset
I0 ⊆ I and a family (Nγ

α,β)γ∈I0 of positive integers such that uα T©uβ is
equivalent to ⊕

γ∈I0

(uγ)⊕Nγ
α,β .

Thus, a product can be defined on the free Z-module Z[Irred(G)] by
setting

uα · uβ =
∑
γ∈I0

Nγ
α,βu

γ,

and the trivial corepresentation e = 1A ∈ Irred(G) is a unit for this
product. If we denote by uᾱ ∈ Irred(G) the unique representative equiv-
alent to (uα)c, then the map uα 7→ uᾱ extends to a conjugation on the
ring Z[Irred(G)] and since each uα is an element of Mnα(A) for some
nα ∈ N we can also define a dimension function d : Z[Irred(G)] →
[1,∞[ by d(uα) = nα.

When endowed with this multiplication, conjugation and dimension
function Z[Irred(G)] becomes a fusion algebra. The only thing that is
not clear at this moment is that Frobenius reciprocity holds. To see
this, we first note that for for any α ∈ I and any finite dimensional
corepresentation v we have (by Schur’s Lemma [MVD98, 6.6]) that uα

occurs exactly

dimC Mor(uα, v)

times in the decomposition of v. Moreover, we have for any two unitary
corepresentations v and w that

dimC Mor(v, w) = dimC((Vw ⊗ V ′
v)

w T#vc

)

dimC Mor(vcc, w) = dimC((V ′
v ⊗ Vw)vc T#w)

Here the right hand side denotes the linear dimension of the space of in-
variant vectors under the relevant coaction. These formulas are proved
in [Wor87, 3.4] for compact matrix quantum groups, but the same proof
carries over to the case where the compact quantum group in question
does not necessarily possess a fundamental corepresentation. Using the
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first formula, we get for α, β, γ ∈ I that

Nγ
α,β = dimC Mor(uγ, uα T©uβ)

= dimC(Vα ⊗ Vβ ⊗ V ′
γ)

uα T#uβ T#(uγ)c

= dimC(Vγ ⊗ V ′
β ⊗ V ′

α)uγ T#(uβ)c T#(uα)c

= dimC Mor(uα, uγ T©(uβ)c)

= Nα
γ,β̄

The remaining identity in Frobenius reciprocity follows similarly using
the second formula. The fusion algebra Z[Irred(G)] is called the corep-
resentation ring (or fusion ring) of G and is denoted R(G).

Recall that the character of a corepresentation u ∈ Mn(A) is defined
as χ(u) =

∑n
i=1 uii. It follows from the Proposition 1.1 that the Z-linear

extension
χ : Z[Irred(G)] −→ A0

is an injective homomorphism of ∗-rings. I.e. χ is additive and mul-
tiplicative with χ(uᾱ) = (χ(uα))∗. This gives a link between the two
∗-algebras R(G) and A0 which will be of importance later.

Other interesting examples of fusion algebras arise from inclusions
of II1-factors. See [HI98] for details.

Convention 2.4. In the following we shall only consider fusion alge-
bras with an at most countable basis. This will therefore be assumed
without further comments throughout the paper. Since we will primar-
ily be interested in corepresentation rings of compact quantum groups,
this is not very restrictive since the standing separability assumption
(Remark 1.4) ensures that the corepresentation rings always have a
countable basis.

Consider again an abstract fusion algebra R = Z[I]. For ξ, η ∈ I we
define the (weighted) convolution of the corresponding Dirac measures,
δξ and δη, as

δξ ∗ δη =
∑
α∈I

d(α)

d(ξ)d(η)
Nα

ξ,ηδα ∈ `1(I).

This extends linearly and continuously to a submultiplicative product
on `1(I). For f ∈ `∞(I) and ξ ∈ I we define λξ(f), ρξ(f) : I → C by

λξ(f)(η) =
∑
α∈I

f(α)(δξ̄ ∗ δη)(α)

ρξ(f)(η) =
∑
α∈I

f(α)(δη ∗ δξ)(α).
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Denote by σ the counting measure on I scaled with d2; that is σ(ξ) =
d(ξ)2. Combining Proposition 1.3, Remark 1.4 and Theorem 1.5 in
[HI98] we get

Proposition 2.5 ([HI98]). For each f ∈ `∞(I) we have λξ(f) ∈ `∞(I)
and for each p ∈ N ∪ {∞} the map λξ : `∞(I) → `∞(I) restricts to
a bounded operator on `p(I, σ) denoted λp,ξ. By linear extension, we
therefore obtain a map λp,− : Z[I] → B(`p(I, σ)). The map λp,− respects
the weighted convolution product. Moreover, for p = 2 the operator
U : `2(I) → `2(I, σ) given by U(δξ) = 1

d(ξ)
δξ is unitary and intertwines

λ2,ξ with the operator

lξ : δη 7−→
1

d(ξ)

∑
α

Nα
ξ,ηδα.

Remark 2.6. Under the natural identification of `2(I) with the GNS
space L2(C[I], τ), we see that πτ (ξ) = d(ξ)lξ. In particular the GNS
representation consists of bounded operators. Here τ is the natural trace
defined just after Definition 2.1.

3. Amenability for Fusion Algebras

The notion of amenability for fusion algebras was introduced in
[HI98], but only in the slightly restricted setting of finitely generated
fusion algebras; a fusion algebra R = Z[I] is called finitely generated if
there exists a finitely supported probability measure µ on I such that

I =
⋃
n∈N

supp(µ∗n) and ∀ξ ∈ I : µ(ξ̄) = µ(ξ).

That is, if the union of the supports of all powers of µ, with respect
to convolution, is I and µ is invariant under the involution. The first
condition is referred to as nondegeneracy of µ and the second condition
is referred to as symmetry of µ.

In [HI98], amenability is defined, for a finitely generated fusion al-
gebra, by requiring that ‖λp,µ‖ = 1 for some 1 < p < ∞ and some
finitely supported, symmetric, non-degenerate probability measure µ.
It is then proved that this is independent of the choice of µ and p,
using the non-degeneracy property of the measure. If we consider a
compact quantum group G = (A,∆) it is not difficult to prove that its
corepresentation ring R(G) is finitely generated exactly when G is a
compact matrix quantum group. Since we are also interested in quan-
tum groups without a fundamental corepresentation we will choose the
following definition of amenability.

Definition 3.1. A fusion algebra R = Z[I] is called amenable if 1 ∈
σ(λ2,µ) for every finitely supported, symmetric probability measure µ
on I.
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Here σ(λ2,µ) denotes the spectrum of the operator λ2,µ. From Propo-
sition 1.3 and Corollary 4.4 in [HI98] it follows that our definition agrees
with the one in [HI98] on the class of finitely generated fusion algebras.
The relation between amenability for fusion algebras and the classical
notion of amenability for groups will be explained later. See e.g. Re-
mark 3.8 and Corollary 4.7.

Definition 3.2. Let R = Z[I] be a fusion algebra. For two finite
subsets S, F ⊆ I we define the boundary of F relative to S as the set

∂S(F ) = {α ∈ F | ∃ ξ ∈ S : supp(αξ) * F}
∪ {α ∈ F c | ∃ ξ ∈ S : supp(αξ) * F c}

Here, and in what follows, F c denotes the set I \ F .

The modified definition of amenability allows the following extension
of [HI98, 4.6] from where we also adopt some notation.

Theorem 3.3. Let R = Z[I] be a fusion algebra with dimension func-
tion d. Then the following are equivalent:

(A) The fusion algebra is amenable.
(FC1) For every finitely supported, symmetric probability measure µ

on I with e ∈ supp(µ) and every ε > 0 there exists a finite
subset F ⊆ I such that∑

ξ∈supp(χF ∗µ)

d(ξ)2 < (1 + ε)
∑
ξ∈F

d(ξ)2.

(FC2) For every finite, non-empty subset S ⊆ I and every ε > 0 there
exists a finite subset F ⊆ I such that

∀ ξ ∈ S : ‖ρ1,ξ(χF )− χF‖1,σ < ε‖χF‖1,σ.

(FC3) For every finite, non-empty subset S ⊆ I and every ε > 0 there
exists a finite subset F ⊆ I such that∑

ξ∈∂S(F )

d(ξ)2 < ε
∑
ξ∈F

d(ξ)2.

The condition (FC3) was not present in [HI98]. It is to be considered
as a fusion algebra analogue of the Følner condition for groups, as
presented in [BP92, F.6]. The strategy for the proof of Theorem 3.3 is
to prove the following implications.

(A) ⇔ (FC2) ⇒ (FC3) ⇒ (FC1) ⇒ (FC2)

The proof of the implications (A) ⇔ (FC2) and (FC1) ⇒ (FC2) are
small modifications of the corresponding proof in [HI98]. We first set
out to prove the circle of implications

(FC2) ⇒ (FC3) ⇒ (FC1) ⇒ (FC2)

For the proof we will need the following simple lemma.
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Lemma 3.4. If Nα
ξ,η > 0 for some ξ, η, α ∈ I then d(α)d(η) ≥ d(ξ).

Proof. By Frobenius reciprocity, we have Nα
ξ,η = N ξ

α,η̄ > 0 and hence

d(α)d(η) = d(α)d(η̄) =
∑

γ

Nγ
α,η̄d(γ) ≥ N ξ

α,η̄d(ξ) ≥ d(ξ).

�

Proof of (FC2) ⇒ (FC3). We first note that (FC2), by the triangle in-
equality, implies the following condition:

For every finite, non-empty set S ⊆ I and every ε > 0 there exists a
finite set F ⊆ I such that

‖ρ1,χS
(χF )− |S|χF‖1,σ < ε‖χF‖1,σ. (†)

Here |S| denotes the cardinality of S. Let S and ε > 0 be given
and choose F such that (†) is satisfied. Define a map ϕ : I → R by
ϕ(ξ) = ρ1,χS

(χF )(ξ)− |S|χF (ξ). We note that

ϕ(ξ) =
( ∑

α∈I

χF (α)(δξ ∗ χS)(α)
)
− |S|χF (ξ)

=
( ∑

α∈F

∑
η∈S

(δξ ∗ δη)(α)
)
− |S|χF (ξ)

=
∑
α∈F

∑
η∈S

d(α)

d(ξ)d(η)
Nα

ξ,η − |S|χF (ξ).

We now divide into four cases.

(i) If ξ ∈ F ∩∂S(F )c then supp(ξη) ⊆ F for all η ∈ S and hence we
get the relation

∑
α∈F

d(α)
d(ξ)d(η)

Nα
ξ,η = 1. This implies ϕ(ξ) = 0.

(ii) If ξ ∈ F c ∩ ∂S(F )c we see that Nα
ξ,η = 0 for all α ∈ F and all

η ∈ S and hence ϕ(ξ) = 0.
(iii) If ξ ∈ F c ∩ ∂S(F ) we have χF (ξ) = 0 and there exist α0 ∈ F

and η0 ∈ S such that Nα0
ξ,η0

6= 0. Using Lemma 3.4, we now get

ϕ(ξ) ≥ d(α0)

d(ξ)d(η0)
Nα0

ξ,η0
≥ 1

d(η0)2
Nα0

ξ,η0
≥ 1

d(η0)2
≥ 1

M
,

where M = max{d(η)2 | η ∈ S}.
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(iv) If ξ ∈ F ∩ ∂S(F ) we have

ϕ(ξ) =
∑
α∈F

∑
η∈S

d(α)

d(ξ)d(η)
Nα

ξ,η − |S|

= (−1)
∑
η∈S

(
1−

∑
α∈F

d(α)

d(ξ)d(η)
Nα

ξ,η

)
= (−1)

∑
η∈S

∑
α/∈F

d(α)

d(ξ)d(η)
Nα

ξ,η,

and because ξ ∈ ∂S(F )∩ F there exist η0 ∈ S and α0 /∈ F such
that Nα0

ξ,η0
6= 0. Using Lemma 3.4 again we conclude, as in (iii),

that |ϕ(ξ)| ≥ 1
M

.

We now get

ε
∑
ξ∈F

d(ξ)2 = ε‖χF‖1,σ

> ‖ρ1,χS
(χF )− |S|χF‖1,σ (by (†))

=
∑
ξ∈I

|ϕ(ξ)|d(ξ)2

=
∑

ξ∈∂S(F )

|ϕ(ξ)|d(ξ)2 (by (i) and (ii))

≥ 1

M

∑
ξ∈∂S(F )

d(ξ)2, (by (iii) and (iv))

and since ε was arbitrary the claim follows. �

Proof of (FC3) =⇒ (FC1). Given a finitely supported, symmetric pro-
bability measure µ, with µ(e) > 0, and ε > 0 we put S = supp(µ) and
choose F ⊆ I such that (FC3) is fulfilled with respect to ε. We have

(χF ∗ µ)(ξ) =
∑

α∈F,β∈S

µ(β)
d(ξ)

d(α)d(β)
N ξ

α,β,

so

(χF ∗ µ)(ξ) = 0 ⇔ ∀α ∈ F ∀β ∈ S : N ξ
α,β = 0

⇔ ∀α ∈ F ∀β ∈ S : Nα
ξ,β̄ = 0 (Frobenius)

⇔ ∀α ∈ F ∀β ∈ S : Nα
ξ,β = 0 (S symmetric)

⇔ ξ ∈ F c ∩ ∂S(F )c. (e ∈ S)
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Hence supp(χF ∗ µ) = (F c ∩ ∂S(F )c)c = F ∪ ∂S(F ) and we get

∑
ξ∈supp(χF ∗µ)

d(ξ)2 −
∑
ξ∈F

d(ξ)2 =
∑

ξ∈F∪∂S(F )

d(ξ)2 −
∑
ξ∈F

d(ξ)2

=
∑

ξ∈∂S(F )∩F c

d(ξ)2

≤
∑

ξ∈∂S(F )

d(ξ)2

< ε
∑
ξ∈F

d(ξ)2. (by (FC3))

�

Proof of (FC1) ⇒ (FC2). Given ε > 0 and S ⊆ I we define S̃ = S ∪
S̄ ∪{e} and µ = 1

|S̃|χS̃. Choose F ⊆ I such that µ and F satisfy (FC1)

with respect to ε
2
. We aim to prove that (FC2) is satisfied for all ξ ∈ S̃.

For arbitrary ξ ∈ I we have

‖ρ1,ξ(χF )− χF‖1,σ =
∑

α

|ρ1,ξ(χF )(α)− χF (α)|d(α)2

=
∑

α

|(
∑
η∈F

d(η)

d(α)d(ξ)
Nη

α,ξ)− χF (α)|d(α)2

=
∑
α∈F

(
1−

∑
η∈F

d(η)

d(α)d(ξ)
Nη

α,ξ

)
d(α)2

+
∑
α/∈F

( ∑
η∈F

d(η)

d(α)d(ξ)
Nη

α,ξ

)
d(α)2

=
∑
α∈F

∑
η/∈F

d(η)d(α)

d(ξ)
Nη

α,ξ +
∑
α/∈F

∑
η∈F

d(η)d(α)

d(ξ)
Nη

α,ξ

=
∑
α/∈F

∑
η∈F

d(η)d(α)

d(ξ)
(Nη

α,ξ +Nα
η,ξ)

=
∑
α/∈F

∑
η∈F

d(η)d(α)

d(ξ)
(Nα

η,ξ̄ +Nα
η,ξ). (†)

For ξ ∈ supp(µ) = S̃ and α /∈ F , it is easy to check that (χF ∗µ)(α) > 0
if there exists an η ∈ F such that Nα

η,ξ̄
+Nα

η,ξ > 0. Hence the calculation
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(†) implies that

‖ρ1,ξ(χF )− χF‖1,σ ≤
∑

α∈supp(χF ∗µ)\F

∑
η∈F

d(η)d(α)

d(ξ)
(Nα

η,ξ̄ +Nα
η,ξ)

≤
∑

α∈supp(χF ∗µ)\F

∑
η∈I

d(η)d(α)

d(ξ)
(Nα

η,ξ̄ +Nα
η,ξ)

= 2
∑

α∈supp(χF ∗µ)\F

d(α)2

= 2
( ∑

α∈supp(χF ∗µ)

d(α)2 −
∑
α∈F

d(α)2
)

< ε‖χF‖1,σ,

where the last estimate follows from (FC1). Note that the condition e ∈
supp(µ) was used to get the fourth step in the calculation above. �

We now set out to prove the last remaining equivalence in Theorem
3.3.

Proof of (A) ⇔ (FC2). In the end of this section, four formulas are
gathered. These will be used during the proof and referred to as (F1)
- (F4). For the actual proof we also need the following definitions.
Consider a finitely supported, symmetric probability measure µ on I
and define pµ : I × I → R by

pµ(ξ, η) = (δξ ∗ µ)(η) =
∑

ω

µ(ω)
d(η)

d(ξ)d(ω)
Nη

ξ,ω.

Note that the function pµ satisfies the reversibility condition:

σ(ξ)pµ(ξ, η) = σ(η)pµ(η, ξ).

For a finitely supported function f ∈ c0(I) and r ∈ N we also define

‖f‖Dµ(r) =
(1

2

∑
ξ,η

σ(ξ)pµ(ξ, η)|f(ξ)− f(η)|r
) 1

r

Although this is referred to as the generalized Dirichlet r-norm of f ,
one should keep in mind that the function ‖·‖Dµ(r) is only a semi norm.
Denote by c0(I) the space of finitely supported functions on I and and
by 〈·|·〉r,σ and ‖ · ‖r,σ, respectively, the inner product and norm on
`r(I, σ). We shall consider the following condition

For all finitely supported, symmetric, probability measures µ:

inf
{‖f‖Dµ(r)

‖f‖r,σ

| f ∈ c0(I) \ {0}
}

= 0. (NWr)
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The reason for the name (NWr), which appeared in [HI98], is that
the condition is the negation of a so-called Wirtinger inequality. See
[HI98] for more details. To prove (A) ⇔ (FC2) we will actually prove
the following equivalences

(FC2) ⇔ (NW1) and ∀r : (NW1) ⇔ (NWr) and (A) ⇔ (NW2).

For the latter of these equivalences the following lemma will be useful.

Lemma 3.5. For all f ∈ c0(I) we have

‖f‖2
Dµ(2) = 〈f |f〉2,σ − 〈ρ2,µ(f)|f〉2,σ.

Proof. This is proven by a direct calculation using the reversibility
condition and the formula (F4) from the end of this section. �

Proof of (A)⇔ (NW2). Let µ be a finitely supported, symmetric prob-
ability measure on I. By [HI98, 1.3,1.5], we have that ρ2,µ is self-adjoint
and ‖ρ2,µ‖ ≤ ‖µ‖1 = 1 so that 1− ρ2,µ ≥ 0. We now get

1 ∈ σ(λ2,µ) ⇔ 1 ∈ σ(ρ2,µ) ([HI98, 1.5])
⇔ 0 ∈ σ(1− ρ2,µ)

⇔ 0 ∈ σ(
√

1− ρ2,µ)

⇔ ∃xn ∈ (`2(I, σ))1 : ‖(
√

1− ρ2,µ)xn‖2,σ −→ 0

⇔ ∃fn ∈ (c0(I))1 : ‖(
√

1− ρ2,µ)fn‖2,σ −→ 0

⇔ ∃fn ∈ (c0(I))1 : 〈(1− ρ2,µ)fn |fn〉2,σ −→ 0

⇔ ∃fn ∈ (c0(I))1 : ‖fn‖Dµ(2) −→ 0 (Lem. 3.5)

⇔ inf{
‖f‖Dµ(2)

‖f‖2,σ

| f ∈ c0(I) \ {0}} = 0.

Hence (A) ⇔ (NW2) as desired. �

Proof of (NW1) ⇒ (FC2). Given ε > 0 and ξ1, . . . , ξn ∈ I, we choose a
finitely supported, symmetric probability measure µ with ξ1, . . . , ξn ∈
supp(µ). Define

ε′ =
ε

2
min{µ(ξ) | ξ ∈ I},

and choose, according to (NW1), an f ∈ c0(I) such that

‖f‖Dµ(1) < ε′‖f‖1,σ. (∗)
Since ‖|f |‖Dµ(1) ≤ ‖f‖Dµ(1) and ‖|f |‖1,σ = ‖f‖1,σ we may assume that f
is positive. Since f can be approximated by a rational function we may
actually assume that f has integer values. Put N = max{f(ξ) | ξ ∈ I}
and define, for k = 1, . . . , N , Fk = {ξ | f(ξ) ≥ k}. Then f =

∑N
1 χFk

and the following formulas hold.

‖f‖Dµ(1) =
N∑

k=1

‖χFk
‖Dµ(1) and ‖f‖1,σ =

N∑
k=1

‖χFk
‖1,σ.
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The first formula is proved by induction on the integer N and the
second follows from a direct calculation using only the reversibility
property of pµ. Because of (∗), there must therefore exist some j ∈
{1, . . . , N} such that

‖χFj
‖Dµ(1) < ε′‖χFj

‖1,σ (∗∗)

For the sake of simplicity we denote this Fj by F in the following. We
now get

‖χF‖Dµ(1) =
1

2

∑
ξ,η

σ(ξ)pµ(ξ, η)|χF (ξ)− χF (η)|

=
∑

ξ∈F,η/∈F

σ(ξ)pµ(ξ, η) (reversibility)

=
∑

ξ∈F,η/∈F

σ(ξ)
( ∑

ω

µ(ω)
d(η)

d(ξ)d(ω)
Nη

ξ,ω

)
=

∑
ω

µ(ω)
( ∑

ξ∈F,η/∈F

d(ξ)d(η)

d(ω)
Nη

ξ,ω

)
=

1

2

∑
ω

µ(ω)
( ∑

ξ∈F,η/∈F

d(ξ)d(η)

d(ω)
(Nη

ξ,ω +Nη
ξ,ω̄)

)
=

1

2

∑
ω

µ(ω)‖ρ1,ω(χF )− χF‖1,σ (‡)

Here the last equality follows from the computation (†) in the proof of
(FC1) ⇒ (FC2). The inequality (∗∗) therefore reads

1

2

∑
ω

µ(ω)‖ρ1,ω(χF )− χF‖1,σ < ε′‖χF‖1,σ

For every ω ∈ I we therefore conclude, since ε′ = ε
2
min(µ), that

µ(ω)‖ρ1,ω(χF )− χF‖1,σ < min(µ)ε‖χF‖1,σ.

Since each of the given ξi’s are in supp(µ) we get

∀i : ‖ρ1,ξi
(χF )− χF‖1,σ < ε‖χF‖1,σ,

as desired. �

Proof of (FC2) ⇒ (NW1). Assume now (FC2) and let µ and ε be given.
Choose F such that

‖ρ1,ξ(χF )− χF‖1,σ < ε‖χF‖1,σ,
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for all ξ ∈ supp(µ). Using the calculation (‡), from the proof of opposite
implication, we get

‖χF‖Dµ(1) =
1

2

∑
ω

µ(ω)‖ρ1,ω(χF )− χF‖1,σ

<
1

2

∑
ω

µ(ω)ε‖χF‖1,σ

=
ε

2
‖χF‖1,σ

< ε‖χF‖1,σ.

�

For the proof of the statement (NW1) ⇔ (NWr) we will need the
following lemma.

Lemma 3.6 ([Ger88]). For r ≥ 2 and f ∈ c0(I)+ we have

‖f r‖Dµ(1) ≤ 2r‖f‖r−1
r,σ ‖f‖Dµ(r).

Proof. First note that

‖f r‖Dµ(1) =
1

2

∑
ξ,η

σ(ξ)pµ(ξ, η)|f(ξ)r − f(η)r|

≤ r

2

∑
ξ,η

σ(ξ)pµ(ξ, η)(f(ξ)r−1 + f(η)r−1)|f(ξ)− f(η)|,

where the inequality follows from (F1). Define a measure ν on I × I
by ν(ξ, η) = 1

2
σ(ξ)pµ(ξ, η) and consider the functions ϕ, ψ : I × I → R

given by

ϕ(ξ, η) = f(ξ)r−1 + f(η)r−1 and ψ(ξ, η) = |f(ξ)− f(η)|.

Define s > 1 by the equation 1
r
+ 1

s
= 1. Then the inequality above can

be written as ‖f r‖Dµ(1) ≤ r‖ϕψ‖1,ν and, using Hölder’s inequality, we
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therefore get

‖f r‖Dµ(1) ≤ r‖ϕψ‖1,ν

≤ r‖ϕ‖s,ν‖ψ‖r,ν

= r
[ ∑

ξ,η

1

2
σ(ξ)pµ(ξ, η)(f(ξ)r−1 + f(η)r−1)s

] 1
s

×
[ ∑

ξ,η

1

2
σ(ξ)pµ(ξ, η)|f(ξ)− f(η)|r

] 1
r

1

≤ r
[
2s−1 1

2

∑
ξ,η

σ(ξ)pµ(ξ, η)(f(ξ)(r−1)s + f(η)(r−1)s)
] 1

s‖f‖Dµ(r)

2
= r

[
2s−1

∑
ξ,η

σ(ξ)pµ(ξ, η)f(ξ)(r−1)s
] 1

s‖f‖Dµ(r)

= r2
s−1

s

[ ∑
ξ

σ(ξ)
( ∑

η

pµ(ξ, η)
)
f(ξ)(r−1)s

] 1
s‖f‖Dµ(r)

= r2
s−1

s

[ ∑
ξ

σ(ξ)f(ξ)(r−1)s
] 1

s‖f‖Dµ(r)

≤ 2r
[ ∑

ξ

σ(ξ)f(ξ)r
] r−1

r ‖f‖Dµ(r) (1
r

+ 1
s

= 1)

= 2r‖f‖r−1
r,σ ‖f‖Dµ(r).

�

Also the following observation will be useful

Observation 3.7. Under the assumptions of Lemma 3.6 we have

‖f‖Dµ(r) =
[1

2

∑
ξ,η

σ(ξ)pµ(ξ, η)|f(ξ)− f(η)|r
] 1

r

≤
[1

2

∑
ξ,η

σ(ξ)pµ(ξ, η)|f(ξ)r − f(η)r|
] 1

r (by (F3))

= ‖f r‖
1
r

Dµ(1)

Having these results, we are now able to prove (NW1) ⇔ (NWr).

Proof of (NW1) ⇒ (NWr). Assume (NW1) and let µ and ε > 0 be
given. Put ε′ = εr and choose non-zero f ∈ c0(I)+ such that

‖f‖Dµ(1)

‖f‖1,σ

< ε′.

1by (FC2)
2by reversibility
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Using Observation 3.7 we get

‖ r
√
f‖Dµ(r)

‖ r
√
f‖r,σ

≤
‖f‖

1
r

Dµ(1)

‖f‖
1
r
1,σ

< (ε′)
1
r = ε.

�

Proof of (NWr) ⇒ (NW1). Given µ and ε > 0 and put ε′ = 1
2r
ε. Then

choose non-zero f ∈ c0(I)+ with
‖f‖Dµ(r)

‖f‖r,σ

< ε′.

Using Lemma 3.6, we get
‖f r‖Dµ(1)

‖f r‖1,σ

≤
2r‖f‖r−1

r,σ ‖f‖Dµ(r)

‖f‖r
r,σ

< 2rε′ = ε.

�

Gathering all the results just proven we get (A) ⇔ (FC2). �

This concludes the proof of Theorem 3.3.

Remark 3.8. Consider a countable, discrete group Γ and the corre-
sponding fusion algebra Z[Γ]. It is not difficult to prove that Z[Γ] satis-
fies (FC3) from Theorem 3.3 if and only if Γ satisfies Følner’s condition
(for groups) as presented in [BP92, F.6]. Since a group is amenable if
and only if it satisfies Følner’s condition, we see from this that Γ is
amenable if and only if the corresponding fusion algebra Z[Γ] is amen-
able.

3.1. Formulas used in the proof of Theorem 3.3. We collect here
four formulas used in the proof of Theorem 3.3. Let r, s > 1 and assume
that 1

r
+ 1

s
= 1. Then for all z, w ∈ C, a, b ≥ 0 and n ∈ N we have

|ar − br| ≤ r(ar−1 + br−1)|a− b| (F1)

(a+ b)r ≤ 2r−1(ar + br) (F2)
|a− b|n ≤ |an − bn| (F3)

|z − w|2 + |w − z|2 = 2(|z|2 − zw̄) + 2(|w|2 − wz̄). (F4)

Proof. The inequality (F1) can be proved using the mean value theorem
on the function f(x) = xr and the interval between a and b. To prove
(F2), consider a two-point set endowed with counting measure. Using
Hölder’s inequality, we then get

a+ b = 1 · a+ 1 · b ≤ (1s + 1s)
1
s (ar + br)

1
r .

From this the desired inequality follows using the fact that 1
s

= r−1
r

.
The inequality (F3) follows using the binomial theorem. If, for instance,
a = b+ k for some k ≥ 0 we have

(a− b)n = kn ≤ (b+ k)n − bn = an − bn.
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The formula (F4) follows by splitting w and z into real and imaginary
parts and calculating both sides of the equation. �

4. Coamenable Compact Quantum Groups

In this section we introduce the notion of coamenability for compact
quantum groups and discuss the relationship between coamenability of
a compact quantum group and amenability of its corepresentation ring.
The notion of (co-)amenability has been treated in different quantum
group settings by numerous people. A number of references for this
subject are [BMT01], [Voi79], [Rua96], [Ban99a], [Ban99b], [ES92] and
[BS93]. For our purposes, the approach of Bédos, Murphy and Tuset in
[BMT01] is the most natural and we are therefore going to follow this
reference throughout this section. We will assume that the reader is
familiar with the basics on Woronowicz’s theory of compact quantum
groups. Definitions, notation and some basic properties can be found in
Section 1 and a detailed treatment can be found in [Wor98], [MVD98]
and [KT99].

Definition 4.1 ([BMT01]). Let G = (A,∆) be a compact quantum
group and let Ared be the image of A under the GNS representation πh

arising from the Haar state h. Then G is said to be coamenable if the
counit ε : A0 → C extends continuously to Ared.

Remark 4.2. It is well known that a discrete group Γ is amenable
if and only if the trivial representation of C∗

full(Γ) factorizes through
C∗

red(Γ). This amounts to saying that (C∗
red(Γ),∆red) is coamenable if

and only if Γ is amenable. Note also that the abelian compact quan-
tum groups (C(G),∆c) are automatically coamenable since the counit is
given by evaluation at the identity and therefore already globally defined
and bounded.

In the following theorem we collect some facts on coamenable com-
pact quantum groups. For more coamenability criteria and a proof of
the theorem below we refer to [BMT01].

Theorem 4.3 ([BMT01]). For a compact quantum group G = (A,∆)
the following are equivalent.

(i) G is coamenable.

(ii) The Haar state h is faithful and the counit is bounded with re-
spect to the norm on A.

(iii) The natural map from the universal representation Au to the
reduced representation Ared is an isomorphism.

If G is a compact matrix quantum group with fundamental corepre-
sentation u ∈ Mn(A) the above conditions are also equivalent to the
following.
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(iv) The number n is in σ(πh(Re(χ(u))) where χ(u) =
∑n

i=1 uii is
the character map from Section 2.

Recall that σ(T ) denotes the spectrum of a given operator T . Thus,
when we are dealing with a coamenable quantum group the Haar state
is automatically faithful and hence the corresponding GNS represen-
tation πh is faithful. We therefore can, and will, identify A and Ared.
The condition (iv) is Skandalis’s quantum analogue of the so-called
Kesten condition for groups (see [Kes59],[Ban99a]) which is proved in
[Ban99b]. The next result is a generalization of the Kesten condition
to the case where a fundamental corepresentation is not (necessarily)
present. The proof draws inspiration from the corresponding proof in
[BMT01].

Theorem 4.4. Let G = (A,∆) be a compact quantum group. Then
the following are equivalent:

(i) G is coamenable.

(ii) For any finite dimensional, unitary corepresentation u ∈ Mnu(A)
we have nu ∈ σ(πh(Re(χ(u)))).

Proof. Assume G to be coamenable and let a finite dimensional, unitary
corepresentation u ∈ Mnu(A) be given. Since the counit extends to a
character ε : Ared → C and since

ε(Re(χ(u))) = ε(
nu∑
i=1

uii + u∗ii
2

) = nu,

we must have nu ∈ σ(πh(Re(χ(u)))). Assume conversely that the prop-
erty (ii) is satisfied and define, for a finite dimensional, unitary corep-
resentation u, the set

C(u) = {ϕ ∈ S (Ared) | ϕ(πh(Re(χ(u)))) = nu}.

Here S (Ared) denotes the state space of Ared. It is clear that each C(u)
is closed in the weak∗-topology and we now prove that the family

F = {C(u) | u finite dimensional, unitary corepresentation}

has the finite intersection property. We first prove that each C(u) is
non-empty. For given u, we put xij = uij − δij and x =

∑
ij x

∗
ijxij.

Then x is clearly positive and a direct calculation reveals that

x = 2(nu − Re(χ(u))). (†)

Hence, nu ∈ σ(πh(Re(χ(u)))) if and only if there exists ([KR83, 4.4.4])
a ϕ ∈ S (Ared) with

ϕ(πh(Re(χ(u)))) = nu.
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Thus, C(u) 6= ∅. Let now u(1), . . . , u(k) be given and put u = ⊕k
i=1u

(i).
We aim at proving that

C(u) ⊆
k⋂

i=1

C(u(i)).

Let ϕ ∈ C(u) be given and note that

k∑
i=1

nu(k) = ϕ(πh(Re(χ(u)))) =
k∑

i=1

n
u(j)∑
j=1

1

2
ϕ(πh(u

(i)
jj ) + πh(u

(i)∗
jj )).

Since the matrix (πh(ust))
nu
s,t=1 is unitary we have ‖πh(ust)‖ ≤ 1 and

hence
1

2
ϕ(πh(u

(i)
jj ) + πh(u

(i)∗
jj )) ∈ [−1, 1].

This forces 1
2
ϕ(πh(u

(i)
jj )+πh(u

(i)∗
jj )) = 1 and hence ϕ(πh(Re(χ(u(i))))) =

nu(i) . Thus ϕ is in each of the sets C(u(1)), . . . , C(u(k)) and we conclude
that F has the finite intersection property. By compactness of S (Ared),
we may therefore find a state ϕ such that ϕ(πh(Re(χ(u)))) = nu for
every unitary corepresentation u. Denote by H the GNS space asso-
ciated with this ϕ, by ξ0 the natural cyclic vector and by π the cor-
responding GNS representation of Ared. Consider an arbitrary unitary
corepresentation u and form as before the elements xij and x. Then
the equation (†) shows that ϕ(x∗ijxij) = 0 and hence π(xij)ξ0 = 0 and

π(uij)ξ0 = δijξ0.

From the Cauchy-Schwarz inequality we get

|ϕ(xij)|2 ≤ ϕ(x∗ijxij)ϕ(1) = 0,

and hence ϕ(uij) = δij. We therefore have that π(uij)ξ0 = ϕ(uij)ξ0.
Since the matrix coefficients span A0 linearly we get π(a)ξ0 = ϕ(a)ξ0
for all a ∈ A0. By density of A0 in Ared it follows that π(a)ξ0 = ϕ(a)ξ0
for all a ∈ Ared. From this we see that

H = π(Ared)ξ0
‖·‖2

= Cξ0,

and it follows that ϕ : Ared → C is a bounded ∗-homomorphism coin-
ciding with ε on A0. Thus, G is coamenable.

�

The following result was mentioned, without proof, in [HI98, p.692]
in the restricted setting of compact matrix quantum groups whose Haar
state is a trace.

Theorem 4.5. A compact quantum group G = (A,∆) is a coamenable
if and only if the corepresentation ring R(G) is amenable.
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For the proof we will need the following lemma. For this, recall from
Section 2 that the ∗-algebra C[Irred(G)] comes with a trace τ given by

τ(
∑

u∈Irred(G)

zuu) = ze,

where e ∈ Irred(G) denotes the identity in R(G). In what follows, we
denote by C∗

red(R(G)) the enveloping C∗-algebra of C[Irred(G)] on the
GNS space K = L2(C[I], τ) arising from τ .

Lemma 4.6. The character map χ : R(G) → A0 extends to an isomet-
ric ∗-homomorphism χ : C∗

red(R(G)) → Ared.

Proof. Put I = Irred(G). For an irreducible, finite dimensional, unitary
corepresentation u we have h(uij) = 0 unless u is the trivial corepre-
sentation and therefore the following diagram commutes

C[I]

τ

��

� � χ // A0

h
wwpppppppppppppp

C
Hence χ extends to an isometric embedding

K = L2(C[I], τ) ↪−→ L2(A0, h) = H.

Denote by S the algebra χ(R(G)) and by S̄ the closure of πh(S) inside
Ared. Since S is a ∗-algebra that maps K into itself it also maps K⊥

into itself and hence πh(χ(a)) takes the form(
πh(χ(a))

∣∣
K

0
0 πh(χ(a))

∣∣
K⊥

)
.

Thus

‖πh(χ(a))‖ = max{‖πh(χ(a))
∣∣
K
‖, ‖πh(χ(a))

∣∣
K⊥‖}

≥ ‖πh(χ(a))
∣∣
K
‖

= ‖πτ (a)‖.
This proves that the map κ : πh(S) → πτ (C[I]) given by κ(πh(χ(a))) =
πτ (a) is bounded and it therefore extends to a contraction κ̄ : S̄ →
C∗

red(R(G)). We now prove that κ̄ is injective. Since h is faithful on
Ared and τ is faithful on C∗

red(R(G)) we get the following commutative
diagram

πh(S)
κ

∼
//

� _

��

πτ (C[I])
� _

��

S̄
κ̄ //

� _

��

C∗
red(R(G))

� _

��
L2(S̄, h) // L2(C∗

red(R(G)), τ)
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One easily checks that κ induces an isometry L2(S̄, h) → L2(C∗
red(G), τ)

and it therefore follows that κ̄ is injective and hence an isometry. Thus,
for χ(a) ∈ S we have

‖πh(χ(a))‖ = ‖κ̄(πh(χ(a)))‖ = ‖πτ (a)‖,
as desired.

�

Proof of Theorem 4.5. Assume first that G is coamenable and put I =
Irred(G). Consider a finitely supported, symmetric probability measure
µ on I. We aim to show that 1 ∈ σ(λ2,µ), where λ2,µ is the operator on
`2(I, σ) defined in Section 2. Write µ as

∑
ξ∈I tξδξ and recall (Lemma

4.6) that the character map χ : C[I] → A0 extends to an injective ∗-
homomorphism χ : C∗

red(R(G)) → Ared. Using this, and Proposition
2.5, we get that

σ(λ2,µ) = σ(lµ)

= σ(
∑
ξ∈I

tξlξ)

= σ(
∑
ξ∈I

tξ
1

nξ

πτ (ξ))

= σ(χ(
∑
ξ∈I

tξ
nξ

πτ (ξ)))

= σ(
∑
ξ∈I

nξ∑
i=1

tξ
nξ

πh(ξii)).

Since G is coamenable, the counit extends to a character ε : Ared → C
and we have

ε(
∑
ξ∈I

tξ
nξ

(

nξ∑
i=1

ξii)) =
∑
ξ∈I

tξ
nξ

nξ = 1.

Hence 1 ∈ σ
( ∑

ξ∈I
tξ
nξ

(
∑nξ

i=1 πh(ξii))
)

= σ(λ2,µ) and we conclude that
R(G) is amenable.

Assume, conversely, that R(G) is amenable. We aim at proving
that G fulfills the Kesten condition from Theorem 4.4. Let therefore
u ∈ Mn(A) be an arbitrary, finite dimensional, unitary corepresenta-
tion. Denote by (uα)α∈S ⊆ Irred(G) the irreducible corepresentations
occurring in the decomposition of u and by kα the multiplicity of uα in
u. Now define

µu(uα) =

{
kαnα

n
if α ∈ S;

0 if α /∈ S.
Putting µ = 1

2
µu + 1

2
µū, we obtain a finitely supported, symmetric

probability measure and by assumption we have that 1 ∈ σ(λ2,µ). Using
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again that the character map extends to an injective ∗-homomorphism
χ : C∗

red(R(G)) → Ared, we obtain

σ(λ2,µ) = σ
( ∑

α∈S

kαnα

2n
λ2,uα +

∑
α∈S

kαnα

2n
λ2,uᾱ

)
= σ

( ∑
α∈S

kαnα

2n
luα +

∑
α∈S

kαnα

2n
luᾱ

)
(Prop. 2.5)

= σ
( ∑

α∈S

kαnα

2n

1

nα

πτ (uα) +
∑
α∈S

kαnα

2n

1

nα

πτ (uᾱ)
)

(Rem. 2.6)

= σ
( ∑

α∈S

kα

2n
πh(χ(uα)) +

∑
α∈S

kα

2n
πh(χ(uᾱ))

)
= σ

( 1

2n
πh(χ(u)) +

1

2n
πh(χ(ū))

)
= σ

( 1

n
πh(Re(χ(u)))

)
.

Thus
1 ∈ σ(λ2,µ) ⇐⇒ n ∈ σ(Re(πh(χ(u)))),

and the result now follows from Theorem 4.4. �

In particular we (re-)obtain the following.

Corollary 4.7. A discrete group is amenable if and only if the group
ring, considered as a fusion algebra, is amenable.

Corollary 4.8 ([Ban99b]). The quantum groups SUq(2) are coamen-
able.

Proof. By Theorem 4.5, SUq(2) is coamenable if and only if R(SUq(2))
is amenable. But, R(SUq(2)) = R(SU(2)) (see e.g. [Wor88]) and since
(C(SU(2)),∆c) is a coamenable quantum group R(SU(2)) is amenable.

�

As seen from Theorem 4.5, the answer to the question of whether
a compact quantum group is coamenable or not can be determined
using only information about its corepresentations (a fact noted by
Banica in the setting of compact matrix quantum groups in [Ban99a]
and [Ban99b]). With this in mind, we now propose the following Følner
condition for quantum groups.

Definition 4.9. A compact quantum group G = (A,∆) is said to sat-
isfy Følner’s condition if for any finite, non-empty subset S ⊆ Irred(G)
and any ε > 0 there exists a finite subset F ⊆ Irred(G) such that∑

u∈∂S(F )

n2
u < ε

∑
u∈F

n2
u.
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Here nu denotes the dimension of the irreducible corepresentation u
and ∂S(F ) is the boundary of F relative to S as defined in Definition
3.2.

We immediately obtain the following.

Corollary 4.10. A compact quantum group is coamenable if and only
if it satisfies Følner’s condition.

Proof. By Theorem 4.5, the compact quantum group G is coamenable
if and only if R(G) is amenable. By Theorem 3.3, R(G) is amenable if
and only if it satisfies (FC3) which is exactly the same as saying that
G satisfies Følner’s condition. �

In Section 6 we will use this Følner condition to deduce a vanishing
result concerning L2-Betti numbers of compact, coamenable quantum
groups.

5. An Interlude

In this section we gather various notation and minor results which
will be used in the following section to proof our main result, Theorem
6.1. Some generalities on von Neumann algebraic quantum groups are
stated without proofs; we refer to [KV03] for the details.

Consider again a compact quantum group G = (A,∆) with tracial
Haar state h. Denote by {uα | α ∈ I} a complete set of representatives
for the equivalence classes of irreducible, unitary corepresentations of
G. Consider the dense Hopf ∗-algebra

A0 = spanC{uα
ij | α ∈ I},

and its discrete dual Hopf ∗-algebra Â0. Since h is tracial, the discrete
quantum group Â0 is unimodular; i.e. the left- and right-invariant func-
tionals are the same. Denote by ϕ̂ the left- and right-invariant func-
tional on Â0 normalized such ϕ̂(h) = 1. For a ∈ A0 we denote by
â ∈ A′

0 the map
x 7−→h(ax).

Then, by definition, we have Â0 = {â | a ∈ A0}. The algebra Â0 is
∗-isomorphic to

alg⊕
α∈I

Mnα(C),

and because h is tracial the isomorphism has a simple description; if
we denote by Eα

ij the standard matrix units in Mnα(C) then

Φ((̂uα
ij)

∗) = 1
nα
Eα

ij,

extends to a ∗-isomorphism [MVD98].
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Denote by λ the GNS representation of A on H = L2(A0, h), by η
the canonical inclusion A0 ⊆ H and by M (or λ(M)) the enveloping
von Neumann algebra λ(A0)

′′. The map η̂ : Â0 → H given by â 7→ η(a)

makes (H, η̂) into a GNS pair for (Â0, ϕ̂) and the corresponding GNS
representation L is given by

L(â)η(x) = η̂(âx̂).

We denote by M̂ (or L(M̂)) the enveloping von Neumann algebra
L(Â0)

′′. This is a discrete von Neumann algebraic quantum group and
ϕ̂ gives rise to a left- and right-invariant, normal, semifinite, faithful
(n.s.f.) weight on M̂ . If W denotes the multiplicative unitary for λ(M)
then

λ(M) = {(id⊗ω)W | ω ∈ B(H)∗}

L(M̂) = {(ω ⊗ id)W | ω ∈ B(H)∗},

where both closures are in the σ-strong∗ topology. In particular we see
that W ∈ λ(M)⊗̄L(M̂).

Denote by κ the unitary antipode on M and by J the anti-unitary
on H given by J(η(x)) = η(x∗). Then the formula ρ(a) = Jλ(κ(a∗))J
defines another representation of M on H. Similarly, the unitary an-
tipode κ̂ on M̂ and the modular conjugation Ĵ for ϕ̂ give rise to another
representation R(x) = ĴL(κ̂(x∗))Ĵ of M̂ on H. Note that by Tomita-
Takesaki theory we have ρ(M) = λ(M)′ and R(M̂) = L(M̂)′. Because
h is tracial we have that ĴJ = JĴ ([ES92, 4.1.7]) and the self-adjoint
unitary U = JĴ has the property that

AdU λ(a) = Uλ(a)U = ρ(a) for all a ∈M

AdU L(x) = UL(x)U = R(x) for all x ∈ M̂

This can be seen using, for instance, [KV03, 2.1]. In the following
we denote by Σ the flip-unitary on H⊗̄H and by σ = AdΣ the flip-
automorphism of M⊗̄M . We shall also consider the opposite quan-
tum group (M,∆op) whose underlying von Neumann algebra is again
M , but the comultiplication is ∆op = σ∆. Define a ∗-homomorphism
α : ρ(M) −→ λ(M)⊗̄ρ(M) by α(ρ(a)) = (λ ⊗ ρ)(∆opa). It is easy to
check that α is a left coaction of (M,∆op) on the von Neumann algebra
ρ(M) and we may therefore ([Vae01]) form the cross product

M nα ρ(M) = vNa{α(ρ(M)), L(M̂)′ ⊗ 1}

= vNa{(λ⊗ ρ)(∆op(M)), R(M̂)⊗ 1}.

Lemma 5.1. There exists a unitary V on H⊗̄H such that AdV im-
plements an isomorphism M nα ρ(M) ' 1⊗B(H). More precisely we
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have

AdV (α(ρ(a))) = 1⊗ ρ(a) and AdV (R(x)⊗ 1) = 1⊗ L(x),

for all a ∈M and all x ∈ M̂ .

Proof. Consider again the self-adjoint unitary U and the multiplicative
unitary W ∈ λ(M)⊗̄L(M̂) for λ(M). Define W = (U⊗U)W (U⊗U) ∈
ρ(M)⊗̄R(M̂); it is easy to see that W becomes a multiplicative unitary
for ρ in the sense that

W
∗
(1⊗ ρ(a))W = ρ⊗ ρ(∆(a)).

Put V = WΣ(U ⊗ 1). For a ∈M we have
AdV (α(ρ(a))) = AdW AdΣ AdU⊗1[(λ⊗ ρ)∆op(a)]

= AdW AdΣ[(ρ⊗ ρ)∆op(a)]

= AdW AdΣ[Σ(ρ⊗ ρ)∆(a)Σ]

= AdW [(ρ⊗ ρ)∆(a)]

= 1⊗ ρ(a).

For x ∈ M̂ we get
AdV (R(x)⊗ 1) = AdW AdΣ AdU⊗1[R(x)⊗ 1]

= AdW AdΣ[L(x)⊗ 1]

= AdW [1⊗ L(x)]

= 1⊗ L(x). (W ∈ (1⊗ L(M̂))′)

We now just have to see that AdV surjects onto 1 ⊗ B(H). The pair
(M, M̂) is a dual pair of locally compact von Neumann algebraic quan-
tum groups and by [MvD02, 3.2,3.4,3.16] we therefore have

B(H) = spanC{λ(a)L(x) | a ∈M,x ∈ M̂}
σ-weak

But,

Jλ(M)L(M̂)J = (Jλ(M)J)(JL(M̂)J) = ρ(M)L(M̂),

where the last equality follows from [KV03, 2.1], and since J is anti-
unitary we have

B(H) = spanC{ρ(a)L(x) | a ∈M,x ∈ M̂}
σ-weak

This proves that AdV maps M nα ρ(M) onto 1⊗B(H). �

Consider again the Haar state h on M . This state induces ([Vae01,
2.5, 3.1]) a dual n.s.f. weight θ onMnαρ(M) with the property ([Vae01,
3.2]) that

θ(α(a∗)(R(x∗x)⊗ 1)α(a)) = h(a∗a)ϕ̂(x∗x),

for all a ∈ M and x ∈ Nϕ̂ = {x ∈ M̂ | ϕ̂(x∗x) < ∞}. We therefore
have the following.
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Lemma 5.2. There exists an n.s.f. weight ν on B(H) such that

ν(ρ(a∗)L(x∗x)ρ(a)) = h(a∗a)ϕ̂(x∗x),

for all a ∈M and all x ∈ Nϕ̂.

Proof. Put ν(T ) = θ ◦ AdV ∗(1 ⊗ T ) for T ∈ B(H)+. It now follows
from Lemma 5.1 that ν has the desired properties. �

6. A Vanishing Result

In this section we investigate the L2-Betti numbers of coamenable
quantum groups. The notion of L2-Betti numbers for compact quan-
tum groups was introduced in [Kye06] and we refer to that paper (and
Section 0) for the definitions and basic results. We will also freely use
Lück’s extended Murray-von Neumann dimension, but whenever ex-
plicit properties are used there will be a reference. These references
will be to the original work [Lüc98a] and [Lüc97], but for the reader
who wants to learn the subject, the book [Lüc02] is probably a better
general reference.

Consider again a compact quantum group G = (A,∆) with Haar
state h and denote by M the enveloping von Neumann algebra in the
GNS representation arising from h. As promised in the introduction,
we will now prove the following theorem which should be considered as
a quantum group analogue of [Lüc98a, 5.1].

Theorem 6.1. If G is coamenable and h is tracial then for any left
A0-module Z and any k ≥ 1 we have

dimM TorA0
k (M,Z) = 0,

where dimM(·) is Lück’s extended dimension function arising from the
extension of the trace-state h.

If M were flat as a module over A0 we would have TorA0
k (M,Z) = 0

for any Z and any k ≥ 1, and the property in Theorem 6.1 is therefore
referred to as dimension flatness of the von Neumann algebra over the
algebra of matrix coefficients.

The proof of Theorem 6.1 is divided into three parts and draws in-
spiration from the proof of [Lüc98a, 5.1]. Part I consists of reductions
while part II contains the central argument carried out in detail in a
special case. Part III shows how to boost the argument from part II
to the general case. Throughout the proof, we will use freely the quan-
tum group notation developed in the previous sections without further
reference.

Proof of Theorem 6.1.
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Part I
We begin with some reductions. Let an arbitrary A0-module Z be
given and choose a free module F that surjects onto Z. Then we have
a short exact sequence

0 −→ K −→ F −→ Z −→ 0,

and since F is free (in particular flat) the corresponding long exact
Tor-sequence gives an isomorphism

TorA0
k+1(M,Z) ' TorA0

k (M,K) for k ≥ 1.

It is therefore sufficient to prove the theorem for arbitrary Z and k =
1. Moreover, we may assume that Z is finitely generated since Tor
commutes with direct limits, every module is the directed union of
its finitely generated submodules and dimM(·) is well behaved with
respect to direct limits ([Lüc98a, 2.9]). Actually, we can assume that
Z is finitely presented since any finitely generated module Z is a direct
limit of finitely presented modules. To see this, choose a short exact
sequence

0 −→ K −→ F −→ Z −→ 0,

with F finitely generated and free. Denote by (Kj)j∈J the directed
system of finitely generated submodules in K. Then F/Kj is finitely
presented for each j ∈ J and

Z = lim
→
j

F/Kj.

Because of this and the direct limit formula for the dimension function
([Lüc98a, 2.9]) we may, and will, therefore assume that Z is finitely
presented. Choose a finite presentation

An
0

f−→ Am
0 −→ Z −→ 0.

Put H = L2(A, h), K = ker(f) ⊆ An
0 ⊆ Hn and denote by f (2) : Hn →

Hm the continuous extension of f . Then we have

TorA0
1 (M,Z) =

ker(idM ⊗f)

M ⊗
A0

K
,

and hence

dimM TorA0
1 (M,Z) = dimM ker(idM ⊗f)− dimM M ⊗

A0

K

= dimM ker(f (2))− dimM K
‖·‖2

,

where the second equality follows from [CS05, 2.11]. See also [Lüc98a,
p.158-159]. So we need to prove that K‖·‖2

= ker(f (2)).

Part II
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We first treat the case m = n = 1. Then the map f has the form
Ra (right-multiplication by a) for some a ∈ A0. If a = 0 we have
K

‖·‖2
= H = ker(f (2)) so we may assume a 6= 0. Since {uα

ij | α ∈ I} is
a linear basis for A0 ([MVD98, 7.3]) this a has a unique, finite, linear
expansion as a =

∑
α,i,j z

α
iju

α
ij. Consider now the finite, non-empty set

S = {α ∈ I | ∃ 1 ≤ i, j ≤ nα : zα
ij 6= 0}.

Since G is assumed coamenable it satisfies Følner’s condition and we
may therefore choose a finite set F ⊆ I such that∑

u∈∂S(F )

n2
u <

1

2

∑
u∈F

n2
u. (†)

In the following we will write ∂ in stead of ∂S(F ) for simplicity. Denote
by H0 the space ker(f (2)), by q0 ∈ M ′ the projection onto H0 and by
q ∈M ′ the projection onto H0 ∩K⊥. We need to show that q = 0.

Recall the isomorphism Φ: Â0 →
alg⊕

αMnα(C) from Section 5. For
a finite subset E ⊆ I we denote by pE ∈ Â0 the central projection
Φ−1(

∑
α∈I χE(α)1nα). A direct calculation shows that L(pE) ∈ B(H)

projects onto the finite dimensional linear subspace

spanC{uα
ij | 1 ≤ i, j ≤ nα, α ∈ Ē}. (note the ”bar” on E)

Since h is tracial, Woronowicz’s quantum Peter-Weyl Theorem ([KT99,
3.2.3]) takes a particular simple form and states that the set

{
√
nαu

α
ij | 1 ≤ i, j ≤ nα, α ∈ I}

constitutes an orthonormal basis for H. Hence every x ∈ H has an
`2-expansion

x =
∑
α∈I

nα∑
i,j=1

xα
ij

√
nαu

α
ij. (xα

ij ∈ C)

Consider a vector x =
∑

i∈I x
α
ij

√
nαu

α
ij ∈ H and assume that L(p∂̄)x =

0 such that x =
∑

α/∈∂

∑nα

i,j=1 x
α
ij

√
nαu

α
ij. For γ ∈ S and 1 ≤ p, q ≤ nγ

we then have

(R
(2)

uγ
pq
◦ L(pF̄ ))x =

∑
α/∈∂,α∈F

nα∑
i,j=1

xα
ij

√
nαu

α
iju

γ
pq

(L(pF̄ ) ◦R(2)

uγ
pq

)x = L(pF̄ )(
∑
α/∈∂

nα∑
i,j=1

xα
ij

√
nαu

α
iju

γ
pq).

Since uα
iju

γ
pq is contained in the linear span of the matrix coefficients

of uα T©uγ and since α /∈ ∂ = ∂S(F ) and γ ∈ S we see that the two
expressions above are equal. By linearity and continuity we obtain

(f (2) ◦ L(pF̄ ))x = (L(pF̄ ) ◦ f (2))x.
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This holds for all x ∈ ker(L(p∂̄)). Thus, if x ∈ H0∩ker(L(p∂̄)) we have

0 = (f (2) ◦ L(pF̄ ))x = f(L(pF̄ )x),

where the last equality is due to the fact that rg(L(pF̄ )) ⊆ A0 ⊆ H.
This proves that L(pF̄ )x ∈ K = ker(f) and since q was defined as the
projection ontoH0∩K⊥ we get qL(pF̄ )x = 0. Since this holds whenever
x ∈ H0 = q0(H) and L(p∂̄)x = 0 we get qL(pF̄ )(q0 ∧ (1− L(p∂̄))) = 0;
that is

qL(pF̄ )q0 = qL(pF̄ )(q0 ∧ L(p∂̄)) (‡)

Since q, q0 ∈ λ(M)′ = ρ(M) there exist q̃, q̃0 ∈ M such that q = ρ(q̃)
and q0 = ρ(q̃0), where ρ is the representation of M constructed in
Section 5. The equation (‡) then reads

ρ(q̃)L(pF̄ )ρ(q̃0) = ρ(q̃)L(pF̄ )(ρ(q0) ∧ L(p∂̄)) (‡′)

Denote by ν the n.s.f. weight on B(H) given by Lemma 5.2. We then
get

h(q̃)ϕ̂(pF̄ ) = ν(ρ(q̃)L(pF̄ )ρ(q̃)) (by 5.2)
= ν(ρ(q̃)L(pF̄ )ρ(q̃0)ρ(q̃)) (q ≤ q0)
= ν(ρ(q̃)L(pF̄ )(ρ(q̃0) ∧ L(p∂̄))ρ(q̃)) (by (‡′))
= ν([L(pF̄ )ρ(q̃)]∗[(ρ(q̃0) ∧ L(p∂̄))ρ(q̃)])

≤ ν(ρ(q̃)L(pF̄ )ρ(q̃))
1
2ν(ρ(q̃)(ρ(q̃0) ∧ L(p∂̄))ρ(q̃))

1
2

= h(q̃)
1
2 ϕ̂(pF̄ )

1
2ν(ρ(q̃)(ρ(q̃0) ∧ L(p∂̄))ρ(q̃))

1
2 (by 5.2)

≤ h(q̃)
1
2 ϕ̂(pF̄ )

1
2ν(ρ(q̃)L(p∂̄)ρ(q̃))

1
2 (ν positive)

= h(q̃)ϕ̂(pF̄ )
1
2 ϕ̂(p∂̄)

1
2 (by 5.2)

Here we used the Cauchy-Schwarz inequality to get the fifth step. Since
ϕ̂ is faithful and pF̄ > 0 this gives

h(q̃)2 ≤ ϕ̂(p∂̄)

ϕ̂(pF̄ )
h(q̃)2. (∗)

Because h is tracial, the left invariant weight ϕ̂ on Â0 '
alg⊕

α∈IMnα(C)
has the particular simple form ([VKV+, p.47])

ϕ̂ =
∑
α∈I

nαTrnα ,

where Trnα is the unnormalized trace on Mnα(C). In particular

ϕ̂(pE) =
∑
α∈E

n2
α = ϕ̂(pĒ),
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for any finite subset E ⊆ I. The inequalities (†) and (∗) therefore
implies

h(q̃)2 ≤ 1

2
h(q̃)2,

and since h is faithful this forces q̃ = 0. Hence 0 = ρ(q̃) = q as desired.

Part III
We now treat the general case of a finitely presented A0-module Z with
finite presentation

An
0

f−→ Am
0 −→ Z −→ 0.

In this case f is given by right multiplication by an n × m matrix
T = (tij) with entries in A0. Each tij has a unique linear expansion as
tij =

∑
α,k,l t

(i,j)
α,k,lu

α
kl and we put

S = {α ∈ I | ∃ i, j, k, l, α : t
(i,j)
α,k,l 6= 0}.

As in Part II, we may assume that T 6= 0 so that S 6= ∅. According to
the Følner condition, there exists an F ⊆ I such that∑

u∈∂S(F )

n2
u <

1

2

∑
u∈F

n2
u.

Put ∂ = ∂S(F ), denote by H0 the space ker(f (2)) ⊆ Hn, by q0 ∈
Mn(M ′) the projection onto H0 and by q ∈ Mn(M ′) the projection onto
H0 ∩ K⊥. We need to show that q = 0. By repeating the argument
from the beginning of Part II we arrive at the equation

qL(pF̄ )nq0 = qL(pF̄ )n(q0 ∧ L(p∂̄)
n),

where L(x)n denotes the diagonal n× n-matrix
L(x) 0 · · · 0

0
. . . 0

... . . . ...
0 0 · · · L(x)

 (x ∈ M̂)

Since λ(M)′ = ρ(M) there exist q̃, q̃0 ∈ Mn(M) such that q = ρ(q̃) and
q0 = ρ(q̃0). Here ρ is the representation constructed in Section 5 and
the matrix-equations are to be interpreted entrywise. Consider again
the n.s.f. weight ν on B(H) from Lemma 5.2. It induces an n.s.f. weight
νn = ν ⊗Trn on Mn(B(H)) = B(H)�Mn(C) and a direct calculation
shows that for A ∈ Mn(M) and x ∈ Nϕ̂ we have

νn(ρ(A)∗L(x∗x)nρ(A)) = (h⊗ Trn)(A∗A)ϕ̂(x∗x).

Put hn = h⊗ Trn. By repeating the calculation from Part II, with νn

and hn in stead of ν and h, we arrive at the equation

hn(q̃)ϕ̂(pF̄ ) ≤ hn(q̃)ϕ̂(pF̄ )
1
2 ϕ̂(p∂̄)

1
2
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Thus

hn(q̃)2 ≤ ϕ̂(p∂̄)

ϕ̂(pF̄ )
hn(q̃)2 ≤ 1

2
hn(q̃)2,

and since hn = h⊗Trn is faithful we get q̃ = 0. Hence 0 = ρ(q̃) = q as
desired.

�

By putting Z = C in Theorem 6.1, we immediately obtain the fol-
lowing corollary.

Corollary 6.2. Let G = (A,∆) be a compact, coamenable quantum
group with tracial Haar state. Then β

(2)
n (G) = 0 for all n ≥ 1. Here

β
(2)
n (G) is the n-th L2-Betti number of G as defined in [Kye06].

In particular we obtain the following extension of [Kye06, 6.3].

Corollary 6.3. If G is an abelian, compact quantum group then
β

(2)
n (G) = 0 for n ≥ 1.

Proof. Since G is abelian it is of the form (C(G),∆c) for some compact
(second countable) group G. Since the counit, given by evaluation at
the identity, is already globally defined and bounded it is clear that G
is coamenable and the result now follows from Corollary 6.2. �

We also obtain the classical result.

Corollary 6.4. [Lüc98a, 5.1] If Γ is an amenable, countable, discrete
group then for all CΓ-modules Z and all n ≥ 1 we have

dimL (Γ) TorCΓ
n (L (Γ), Z) = 0.

In particular, β(2)
n (Γ) = 0 for n ≥ 1.

Proof. Put G = (C∗
red(Γ),∆red). Then G is coamenable if and only if Γ

is amenable and the result now follows from Theorem 6.1 and Corollary
6.2 �

In [CS05], Connes and Shlyakhtenko introduced a notion of L2-Betti
numbers for tracial ∗-algebras. From the above results we also obtain
vanishing of these Connes-Shlyakhtenko L2-Betti numbers for certain
Hopf ∗-algebras. More precisely we get the following.

Corollary 6.5. Let G = (A,∆) be a compact, coamenable quantum
group with tracial Haar state h. Then β

(2)
n (A0, h) = 0 for all n ≥ 1,

where β(2)
n (A0, h) is the n-th Connes-Shlyakhtenko L2-Betti number of

the ∗-algebra A0 with respect to the trace h.

Proof. By [Kye06, 4.1] we have β(2)
n (G) = β

(2)
n (A0, h) and the claim

therefore follows from Corollary 6.2. �
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7. Examples

A concrete example of a non-commutative, non-cocommutative, co-
amenable (matrix) quantum group with tracial Haar state is the or-
thogonal quantum group Ao(2) ' SU−1(2). It follows from [Ban99a,
5.1] that Ao(2) is coamenable. To see that the Haar state is tracial, one
observes that the orthogonality property of the canonical fundamental
corepresentation implies that the antipode has period two.

7.1. Examples arising from tensor products. If G1 = (A1,∆1)
and G2 = (A2,∆2) are compact quantum groups then the (minimal)
tensor product A = A1 ⊗ A2 may be turned into a quantum group G
by defining the comultiplication ∆: A −→ A⊗ A to be

∆(a) = (id⊗σ ⊗ id)(∆1 ⊗∆2)(a),

where σ denotes the flip-isomorphism from A1 ⊗ A2 to A2 ⊗ A1. The
Haar state is the tensor product of the two Haar states and the counit is
the tensor product of the counits. Using these facts, it is not difficult to
see ([BMT01]) that if both G1 and G2 are coamenable and have tracial
Haar states, then the same is true for G. See e.g. [KR86, 11.3.2].

7.2. Examples arising from bicrossed products. Another way to
obtain examples of compact, coamenable quantum groups is via bi-
crossed products. We therefore briefly sketch the bicrossed product
construction following [VV03] closely. In [VV03], Vaes and Vainerman
consider the more general notion of cocycle bicrossed products, but
since we will mainly be interested in the case where the cocycles are
trivial we will restrict our attention to this case in the following. The
more general situation will be discussed briefly in Remark 7.5. The
bicrossed product construction is defined using the language of von
Neumann algebraic quantum groups. We will use this language freely
in the following and refer to [KV03] for the background material.

Let (M1,∆1) and (M2,∆2) be locally compact (l.c.) von Neumann
algebraic quantum groups. Let τ : M1⊗̄M2 → M1⊗̄M2 be a faith-
ful ∗-homomorphism and denote by σ : M1⊗̄M2 → M2⊗̄M1 the flip-
isomorphism. Then τ is called a matching from M1 to M2 if the fol-
lowing holds.

• The map α : M2 −→ M1⊗̄M2 given by α(y) = τ(1 ⊗ y) is a
(left) coaction of (M1,∆1) on the von Neumann algebra M2.

• Defining β : M1 −→M1⊗̄M2 as β(x) = τ(x⊗ 1) the map σβ is
a (left) coaction of (M2,∆2) on the von Neumann algebra M1.

• The coactions satisfy the following two matching conditions

τ(13)(α⊗ 1)∆2 = (1⊗∆2)α (M1)
τ(23)σ(23)(β ⊗ 1)∆1 = (∆1 ⊗ 1)β (M2)
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Here we use the standard leg numbering convention (see e.g. [MVD98]).
If τ : M1⊗̄M2 →M1⊗̄M2 is a matching from M1 to M2 then it is easy
to see that στσ−1 is a matching from M2 to M1. We will therefore just
refer to the pair (M1,M2) as a matched pair and to τ as a matching
of the pair. Let (M1,∆1) and (M2,∆2) be such a matched pair of
l.c. quantum groups and denote by τ the matching. We denote by Hi

the GNS space of Mi with respect to the left invariant weight ϕi and
by Wi and Ŵi the natural multiplicative unitaries on Hi for Mi and
M̂i respectively. By H we denote H1⊗̄H2 and by Σ the flip-unitary on
H⊗̄H. We may now form two crossed products:

M = M1 nα M2 = vNa{α(M2), M̂1 ⊗ 1} ⊆ B(H1⊗̄H2)

M̃ = M2 nσβ M1 = vNa{σβ(M1), M̂2 ⊗ 1} ⊆ B(H2⊗̄H1)

Some of the main results in [VV03] is summarized in the following:

Theorem 7.1 ([VV03]). Define operators

Ŵ = (β ⊗ 1⊗ 1)(W1 ⊗ 1)(1⊗ 1⊗ α)(1⊗ Ŵ2)

and W = ΣŴ ∗Σ on H⊗̄H. Then W and Ŵ are multiplicative uni-
taries and the map ∆: M → B(H⊗̄H) given by ∆(a) = W ∗(1⊗1⊗a)W
defines a comultiplication on M turning it into a l.c. quantum group.
Denoting by Σ12 the flip-unitary from H1⊗̄H2 to H2⊗̄H1, the dual quan-
tum group M̂ becomes Σ∗

12M̃Σ12 with comultiplication implemented by
Ŵ .

Thus, up to a flip the two crossed products above are in duality. In
[DQV02], Desmedt, Quaegebeur and Vaes studied (co)amenability of
bicrossed products. Combining their Theorem 15 with [VV03, 2.17]
we obtain the following: If (M1,M2) is a matched pair with M1 dis-
crete and M2 compact then the bicrossed product M is compact, and
M is coamenable if and only if both M2 and M̂1 are. Here a von Neu-
mann algebraic compact quantum group is said to be coamenable if the
corresponding C∗-algebraic quantum group is. Collecting the results
discussed above we obtain the following.

Proposition 7.2. If (M1,M2) is a matched pair of l.c. quantum groups
in which M̂1 and M2 are compact and coamenable, then the bicrossed
product M = M1 nα M2 is coamenable and compact. So if the Haar
state on M is tracial the quantum group (M,∆) has vanishing L2-Betti
numbers in all positive degrees.

In order to produce more concrete examples, we will now discuss a
special case of the bicrossed product construction in which one of the
coactions comes from an actual group action. This part of the theory
is due to De Cannière ([DC79]) and is formulated using the language
of Kac algebras. We remind the reader, that a compact Kac algebra is
nothing but a von Neumann algebraic, compact quantum group with
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tracial Haar state. A discrete, countable group Γ acts on a compact
Kac algebra (M,∆, S, h) if the group acts on the von Neumann algebra
M and the action commutes with both the coproduct and the antipode.
Denoting the action by ρ, this means that

∆(ργ(x)) = ργ ⊗ ργ(∆(x)),

S(ργ(x)) = ργ(S(x)),

for all γ ∈ Γ and all x ∈ M . In this situation, the action of Γ on M
induces a coaction α : M −→ `∞(Γ)⊗̄M . Denoting by H the Hilbert
space on which M acts and identifying `2(Γ)⊗̄H with `2(Γ, H), this
coaction is given by the formula

α(x)(ξ)(γ) = ργ−1(x)(ξ(γ)),

for ξ ∈ `2(Γ, H). The crossed product, which is defined as

Γ nρ M = {α(M),L (Γ)⊗ 1}′′,
becomes again a Kac algebra ([DC79, Thm.1]). One should note at this
point that De Cannière works with the right crossed product acting
on H⊗̄`2(Γ) where we work with the left crossed product acting on
`2(Γ)⊗̄H. But, one can come from one to the other by conjugation
with the flip-unitary and we may therefore freely transport all results
from [DC79] to the setting of left crossed products. We now prove that
De Cannière’s crossed product can also be considered as a bicrossed
product. This is probably well known to experts in the field, but we
were unable to find an explicit reference.

Proposition 7.3. Defining τ : `∞(Γ)⊗̄M −→ `∞(Γ)⊗̄M by

τ(δγ ⊗ x) = δγ ⊗ ργ−1(x)

we obtain a matching with the above defined α as the corresponding
coaction of `∞(Γ) on M and trivial coaction of (M,∆) on `∞(Γ).

Proof. A direct calculation shows that α(x) = τ(1 ⊗ x) and β(f) =
τ(f ⊗ 1) = f ⊗ 1. Therefore the two maps x 7→ τ(1 ⊗ x) and f 7→
στ(f ⊗ 1) are coactions as required. We therefore just have to check
that the matching conditions are fulfilled. Denote the coproduct on
`∞(Γ) by ∆1 and choose f ∈ `∞(Γ) such that ∆1(f) ∈ `∞(Γ)� `∞(Γ).
Then

τ(23)σ(23)(β ⊗ 1)∆1f = τ(23)σ(23)(β ⊗ 1)(f(1) ⊗ f(2))

= τ(23)σ(23)(f(1) ⊗ 1⊗ f(2))

= τ(23)(f(1) ⊗ f(2) ⊗ 1)

= f(1) ⊗ f(2) ⊗ 1

= (∆1 ⊗ 1)β(f),

and hence (M2) is satisfied. An analogous, but slightly more cumber-
some, calculation proves that (M1) is also satisfied. �
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Thus, as von Neumann algebras, we have `∞(Γ) nα M = Γ nρ M .
Using the fact that β is trivial, one can prove that the elements λγ ⊗ 1
are group-like and it therefore follows from [DC79, 3.3] that also the
comultiplications agree. Hence the two crossed product constructions
are identical as l.c. quantum groups. In particular, the the bicrossed
product `∞(Γ) nα M is a Kac algebra so if (M,∆) is compact then
`∞(Γ)nαM is also compact ([VV03, 2.7]) and the Haar state is tracial.
We therefore have the following.

Proposition 7.4. If G = (M,∆, S, h) is a compact, coamenable Kac
algebra and Γ is a countable, discrete, amenable group acting on G then
the crossed product ΓnM is again a compact, coamenable Kac algebra.

Proof. That Γ nM is a Kac algebra follows from the discussion above
and the coamenability of the crossed product follows from [DQV02, 15]
since `̂∞(Γ) = L (Γ) is coamenable if (and only if) Γ is amenable. �

Remark 7.5. It is also possibly to construct examples using the more
general notion of cocycle crossed products introduced in [VV03, 2.1]. It
is shown in [DQV02, 13] that weak amenability (i.e. the existence of
an invariant mean) is preserved under cocycle bicrossed products. In
general it is not known whether or not weak amenability is equivalent to
strong amenability, the latter being defined as the dual quantum group
being coamenable in the sense of Definition 4.1. But for discrete quan-
tum groups this equivalence has been proven by Tomatsu in [Tom06]
(and also by Blanchard and Vaes in unpublished work). Therefore, if
(M1,M2) is a cocycle matched pair of l.c. quantum groups with both
M̂1 and M2 compact and coamenable, then the cocycle crossed product
is also compact and coamenable.
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