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Abstract

This notes accompany the final year course CS3490: Computational Optimisation. We
will study basic results, approaches and techniques of such important areas as linear and
integer programming, and combinatorial optimisation. Many applications are overviewed.

This document is c©Gregory Gutin, 2005.

Permission is given to freely distribute this document electronically and
on paper. You may not change this document or incorporate parts of it
in other documents: it must be distributed intact.

Please send errata to the authors at the address on the title page or
electronically to gutin@cs.rhul.ac.uk.
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Chapter 1

Introduction to Computational
Optimisation

1.1 Introduction

Computational Optimisation (CS3490) will have 3 lectures a week. The aim is to intro-
duce classical and modern methods and approaches in computational optimisation, and
to overview applications and software packages available. The course covers both classical
and very recent developments in the area. The main topics of the course are: linear and
integer programming, construction heuristics and local search, polynomial time solvable
problems, computational and theoretical analysis of heuristics, and meta-heuristics.

Most of the theory will be taught through examples with theoretical results formulated,
but not proved. Only a few results will be proved. There will be a final exam (100 %
mark). Any material taught at the lectures may be in the exam paper. A basic knowledge
of graphs and matrices is assumed.

These notes contain areas of blank space in various places. Their purpose is to leave
room for examples given in the lectures.

Unfortunately, it is impossible to recommend only one or two books covering the whole
course. Several books and articles will be used in a supporting role to these notes, including
the following:

• J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications,
Springer, 2000

• J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, North Holland, 1976

• M.W. Carter and C.C. Price, Operations Research: A Practical Introduction, CRC,
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2001

• F. Glover and M. Laguna, Tabu Search, Kluwer, 1997

• G. Gutin and A. Punnen (eds.), Traveling Salesman Problem and its Variations,
Kluwer, 2002.

• G. Gutin and A. Yeo, Anti-matroids. Operations Research Letters 30 (2002) 97–99.

• J. Hromkovič, Algorithmics for hard problems, Springer, 2001

• Z. Michalewicz and D.B. Fogel, How to Solve It: Modern Heuristics, Springer, 2000

• W.L. Winston, Operations Research, 3rd edition, Duxbury Press, 1994

Inevitably there are misprints in the notes. Please let me know if you have spotted
one.
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1.2 Algorithm efficiency and problem complexity

We start from two particular optimisation problems.

Assignment Problem (AP) We have n persons p1, . . . , pn and n jobs w1, . . . , wn, and
the cost cij of performing job i by person j. We wish to find an assignment of the
persons to the jobs (one person per job) such that the total cost of performing the
jobs is minimum. The costs are normally given by matrix C = [cij ].

Example (an instance):

C =









1 2 3 2
2 5 0 3
2 1 6 7
3 4 2 1









.

Travelling Salesman Problem (TSP) There are n cities t1, . . . , tn. Given distances
dij from any city ti to any other city tj , we wish to find a shortest total distance
tour that starts at city t1, visits all cities (in some order) and returns to t1.

Example (an instance):

C =









0 2 3 2
2 0 1 3
2 1 0 7
3 4 2 0









.

The parameter n for both AP and TSP is the size of the problem. Algorithms for most
optimisation problem are non-trivial and cannot be performed by hand even for relatively
small sizes of a problem. Hence computers have to be used.

One possibility to predict that a certain computer code C to solve a certain problem
P can handle all instances of P of size, say, n = 100 within a CPU hour is to carry out
computational experiments for various instances of P of size 100. However, even if we
have carried out computational experiments with 2000 instances of P and C solved each
of them with a CPU hour, it does not mean C will spend less than one hour for the 2001st
instance.

To predict the running time of algorithms and of the corresponding computer codes,
researchers and practitioners compute the number of elementary operations required by
a given algorithm to solve any instance of a certain problem (depending on the instance
size). Elementary operations are arithmetic operations, logic operations, shift, etc.

Examples:
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In most cases, we are interested in knowing how the number of performed operations
depends on n asymptotically. For example, there is an algorithm AAP for the AP that
requires at most O(n3) operations. This means that the number of operations is at most
cn3, where c is a constant not depending on n. For the TSP there is an algorithm ATSP

that requires at most O(2n) operations. To sort n different integers whose values are
between 1 and n there is an algorithm ABS (basket sort) that requires at most O(n)
operations.

We may draw some conclusions on the three algorithms without carrying out any
computational experiments. For simplicity, assume that the constant c in each of the
algorithms equals 10 and every operation takes 10−6 sec to perform. Then for n = 20,
ABS will take at most 2× 10−5 sec, AAP 0.08 sec and ATSP 10 sec. For n = 40, ABS will
take at most 4 × 10−5 sec, AAP 0.64 sec and ATSP 127 days. For n = 60, ABS will take
at most 6 × 10−5 sec, AAP 2.16 sec and ATSP 366000 years.

Already this example indicates that while ABS and AAP can be used for moderate sizes,
ATSP may quickly become unusable. In fact, this example shows the difference between
polynomial time and exponential time algorithms. Clearly, polynomial time algorithms
are ”good” and exponential are ”bad”. Unfortunately, for many optimisation problems,
called NP-hard problems, polynomial time algorithms are unknown. Many 1000s of NP-
hard problems are polynomially equivalent in the sense that if one of them admits a
polynomial time algorithm then so does every other one. Many researchers have tried to
find polynomial algorithms for various NP-hard problems, but failed. Thus, we believe
that NP-hard problem cannot have polynomial time algorithms. Since TSP is NP-hard,
it is very likely there does not exist a polynomial time algorithm for TSP.

1.3 Optimality and practicality

Many people with a mathematical education are trained to search for exact solutions to
problems. If we are solving a quadratic equation, there is a formula for the exact solution.
If a list of names needs to be sorted, we use an algorithm which produces a perfectly
ordered list. Especially concerning mathematical theorems and their proofs, a respect
for truth and perfection has evolved historically, and a nearly correct but incomplete
or slightly flawed proof is considered of little or no value at all. Therefore the idea of
solving a problem and not giving the ”right” answer looks disappointing and disturbing.
Yet there are justifiable reasons for accepting computational results that are imperfect or
suboptimal.

First of all, models created by analysts are not perfect representations of real systems.
So even if we could obtain exact solutions to the models they would not necessarily consti-
tute exact solutions or perfect managerial advice to be applied for the real systems. Hence,
costly efforts to achieve perfect solutions to mathematical models may not be warranted.
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Every computer has only finite many digits to represent a number. Therefore some
numbers should be rounded off. Further calculations with such numbers produce accumu-
lated error. Often these errors may lead us far away from an optimal solution even if the
algorithm is exact.

As we saw above many optimisation problems are NP-hard and do not admit polyno-
mial time algorithms. Hence we cannot solve those problems to optimality even when the
sizes of their instances are moderate. However many NP-hard problems are practically
important. Even polynomial time algorithms may be impractical. Indeed, algorithms of
running time O(n3) become impractical for values of n exceeding a few thousands.

Therefore we cannot and should not solve all problems to optimality. In practice, more
often than not researchers and practitioners settle for suboptimal rather than optimal
solutions.

Hence, in this course we will consider both exact and approximate methods and ap-
proaches in computational optimisation.

Question: Assume that every operation takes 10−6 sec to perform. We have two al-
gorithms to solve a certain problem, one with running time at most 10n5, the other of
10× 2n. Which of the two algorithms is faster for n = 20, n = 40 ? Which conclusion can
one draw?



Chapter 2

Introduction to Linear
Programming

2.1 Linear programming (LP) model

An optimisation problem is called an LP problem (or an instance of LP) if both objective
function and constraints are linear. For example,

maximize 2x1 + 3x2

subject to 3x1 − 5x2 ≤ 7

4x1 − x2 = 3

x2 ≥ 0

is an LP problem.

In general, the objective function is of the form c1x1+c2x2+· · ·+cnxn, a linear function
of the decision variables xi with coefficients ci, which is to be minimized or maximized.
All constraints are of the form a1x1 + a2x2 + · · · + anxn = (≤,≥)b.

2.2 Formulating problems as LP problems

Example 2.2.1. (W.L. Winston) An American company manufactures luxury cars and
trucks. The company believes that its most likely customers are high-income women and
men. To reach these groups the company has embarked on an ambitious TV advertis-
ing campaign and has decided to purchase one minute commercial spots on two types of
programmes: comedy shows and football games. Each comedy commercial is seen by 7

6



2.2. FORMULATING PROBLEMS AS LP PROBLEMS 7

million high-income women and 2 million high-income men. Each football commercial
is seen by 2 million high-income women and 12 million high-income men. One minute
comedy advert costs $ 50000 and 1 minute football advert costs $ 100000. The company
would like the commercials to be seen by at least 28 million high-income women and 24
million high-income men. Write down an LP model of this problem.

Solution: The company must decide how many comedy and football adverts should
be purchased so the decision variables are: x1 =number of one minute comedy adverts,
x2 =number of 1 minute football adverts. The company wants to minimise total advertis-
ing cost (in thousands of dollars). Total advertising cost = cost of comedy adverts + cost
of football adverts = 50x1 + 100x2. Thus, the company’s objective function is

min z = 50x1 + 100x2.

The company faces the following constraints:

Constraint 1 Commercials must reach at least 28 million high-income women.

Constraint 2 Commercials must reach at least 24 million high-income men.

Constraint 1 may be expressed as 7x1+2x2 ≥ 28 and Constraint 2 may be expressed as
2x1 + 12x2 ≥ 24. The sign restrictions x1 ≥ 0 and x2 ≥ 0 are necessary, so the company’s
model is given by:

min z = 50x1 + 100x2

s.t. 7x1 + 2x2 ≥ 28

2x1 + 12x2 ≥ 24

x1, x2 ≥ 0.

Example 2.2.2. (W.L. Winston) An auto company manufactures cars and trucks. Each
vehicle must be processed in the paint shop and body assembly shop. If the paint shop were
only painting trucks, 40 per day could be painted. If the paint shop were only painting cars,
60 per day could be painted. If the body shop were only producing cars it could process 50
per day. If the body shop were only producing trucks, it could process 50 per day. Each
truck contributes $300 to profit and each car contributes $200 to profit. Write down an
LP model of this problem.

Solution: The company must decide how many cars and trucks should be produced
daily. This leads us to define the following decision variables: x1 = number of trucks
produced daily, x2 = number of cars produced daily. The company’s daily profit (in
hundreds of dollars) is 3x1 + 2x2, so the company’s objective function may be written as:

max z = 3x1 + 2x2.
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The company’s two constraints are the following:

Constraint 1 The fraction of the day during which the paint shop is busy is less than or
equal to 1.

Constraint 2 The fraction of the day during which the body shop is busy is less than or
equal to 1.

We have

Fraction of day paint shop works on trucks = 1
40x1

Fraction of day paint shop works on cars = 1
60x2

Fraction of day body shop works on trucks = 1
50x1

Fraction of day body shop works on cars = 1
50x2

Thus, Constraint 1 may be expressed by

1

40
x1 +

1

60
x2 ≤ 1

and Constraint 2 may be expressed by

1

50
x1 +

1

50
x2 ≤ 1.

Since x1 ≥ 0 and x2 ≥ 0 must hold, the relevant model is

max z = 3x1 + 2x2

s.t. 1
40x1 + 1

60x2 ≤ 1
1
50x1 + 1

50x2 ≤ 1

x1, x2 ≥ 0.

Example 2.2.3. (W.L. Winston) You have decided to enter the candy business. You are
considering producing two types of candies: Slugger Candy and Easy Out Candy, both of
which consist solely of sugar, nuts, and chocolate. At present, you have in stock 100 oz of
sugar, 20 oz of nuts, and 30 oz of chocolate. The mixture used to make Easy Out Candy
must contain at least 20 % nuts. The mixture used to make Slugger Candy must contain
at least 10 % nuts and 10 % chocolate. Each ounce of Easy Out Candy can be sold for
25p, and each ounce of Slugger Candy for 20p. Formulate an LP model that will enable
you to maximize you revenue from candy sales.

Solution: (Fill in the details yourself)
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The LP model is

max z = 25x1 + 20x2

s.t. x1 + x2 ≤ 150(= 100 + 20 + 30)

0.2x1 + 0.1x2 ≤ 20

0.1x2 ≤ 30

x1, x2 ≥ 0.

Example 2.2.4. (M.W. Carter and C.C. Price) A dual-processor computing facility is
to be dedicated to administrative and academic application jobs for at least 10 hours each
day. Administrative jobs require 2 seconds of CPU time on processor 1 and 6 seconds
on processor 2, while academic jobs require 5 seconds on processor 1 and 3 seconds on
processor 2. A scheduler must choose how many of each type of job (administrative and
academic) to execute, in such a way as to minimize the amount of time that the system is
occupied with these jobs. The system is considered to be occupied even if one processor is
idle. (Assume that the sequencing of the jobs on each processor is not an issue here, just
the selection of how many of each type of job.)

Solution: Let x1 and x2 denote respectively the number of administrative and aca-
demic jobs selected for execution on the dual-processor system. Because policies require
that each processor be available for at least 10 hours, we have the following two con-
straints: 2x1 + 5x2 ≥ 10 × 3600, 6x1 + 3x2 ≥ 10 × 3600 and x1 ≥ 0 and x2 ≥ 0. The
system is considered occupied as long as either processor is busy. Therefore, to minimize
the completion time for the set of jobs, we must minimize max{2x1 + 5x2, 6x1 + 3x2}.

This nonlinear objective can be made linear if we introduce a new variable x3, where
x3 = max{2x1 + 5x2, 6x1 + 3x2} ≥ 0.

Now if we require x3 ≥ 2x1 + 5x2 and x3 ≥ 6x1 + 3x2 and make our objective to
minimize x3, we have the desired linear formulation (x1, x2, x3 ≥ 0).

2.3 Graphical solution of LP problems

Example 2.3.1. Graph the set of points 2x1 + 3x2 ≤ 6, x1, x2 ≥ 0.

Solution: See Figure 2.1. We start from drawing 2x1 + 3x2 = 6. To draw this graph
we find two points in the x1 − x2 plane: x1 = 0, x2 = 2, x2 = 0, x1 = 3.

To graph 2x1+3x2 ≤ 6, we check whether the point x1 = 0 = x2 belongs to 2x1+3x2 ≤
6 or not. We see that 2× 0 + 3× 0 ≤ 6, so x1 = 0 = x2 does belong to 2x1 + 3x2 ≤ 6, and
hence the South-West part of the half-plane is the graph of 2x1 + 3x2 ≤ 6.
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x11 2 3

1

2

3

x2

Figure 2.1: Area for 2x1 + 3x2 ≤ 6, x1, x2 ≥ 0.

Example 2.3.2. Consider the following instance of LP

min z = 50x1 + 100x2

s.t. 7x1 + 2x2 ≥ 28

2x1 + 12x2 ≥ 24

x1, x2 ≥ 0.

Solve the problem graphically.

Solution: See Figure 2.2. The line 7x1 +2x2 = 28 contains the points x1 = 0, x2 = 14
and x2 = 0, x1 = 4, and the line 2x1 + 12x2 = 24 the points x1 = 0, x2 = 2 and
x2 = 0, x1 = 12. The point of intersection of the two lines can be found by solving the
system of the two equations which describe them. From the second equation x1 = 12−6x2;
substituting into the first equation yields 7(12−6x2)+2x2 = 28, thus 56−40x2 = 0. As a
result we get x2 = 1.4 and x1 = 12−6×1.4 = 3.6. The graph of the four constraints, that
is, the set of points which satisfy all the constraints, is the entire (infinite) North-East
area of Figure 2.2.

The objective function lines are 50x1 + 100x2 = const. It is easy to see that const
decreases as the line moves towards the South-West corner. Thus the minimum is achieved
at x1 = 3.6, x2 = 1.4. The optimal value is z = 50 × 3.6 + 100 × 1.4 = 320.

Example 2.3.3. Add the constraint x1 + x2 ≤ 2 to Example 2.3.2. Investigate the new
LP problem.
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x2

x141 2
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12

Figure 2.2: Figure for Example 2.3.2

Solution: We see that no point satisfies the 5 constraints (see Figure 2.3). So, the
LP problem has no feasible solution.

Example 2.3.4. Consider Example 2.3.2, but with the objective to maximize rather than
minimize.

Solution: For any const > 320 there are feasible points satisfying 50x1 + 100x2 =
const. Thus, the new LP problem is unbounded.

Example 2.3.5. Consider Example 2.3.2, but with objective function min z = x1 + 6x2.

Solution: We see that one optimal solution is still x1 = 3.6, x2 = 1.4, but there are
infinitely many optimal points (an entire straight line segment). See Figure 2.4.

Conclusions

There are four possibilities for an LP problem:

• The LP problem has a unique optimal solution.

• The LP problem has infinitely many optimal solutions.

• The LP problem has no feasible solutions.

• The LP problem is unbounded.
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Figure 2.3: Figure for Example 2.3.3
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Figure 2.4: Figure for Example 2.3.5
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2.4 Questions

Question 2.4.1. (W.L. Winston) Leary Chemicals manufactures three chemicals: A, B,
and C. These chemicals are produced via two production processes: 1 and 2. Running
Process 1 for an hour costs $4 and yields 3 units of A, 1 of B, and 1 of C. Running
Process 2 for an hour costs $1 and produces 1 unit of A and 1 of B. To meet customer
demands, at least 10 units of A, 5 of B, and 3 of C must be produced daily. Write down
an LP model to minimize the cost of meeting Leary Chemical’s daily demands.

Question 2.4.2. A small toy company manufactures two types of wooden toys: cars and
trains. Each car sells for $25 and uses $20 of raw material and labour. Each train
sells for $30 and uses $24 of raw material and labour. The manufacture of both types of
toys requires two types of skilled labour: carpentry and finishing. A car requires 2 hours
of carpentry labour and 3 hours of finishing labour. A train requires 3 hours of carpentry
labour and 4 hours of finishing labour. Each week the company can get all needed material,
but only 150 finishing hours and 100 carpentry hours. The company has already orders on
20 trains, but expects to sell all manufactured toys. The company wants to decide what
number of cars and trains to manufacture in order to maximize its profit. Write down an
LP model to maximize the toy company profit.

Question 2.4.3. A television manufacturing company has to decide on the number of
27- and 20-inch sets to be produced at one of its factories. Market research indicates that
at most 40 of the 27-inch sets and 10 of the 20-inch sets can be sold per month. The
maximum number of work hours available is 500 per month. A 27-inch set requires 20
work hours, and a 20-inch set requires 10 work hours. Each 27-inch set sold produces a
profit of £120, and each 20-inch set produces a profit of £80. A wholesaler has agreed to
purchase all the television sets produced if the numbers do not exceed the maxima indicated
by the market research.

(a) Formulate a linear programming model for this problem.

(b) Solve this model graphically.

Question 2.4.4. Goldilocks needs to find at least 16 lb of gold and at least 18 lb of silver
to pay the monthly rent. There are two mines in which Goldilocks can find gold and silver.
Each day that Goldilocks spends in mine 1, she finds 2 lb of gold and 2 lb of silver. Each
day that Goldilocks spends in mine 2, she finds 1 lb of gold and 3 lb of silver. Formulate
an LP to help Goldilocks meet her requirements while spending as little time as possible in
the mines. Graphically solve the LP.

Question 2.4.5. Find out which of the four possibilities this LP problem belongs to.

max z = x1 + x2
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s.t. x1 + x2 ≤ 4

x1 − x2 ≥ 5

x1, x2 ≥ 0.

Justify your answer.

Question 2.4.6. Find out which of the four possibilities this LP problem belongs to.

max z = 4x1 + x2

s.t. 8x1 + 2x2 ≤ 16

5x1 + 2x2 ≤ 12

x1, x2 ≥ 0.

Justify your answer.

Question 2.4.7. Find out which of the four possibilities this LP problem belongs to.

max z = −x1 + 3x2

s.t. x1 − x2 ≤ 4

5x1 + 2x2 ≥ 4

x1, x2 ≥ 0.

Justify your answer.

Question 2.4.8. A computer manufacturing company has to decide on the number of
64-processor and 32-processor computers to be assembled at one of its factories. Market
research indicates that at most 20 of the 64-processor computers and 30 of the 32-processor
computers can be sold per month. The maximum number of work hours available is 5100
per month. A 64-processor computer requires 200 work hours, and a 32-processor computer
requires 100 work hours. Each 64-processor computer sold produces a profit of £9000,
and each 32-processor computer produces a profit of £6000. A wholesaler has agreed to
purchase all the computers assembled if the numbers do not exceed the maxima indicated by
the market research. Write down a linear programming model to maximize the computer
company profit. Why may a linear programming model not be adequate for the above
problem?

Question 2.4.9. Solve the following LP problem graphically:

max z = 25x1 + 50x2

s.t. 7x1 + 2x2 ≤ 28

2x1 + 12x2 ≤ 24

x1, x2 ≥ 0.



Chapter 3

Simplex Method

3.1 Standard Form

In preparation for using the Simplex Method, it is necessary to express the linear program-
ming problem in standard form. For a LP problem with n variables and m constraints the
standard form is

max z = c1x1 + c2x2 + . . . + cnxn

s.t. a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2

. . . . . . . . .

. . . . . . . . .

am1x1 + am2x2 + . . . + amnxn = bm

x1, x2, . . . , xn ≥ 0,

where the constants b1, . . . , bm are non-negative.

Often the standard form is written in vector-matrix form:

max z = cx

s.t. Ax = b

x ≥ 0,

15
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where c = (c1, . . . , cn),

x =













x1

x2

. . .

. . .
xn













, b =













b1

b2

. . .

. . .
bm













, A =













a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .

. . . . . . . . . . . .
am1 am2 . . . amn













.

Although this standard form is required by the Simplex Method, it is not necessar-
ily the form that arises naturally when we first formulate our LP model. Thus, some
transformations are required to translate the initial form into the standard form.

To convert a minimization problem into a maximization problem, we can simply mul-
tiply the objective function by −1 and replace min by max. For example, the problem of
minimizing z = 2x1 − 3x2 is equivalent to that of maximizing z = −2x1 + 3x2.

Equality constraints require no modification. Less-than-or-equal-to (≤) inequalities
require introduction of slack variables. For example, 2x1+5x2 ≤ 7 becomes 2x1+5x2+s1 =
7. Greater-than-or-equal-to (≥) inequalities are modified by introducing surplus variables.
For example, 4x1 − 6x2 ≥ 8 becomes 4x1 − 6x2 − s2 = 8.

Finally, the LP standard form requires that every variable is non-negative. If some
variable, say x3, is not required to be non-negative in the initial formulation, then we
modify it as follows: we replace x3, in each constraint and the objective function, by
x′

3 − x′′

3 and add x′

3, x
′′

3 ≥ 0.

Example 3.1.1. Transform the following LP problem into standard form.

min z = −50x1 + 100x2

s.t. 7x1 + 2x2 ≥ 28

2x1 + 12x2 ≤ 24

x1, x2 ≥ 0.

Solution: We have

max z′ = 50x1 − 100x2

s.t. 7x1 + 2x2 − s1 = 28

2x1 + 12x2 + s2 = 24

x1, x2, s1, s2 ≥ 0.

Example 3.1.2. Transform the following LP problem into standard form.

max z = 50x1 − 10x2
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s.t. x1 + 2x2 ≤ 28

2x1 + 15x2 ≥ 24

x2 ≥ 0.

Solution: We have

max z = 50x′

1 − 50x′′

1 − 10x2

s.t. x′

1 − x′′

1 + 2x2 + s1 = 28

2x′

1 − 2x′′

1 + 15x2 − s2 = 24

x′

1, x
′′

1, x2, s1, s2 ≥ 0.

3.2 Solutions of Linear Systems

Consider a system of independent linear equations, Ax = b, consisting of m equations and
n unknowns xi. The n unknowns include the original decision variables and any other
variables that may have been introduced in order to achieve standard form.

If a system of equations is independent, then m ≤ n. If m = n and detA 6= 0, then
there is a unique solution x = A−1b. Optimization is not an issue here.

¿From now on, suppose that m < n, i.e., there are infinitely many solutions of the
system. In this case, there are (n − m) degrees of freedom in solving the system. This
means we can arbitrarily assign any values to (n − m) of the n variables, and then solve
the m equations with m unknowns.

A basic solution to the system of m equations and n unknowns is obtained by setting
(n−m) of the variables to zero, and solving for the remaining m variables. The m variables
that are not set equal to zero are called basic variables, and the variables that are set to
zero are called non-basic variables. The number of basic solutions is just the number of
ways we can choose n− m variables (or m variables) from the set of n variables, and this
number is given by

(

n
m

)

= n!
m!(n−m)! .

Not all of the basic solutions satisfy all problem constraints and non-negativity con-
straints. Those that do not meet these requirements are infeasible solutions. The ones
that do meet the restrictions are called basic feasible solutions. An optimal basic feasible
solution is a basic feasible solution that optimizes the objective function. The basic feasi-
ble solutions correspond precisely to the extreme points of the feasible region (as defined
in our earlier discussion of graphical solutions). Because some optimal feasible solution is
guaranteed to occur at an extreme point (and consequently is a basic feasible solution),
the search for an optimal feasible solution could be carried out by an examination of the
at most

(

n
m

)

basic feasible solutions and a determination of which one yields the best
objective function value.
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The Simplex Method performs such a search, although in a very efficient way. We
define two extreme points of the feasible region (or two basic feasible solutions) as being
adjacent if all but one of their basic variables are the same. Thus, a transition from one
basic feasible solution to an adjacent basic feasible solution can be thought of as exchanging
the roles of one basic variable and one non-basic variable. The Simplex Method performs a
sequence of such transitions and thereby examines a succession of adjacent extreme points.
A transition to an adjacent extreme point will be made only if by doing so the objective
function is improved (or stays the same). It is a property of linear programming problems
that this type of search will lead us to the discovery of an optimal solution (if one exists).
The Simplex Method is not only successful in this sense, but it is remarkably efficient
because it succeeds after examining only a fraction of the basic feasible solutions.

Since the Simplex Method is an algorithm, we must specify how an initial feasible
solution is obtained, how a transition is made to a better basic feasible solution, and how
to recognize an optimal solution. From any basic feasible solution, we have the assurance
that, if a better solution exists at all, then there is an adjacent solution that is better than
the current one. This is the principle on which the Simplex Method is based; thus, an
optimal solution is accessible from any starting basic feasible solution.

3.3 The Simplex Method

We will use the following simple problem from M.W. Carter and C.C. Price.

max z = 8x1 + 5x2

s.t. x1 ≤ 150

x2 ≤ 250

2x1 + x2 ≤ 500

x1, x2 ≥ 0.

The standard form of this problem is

max z = 8x1 + 5x2 + 0s1 + 0s2 + 0s3

s.t. x1 + s1 = 150

x2 + s2 = 250

2x1 + x2 + s3 = 500

x1, x2, s1, s2, s3 ≥ 0.
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(Zero coefficients are given to the slack variables in the objective function because
slack variables do not contribute to z.) The constraints constitute a system of m = 3
equations in n = 5 unknowns. To obtain an initial basic feasible solution, we need to
select n − m = 5 − 3 = 2 variables as non-basic variables. We can readily see in this
case that by choosing the two variables x1, x2 as the non-basic variables, and setting their
values to zero, no significant computation is required in order to solve for the three basic
variables: s1 = 150, s2 = 250, s3 = 500. The value of the objective function at this solution
is 0.

Once we have a solution, a transition to an adjacent solution is made by a pivot
operation. A pivot operation is a sequence of elementary row operations applied to the
current system of equations, with the effect of creating an equivalent system in which one
new (previously non-basic) variable now has a coefficient of one in one equation and zeros
in all other equations.

During the process of applying pivot operations to an LP problem, it is convenient to
use a tabular representation of the system of equations. This representation is referred to
as a Simplex tableau.

In order to conveniently keep track of the value of the objective function as it is
affected by the pivot operations, we treat the objective function as one of the equations in
the system of equations, and we include it in the tableau. In our example, the objective
function equation is written as

1z − 8x1 − 5x2 − 0s1 − 0s2 − 0s3 = 0.

The tableau for the initial solution is as follows:

Basis z x1 x2 s1 s2 s3 Solution

z 1 -8 -5 0 0 0 0

s1 0 1 0 1 0 0 150
s2 0 0 1 0 1 0 250
s3 0 2 1 0 0 1 500

Observe that the objective function row represents an equation that must be satisfied
for any feasible solution. Since we want to maximize z, some other (non-basic) term must
decrease in order to offset the increase in z. But all of the basic variables are already at
their lowest value, zero. Therefore, we want to increase some non-basic variable that has
a negative coefficient. As a simple rule, we will choose the variable with the most negative
coefficient. The chosen variable is called the entering variable, i.e., the one that will enter
the basis. In our example, x1 is the entering variable. In general, we denote the entering
variable by xk.

How much can we increase the value of xk (away from zero)? To answer this question
consider a row i with aik > 0. For basic variable xi, after xk is increased, the new value of
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xi will be
xi = bi − aikxk.

Since xi ≥ 0, we can increase xi only to the point where

xk = bi/aik.

One of the basic variables xi must leave the basis (leaving variable). To find this
variable we consider the column k of the entering variable and calculate Θi = bi/aik

for every row i for which aik > 0. In our example k = 1, and Θ1 = 150/1 = 150 and
Θ3 = 500/2 = 250. This means x1 can be increased to 150 without s1 becoming negative
and x1 can be increased to 250 without s3 becoming negative. We do not want either of
s1, s3 to become negative, and thus we choose Θ = minΘj = 150. So, s1 is the leaving
variable.

Let us consider what happens when none of the aik is positive. In this case, xk can be
increased by any amount without any basic variable becoming negative. This means that
the corresponding LP problem is unbounded.

Returning to our example, recall that x1 is entering and s1 is leaving. This means that
the intersection of the row of x1 and the column of s1 is the pivot element. The pivot
element must become 1 and the other entries of the column of x1 must become zero. To
achieve this we multiply the 1st row by 8 and add to the row 0 (objective function row),
we also multiply the 1st row by −2 and add to the 3rd row. As a result, we get

Basis z x1 x2 s1 s2 s3 Solution

z 1 0 -5 8 0 0 1200

x1 0 1 0 1 0 0 150
s2 0 0 1 0 1 0 250
s3 0 0 1 -2 0 1 200

This shows the new basic feasible solution x1 = 150, s2 = 250, s3 = 200, x2 = s1 = 0,
z = 1200.

Now x2 is entering and Θ = min{250/1, 200/1} = 200. Thus, s3 is leaving. The
intersection of the row of s3 and the column of x2 is the pivot element and every entry of
the column of x2 except for the pivot element must become 0. After making those entries
0, we get

Basis z x1 x2 s1 s2 s3 Solution

z 1 0 0 -2 0 5 2200

x1 0 1 0 1 0 0 150
s2 0 0 0 2 1 -1 50
x2 0 0 1 -2 0 1 200

Now s1 is entering and Θ = min{150/1, 50/2} = 25. Thus, s2 is leaving. The inter-
section of the row of s2 and the column of s1 is the pivot element and every entry of the
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column of s1 except for the pivot element must become 0. After making those entries 0,
we get

Basis z x1 x2 s1 s2 s3 Solution

z 1 0 0 0 1 4 2250

x1 0 1 0 0 -1/2 1/2 125
s1 0 0 0 1 1/2 -1/2 25
x2 0 0 1 0 1 0 250

Because the objective function row coefficients are all non-negative (the Solution row
is not taken into consideration), the current solution is optimal. The optimal values of the
decision variables are x1 = 125 and x2 = 250. The objective optimal value z∗ = 2250.

Example 3.3.1. (W.L. Winston) Solve the following LP problem using the Simplex
Method:

max z = 60x1 + 30x2 + 20x3

s.t. 8x1 + 6x2 + x3 ≤ 48

4x1 + 2x2 + 1.5x3 ≤ 20

2x1 + 1.5x2 + 0.5x3 ≤ 8

x2 ≤ 5

x1, x2, x3 ≥ 0.

Solution:

Computations are done in the following tableau:

Basis z x1 x2 x3 s1 s2 s3 s4 Solution Ratio

z 1 -60 -30 -20 0 0 0 0 0

s1 0 8 6 1 1 0 0 0 48 48/8
s2 0 4 2 1.5 0 1 0 0 20 20/4
s3 0 2 1.5 0.5 0 0 1 0 8 8/2
s4 0 0 1 0 0 0 0 1 5 –

z 1 0 15 -5 0 0 30 0 240

s1 0 0 0 -1 1 0 -4 0 16 –
s2 0 0 -1 0.5 0 1 -2 0 4 4/0.5
x1 0 1 0.75 0.25 0 0 0.5 0 4 4/0.25
s4 0 0 1 0 0 0 0 1 5 –

z 1 0 5 0 0 10 10 0 280

s1 0 0 -2 0 1 2 -8 0 24
x3 0 0 -2 1 0 2 -4 0 8
x1 0 1 1.25 0 0 -0.5 1.5 0 2
s4 0 0 1 0 0 0 0 1 5
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Since the objective function row contains only non-negative coefficients in all non-
Solution columns, we have obtained an optimal solution: x1 = 2, x2 = 0, x3 = 8, z∗ = 280.

Example 3.3.2. Solve the following LP problem using the Simplex Method:

min z = −36x1 − 30x2 + 3x3 + 4x4

s.t. x1 + x2 − x3 ≤ 5

6x1 + 5x2 − x4 ≤ 10

x1, x2, x3, x4 ≥ 0.

Solution: Let z′ = −z. Then max z′ = 36x1 + 30x2 − 3x3 − 4x4.

Computations are done in the following tableau:

Basis z′ x1 x2 x3 x4 s1 s2 Solution Ratio

z′ 1 -36 -30 3 4 0 0 0

s1 0 1 1 -1 0 1 0 5 5/1
s2 0 6 5 0 -1 0 1 10 10/6

z′ 1 0 0 3 -2 0 6 60

s1 0 0 1/6 -1 1/6 1 -1/6 10/3 20
x1 0 1 5/6 0 -1/6 0 1/6 5/3 –

z′ 1 0 2 -9 0 12 4 100

x4 0 0 1 -6 1 6 -1 20 –
x1 0 1 1 -1 0 1 0 5 –

We see that the entering variable x3 can be increased by any number, which means that
the problem is unbounded. This also means that the original problem is also unbounded.

3.4 Questions

Question 3.4.1. Transform the following LP problem into standard form and solve it
using the Simplex Method:

max z = 2x1 − x2 + x3

s.t. 3x1 + x2 + x3 ≤ 60

x1 − x2 + 2x3 ≤ 10

x1 + x2 − x3 ≤ 20

x1, x2, x3 ≥ 0.
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Question 3.4.2. (W.L. Winston) Solve the following LP problem using the Simplex
Method:

max z = 2x2

s.t. x1 − x2 ≤ 4

−x1 + x2 ≤ 1

x1, x2 ≥ 0.

Question 3.4.3. Solve the following modification of the previous LP problem using the
Simplex Method:

max z = 2x2

s.t. x1 − x2 ≤ 4

x1 + 2x2 ≤ 1

x1, x2 ≥ 0.

Question 3.4.4. Solve the following LP problem using the Simplex Method:

max z = 2x1 + x2

s.t. 3x1 − x2 ≤ 2

2x1 − x2 ≤ 3

x1, x2 ≥ 0.

Question 3.4.5. Solve the following LP problem using the Simplex Method:

max z = 3x1 + 5x2

s.t. x1 ≤ 4

2x2 ≤ 12

2x1 + 3x2 ≤ 18

x1, x2 ≥ 0.

Question 3.4.6. (Hillier and Lieberman, 4.3-7) Consider the following LP problem.

max z = 5x1 + 3x2 + 4x3

s.t. 2x1 + x2 + x3 ≤ 20

3x1 + x2 + 2x3 ≤ 30

x1, x2, x3 ≥ 0.
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You are given the information that the non-zero variables in the optimal solution are
x2 and x3. Describe how you can use this information to adapt the Simplex Method to
solving the problem in the minimum possible number of iterations (when you start from
the usual initial basic feasible solution). Do not actually perform any iterations.

Question 3.4.7. Consider the following LP problem.

min z = 4x1 − 5x2 − 3x3

s.t. x1 − x2 + x3 ≥ −2

x1 + x2 + 2x3 ≤ 3

x1, x2, x3 ≥ 0.

Transform this LP problem into standard form.

Construct the simplex table and perform the first iteration of the Simplex Method for
the LP problem. Knowing that the second iteration of Simplex Method yields the opti-
mal solution, find the optimal solution by performing the second iteration partially (only
necessary computations).



Chapter 4

Linear Programming Approaches

4.1 Artificial variables and Big-M Method

Consider the following constraint: 3x1 − 7x2 = −5. Since the right hand side of any
LP constraint in standard form must be non-negative, to transform this constraint into
standard form, we multiply it by −1 : −3x1 + 7x2 = 5.

Consider the following constraint: 3x1 − 7x2 ≥ −9. Since the right hand side of any
LP constraint in standard form must be non-negative, to transform this constraint into
standard form, we multiply it by −1 : −3x1 + 7x2 ≤ 9.

If all constraints in an LP problem are of type ≤, then introduction of slack variables
results in getting an initial feasible set of basic variables. Often, some of the constraints
are equalities, others are of type ≥ (with non-negative right hand sides).

Consider the following LP problem:

max z = 2x1 − 3x2 + 9x3

s.t. −x1 + x2 − 4x3 = −10

7x1 − 3x2 − 5x3 ≤ −2

x1, x2, x3 ≥ 0.

After transformation into standard form, we get:

max z = 2x1 − 3x2 + 9x3

s.t. x1 − x2 + 4x3 = 10

25
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−7x1 + 3x2 + 5x3 − s1 = 2

x1, x2, x3, s1 ≥ 0.

It is not easy to find an initial set of basic variables. Thus, we introduce so-called
artificial variables a1 and a2:

max z = 2x1 − 3x2 + 9x3 − Ma1 − Ma2

s.t. x1 − x2 + 4x3 + a1 = 10

−7x1 + 3x2 + 5x3 − s1 + a2 = 2

x1, x2, x3, s1, a1, a2 ≥ 0,

where M is a very large positive number. The role of M is to make sure that if the LP
problem in hand has a feasible solution, then the optimal solution of this new problem
will include a1 = a2 = 0 as positive values of ai will decrease z considerably. Thus, a1 > 0
or a2 > 0 is only possible if the LP problem has no feasible solution at all. If we obtain an
optimal solution for the transformed LP problem in which a1 = a2 = 0, then that solution
can be considered as an initial feasible solution for the original LP problem.

The above described method is called the Big-M Method. There is a reason why the
Big-M Method is not always considered practical. The value of M must be significantly
larger than that of any other coefficient. However, this may lead to large arithmetic errors
during operation of the Simplex Method. So in the end, the solution could be different
from the optimal one.

4.2 Two-Phase Method

This method of solving an (initial) LP problem (with artificial variables) consists of two
phases:

First phase: Solve a minimization LP problem, whose objective function is a sum of arti-
ficial variables, and whose constraints are the constraints of the initial LP problem.
If the optimal solution contains a positive artificial variable, then the initial problem
is infeasible. Otherwise, we proceed to the next phase.

Second phase: Solve the initial problem using the optimal solution from the first phase
as a starting solution.

Consider the following LP problem from M.W. Carter and C.C. Price:
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max z = x1 + 3x2

s.t. 2x1 − x2 ≤ −1

x1 + x2 = 3

x1, x2 ≥ 0.

In the first phase we solve

max za = −a1 − a2

s.t. −2x1 + x2 − s1 + a1 = 1

x1 + x2 + a2 = 3

x1, x2, s1, a1, a2 ≥ 0,

The initial tableau for this phase is

Basis za x1 x2 s1 a1 a2 Solution

za 1 0 0 0 1 1 0

a1 0 -2 1 -1 1 0 1
a2 0 1 1 0 0 1 3

We perform row operations to change the coefficients of a1 and a2 in the z row to 0 (a
necessary condition to start the Simplex Method with basis a1, a2). To do that, we add
the a1, a2 rows each multiplied by −1 to the z row. We get:

Basis za x1 x2 s1 a1 a2 Solution

za 1 1 -2 1 0 0 -4

a1 0 -2 1 -1 1 0 1
a2 0 1 1 0 0 1 3

After two iterations of the Simplex Method we get the following final tableau (perform
the iterations yourself):

Basis za x1 x2 s1 a1 a2 Solution

za 1 0 0 0 1 1 0

x2 0 0 1 -1/3 1/3 2/3 7/3
x1 0 1 0 1/3 -1/3 1/3 2/3

This indicates that the initial LP problem has a feasible solution (the ai are not basic).
This allows us to proceed to the second phase in which we replace the tableau with a new
one in which the columns of ai are deleted and the objective function row is replaced by
that of the initial problem. We get
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Basis z x1 x2 s1 Solution

z 1 -1 -3 0 0

x2 0 0 1 -1/3 7/3
x1 0 1 0 1/3 2/3

Now we need to create zeroes in the objective function row in place of −1 and −3 since
x1 and x2 are basic. To do this, we add the x1 row to the z row and the x2 row multiplied
by 3 to the z row. We get

Basis z x1 x2 s1 Solution

z 1 0 0 -2/3 23/3

x2 0 0 1 -1/3 7/3
x1 0 1 0 1/3 2/3

Applying one more iteration of the Simplex Method we get

Basis z x1 x2 s1 Solution

z 1 2 0 0 9

x2 0 1 1 0 3
s1 0 3 0 1 2

The optimal solution is x1 = 0, x2 = 3, z∗ = 9.

If one of the artificial variables remains positive in the optimal solution of the trans-
formed problem (containing ais), then the original problem is infeasible. It may require
some amount of computational time to discover this. Still it can be quite useful to make
a note of the artificial variables that remain positive. Should infeasibility occur in any
real world problem, then it usually indicates an error in the formulation of the particular
constraint associated with such an artificial variable. Knowing where the error is likely
to be found, it may more easily be corrected. This remark applies equally to the Big-M
Method.

4.3 Shadow prices

Consider the following tableau:

Basis z x1 x2 x3 s1 s2 s3 s4 Solution Ratio

z 1 0 5 0 30 10 10 0 280

s1 0 0 -2 0 -4 2 -8 0 24
x3 0 0 -2 1 -2 2 -4 0 8
x1 0 1 1.25 0 0.5 -0.5 1.5 0 2
s4 0 0 1 0 0 0 0 1 5

The coefficients of the z row are called shadow prices as they allow us to see whether
extra resources could give us higher profit (we consider the objective function here as
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a profit function). For example, the number 30 below s1 shows that if we increase the
right hand side of the first constraint by one, then we will be able to increase z by 30.
Decision-makers and analysts can use shadow prices to alter economic policy (to increase
or decrease certain resources).

4.4 Dual problem

We say that an LP problem is in normal form if it is a maximization problem and all
constraints are ≤ inequalities, i.e.

max z = c1x1 + c2x2 + . . . + cnxn

s.t. a11x1 + a12x2 + . . . + a1nxn ≤ b1

a21x1 + a22x2 + . . . + a2nxn ≤ b2

. . . . . . . . .

. . . . . . . . .

am1x1 + am2x2 + . . . + amnxn ≤ bm

x1, x2, . . . , xn ≥ 0,

Observe that we do not require that bi ≥ 0.

The following LP problem is called dual :

minw = b1y1 + b2y2 + . . . + bmym

s.t. a11y1 + a21y2 + . . . + am1ym ≥ c1

a12y1 + a22y2 + . . . + am2ym ≥ c2

. . . . . . . . .

. . . . . . . . .

a1ny1 + a2ny2 + . . . + amnym ≥ cn

y1, y2, . . . , ym ≥ 0.

Example 4.4.1. Find the dual of the following LP problem.

min z = −50x1 + 100x2 − x3

s.t. 7x1 + 2x2 + 2x3 ≥ 28

2x1 + 12x2 ≤ 24

x1, x2, x3 ≥ 0.

Solution: We first transform the original LP problem into normal form:
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max z′ = 50x1 − 100x2 + x3

s.t. −7x1 − 2x2 − 2x3 ≤ −28

2x1 + 12x2 ≤ 24

x1, x2, x3 ≥ 0.

Now we can find the dual:

min w = −28y1 + 24y2

s.t. −7y1 + 2y2 ≥ 50

−2y1 + 12y2 ≥ −100

−2y1 ≥ 1

y1, y2 ≥ 0.

Example 4.4.2. Find the dual of the following LP problem.

min z = −50x1 + 100x2 − x3

s.t. 7x1 + 2x2 + 2x3 = 28

x1, x2, x3 ≥ 0.

Solution: We get

max z′ = 50x1 − 100x2 + x3

s.t. 7x1 + 2x2 + 2x3 ≤ 28

7x1 + 2x2 + 2x3 ≥ 28

x1, x2, x3 ≥ 0.

Normal form:

max z′ = 50x1 − 100x2 + x3

s.t. 7x1 + 2x2 + 2x3 ≤ 28

−7x1 − 2x2 − 2x3 ≤ −28

x1, x2, x3 ≥ 0.

Dual:
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minw = 28y1 − 28y2

s.t. 7y1 − 7y2 ≥ 50

2y1 − 2y2 ≥ −100

2y1 − 2y2 ≥ 1

y1, y2 ≥ 0.

There is a very apparent structural similarity between the primal and the dual in a
dual pair of problems, but how are their solutions related? In the course of solving a (pri-
mal) maximization problem, the Simplex Method generates a series of feasible solutions
with successively larger objective function values (cx). Solving the corresponding (dual)
minimization problem may be thought of as a process of generating a series of feasible
solutions with successively smaller objective function values (yb). Assuming that an op-
timal solution does exist, the current objective function value for the primal problem will
converge to its maximum value from below. The primal objective function evaluated at
x never exceeds the dual objective function evaluated at y; and at optimality, the two
problems actually have the same objective function value. This can be summarized in the
following duality property :

Duality Property : If x and y are feasible solutions to the primal and dual problems,
respectively, then cx ≤ yb throughout the optimization process; and finally at optimality
cx∗ = y∗b.

If follows from this property that, if feasible objective function values are found for a
primal and dual pair of problems, and if these values are equal to each other, then both
of the solutions are optimal solutions.

Not only do primal and dual problems share the same objective function values at their
optima. In order to find the complete solutions to both problems, it is actually sufficient to
solve just one of them by the Simplex Method. In fact, the shadow prices, which appear
in the top row of the optimal tableau of the primal problem, are precisely the optimal
values of the dual variables. Similarly, if the dual problem were solved using the Simplex
Method, the shadow prices in the optimal tableau would be the optimal values of the
primal variables.

In the illustrative problem (considered in Section ”Simplex Method”)

max z = 8x1 + 5x2

s.t. x1 ≤ 150

x2 ≤ 250

2x1 + x2 ≤ 500
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x1, x2 ≥ 0

the dual objective of minimizing w = 150y1 +250y2 +500y3 is met when the dual variables
(shadow prices) have the values y1 = 0, y2 = 1, y3 = 4. Thus, from the dual point of view,

w∗ = 150 × 0 + 250 × 1 + 500 × 4 = 2250,

which is equal to the primal objective value

z∗ = 8x1 + 5x2 = 8 × 125 + 5 × 250 = 2250

for optimal x values of x1 = 125, x2 = 250.

Because the pertinent parameters and goals of any LP problem can be expressed in
either a primal or dual form, and because solving either problem yields enough information
to easily construct a solution to the other, we might reasonably wonder which problem,
primal or dual, should we solve when using the Simplex Method. From the standpoint of
computational complexity, we might wish to choose to solve the problem with the fewest
constraints. This choice becomes more compelling when the LP problem has thousands
of constraints, and of much less importance for more moderate-sized problems of a few
hundred or less constraints.

4.5 Decomposition of LP problems

Even though the Simplex Method is relatively fast, it is too slow when the numbers n and
m are very large. Practical problems sometimes require solution of LP problems with n
and m being several tens of thousands. At the same time practical problems have sparse
matrices A in which at least 95% of the entries equal 0. For this reason, several methods
have been derived to deal with large sparse LP problems. Here we present one of them.
We start with a few notions in graph theory.

A graph G = (V,E) is connected if there is a path between every pair of vertices in
G. (G is ”in one piece”.) If G is not connected, then it consists of several connectivity
components that are largest connected subgraphs of G (i.e., ”pieces” of G). See Figure 4.1
for a graph with 3 connectivity components.

Let Ax = b, x ≥ 0 be the constraints of an LP problem in standard form. We construct
a graph G corresponding to A as follows. The variables xi of A correspond to vertices
vi of G. Two variables xi and xj are linked by an edge in G if and only if they are in
the same constraint (row of A). If G is not connected, then an LP problem with the
constraints Ax = b, x ≥ 0 can be decomposed into several LP problems of smaller sizes.
Let us consider the following simple example.
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Figure 4.1: Disconnected graph with three components

v2

v1

v3

Figure 4.2: Two components

An objective function is max z = 2x1 + 6x2 + 3x3. The constraints are x1 + 5x3 ≤ 7,
x2 ≤ 5, x1, x2, x3 ≥ 0.

The graph G has vertices v1, v2, v3 and edge v1v3. So, it has two components with
vertex sets {v1, v3} and {v2}. See Figure 4.2. This shows that the initial LP problem can
be decomposed into two problems, one with variables x1 and x3, and the other with just
one variable x2, as follows.

1. The problem with objective function max z′ = 2x1+3x3 and constraints x1+5x3 ≤ 7,
x1, x3 ≥ 0;

2. The problem with objective function max z′′ = 6x2 and constraints x2 ≤ 5, x2 ≥ 0.

Problem 1 has optimal solution x1 = 7, x3 = 0, z′ = 14. Problem 2 has optimal solution
x2 = 5, z′′ = 30. Thus, the optimal solution of the initial problem is x1 = 7, x2 = 5, x3 =
0, z = 44.
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4.6 LP software

LP problems are normally solved on computers due to a significant amount of calculation
needed. One of the methods normally implemented in commercial and free LP software
is Revised Simplex Algorithm, a variation of the Simplex Method implemented in matrix
form and avoiding unnecessary computations. Another algorithm often implemented in
commercial software is the Interior Point Method (IPM) . Unlike the Simplex Method,
which is not of polynomial time complexity in the worst case, IPM is of polynomial com-
plexity. In practice, IPM is normally slower than Simplex for n + m ≤ 2000 and both
methods compete evenly for 2000 ≤ n + m ≤ 10000. Many software packages allow to
combine Simplex with IPM when solving very large LP problems.

There is a number of commercial LP solvers (package for LP problems). A short list
includes CPLEX Linear Optimizer, LINDO, IBM OSL, FortLP and MINOS.

4.7 Questions

Question 4.7.1. Why do we need the Two-Phase Method? Provide an example of an LP
problem, where the Two-Phase Method is needed.

Question 4.7.2. (W.L. Winston) Using the Two-Phase Method solve the following:

max z = −2x1 − 3x2

s.t. 1
2x1 + 1

4x2 ≤ 4

x1 + 3x2 ≥ 20

x1 + x2 = 10

x1, x2 ≥ 0.

Hint: Use s1 in the first constraint as a basic variable.

Question 4.7.3. Find the dual of the following LP problem.

min z = 7x1 − 100x2 − x3

s.t. 9x1 + 12x2 − 2x3 ≤ 18

−2x1 + 22x2 − x3 ≥ 14

x1, x2, x3 ≥ 0.

Question 4.7.4. Find the dual of the following LP problem.

max z = 8x1 + 100x2 − 5x3

s.t. 9x1 − 12x2 − 9x3 = 8

2x1 − 22x2 + x3 ≥ 4

x1, x2, x3 ≥ 0.
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Question 4.7.5. Formulate the Duality Property in Linear Programming.

Question 4.7.6. Let x′ and y′ be feasible solutions to the primal and dual LP problems,
respectively. Suppose that cx′ = y′b, i.e., the objective functions of both problems coincide
for x′ and y′, respectively. Why are both x′ and y′ optimal?

Question 4.7.7. Explain the main ideas of the Decomposition Method in Linear Program-
ming (an application of graphs) using your own example.

Question 4.7.8. Transform the LP problem

max z = 4x1 − 5x2 − 3x3

s.t. x1 − x2 + x3 ≥ −2

x1 + x2 + 2x3 ≤ 3

x1, x2, x3 ≥ 0.

into normal form and find the dual. The value of the optimal solution of the dual is
wopt = 12. Why for x1 = 4, x2 = x3 = 0 do we have z = 16 > wopt?

Question 4.7.9. Find the optimal value of the objective function of the following LP
problem by directly solving the dual.

max z = 6x1 − 15x2 − 4x3

s.t. −3x1 + 2x2 − 2x3 ≥ −20

x1, x2, x3 ≥ 0.



Chapter 5

Integer Programming Modeling

5.1 Integer Programming vs. Linear Programming

For many LP problems, we cannot be satisfied by non-integer values of decision variables
xi. Indeed, we cannot be satisfied if x3 = 12.3, where x3 is the number of lorries required
to transport a certain product from place to place. LP problems with the additional
requirement that all decision variables are integers are called Integer Programming (IP)
problems.

An obvious approach to solving IP problems is to ”forget” the integrality requirement
(i.e., that the decision variables are integer) and solve the corresponding LP problem
(called the LP relaxation of the IP problem). In general, the relaxation will give us
fractional values of decision variables. In certain cases, rounding up or down the decision
variables will give if not optimal then near-optimal solutions of the IP problem, but there
are many IP problems for which the rounding up or down procedure will often bring ”bad”
solutions.

One such family of IP problems are so-called 0,1-problems, in which all decision vari-
ables are required to be 0 or 1 (they are IP problems as we can require 0 ≤ xi ≤ 1 and xi

is integer for every xi). Indeed, our choice, for each xi is 0 or 1 and we often do not have
enough information to decide whether to choose 0 or 1.

Observe that, unlike LP problems, IP problems do not have continuous feasible region.
For example, see a graph of a simple two-dimensional IP problem in Figure 5.1.

We will start our Integer Programming part of the course by considering some very
important IP problems.

36
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150x1 + 10x2 ≤ 30
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z∗ = 1390

Figure 5.1: Graphical representation of an IP problem

5.2 IP problems

We will provide IP formulations of a few important optimisation problems.

5.2.1 Travelling salesman problem

We have already considered the travelling salesman problem (TSP). In short, the TSP is
the problem of visiting a number of cities and come back to the point of origin, all in the
cheapest possible way. This is one of the most challenging and most extensively studied
problems in the field of combinatorics. The formulation is deceptively simple, and yet it
has proven to be notoriously difficult to solve. Define zero-one variables xij = 1 if city i is
visited immediately prior to city j. Let cij represent the distance between cities i and j.
Suppose that there are n cities that must be visited. Then the TSP can be expressed as:

min z =
∑n

i=1

∑n
j=1 cijxij

s.t.
∑n

i=1 xij = 1, j = 1, 2, . . . , n
∑n

j=1 xij = 1, i = 1, 2, . . . , n
∑

i∈S

∑

j∈S xij ≤ |S| − 1 for all |S| < n

xij = 0 or 1, i, j = 1, . . . , n.

The first constraint says that you must go into every city j exactly once, and the
second constraint says that you must leave every city i exactly once. These constraints
ensure that there are two edges adjacent to each city, one in and one out, as we would
expect. However, this does not prevent so-called sub-tours. A sub-tour occurs when there
is a cycle containing a subset of the cities. Instead of having one tour of all of the cities,
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the solution can be composed of two or more sub-tours. The third constraint eliminates
sub-tours; it states that no proper subset of cities, S, can have a total of |S| edges.

The TSP has a number of practical industrial applications. Consider the problem
of placing components on a circuit board. To minimize the time required to produce
a board, one of the primary considerations is often the distance that a placement head
has to travel between components. Another example occurs in routing trucks or ships
delivering products to customers. (When we allow multiple trucks, this problem becomes
the vehicle routing problem.) Another application occurs in a production environment
when it is desired to minimize sequence-dependent setup times. When multiple jobs are
to be processed on a machine, the total setup time for each job frequently depends on
which job preceded it. This situation can be modeled as a TSP, where we sequence jobs
rather than sequencing the order in which cities are visited.

5.2.2 Knapsack Problem

Assume that we have a number of items, and we must choose some subset of the items to
fill our ”knapsack”, which has limited space b. Each item, i, has a value vi and takes up
wi units of space in the knapsack. We wish to choose a collection of the items with total
space less than b and with maximum total value. Let the zero-one variables xi = 1 if item
i is selected, and let b represent the total space in the knapsack. Then we can formulate
the knapsack problem as follows:

max z =
∑n

i=1 vixi

s.t.
∑n

i=1 wixi ≤ b

xi = 0 or 1 for all i.

The zero-one version of the knapsack problem states that every item is unique, and
each can either be selected or not. A slight generalization of the knapsack problem states
that you can choose more than one copy of each item, so that the variables can take on
general integer values (probably with upper bounds on each variable).

5.2.3 Bin packing problem

Bin packing is somewhat similar to the knapsack problem. Suppose that we are given a
set of m bins of equal size, b; and a set of n items that must be placed in the bins. Let
wi be the size of item i. We define the zero-one variable xij = 1 if item i is placed in
bin j. Bin packing is usually expressed as a problem of minimizing the number of bins
required to pack all of the items. We can let yj = 1 if we need to use bin j. (Note that
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if yj = 0, then the corresponding bin has no capacity.) The objective function minimizes
the number of bins required

min z =
∑m

j=1 yj

s.t.
∑n

i=1 wixij ≤ byj for all j
∑m

j=1 xij = 1 for all i

xij = 0 or 1 for all i, j

yj = 0 or 1 for all j

Bin packing has applications in industry where, for example, there is a limited amount
of work that can be assigned to each person working at stations on an assembly line.
This model may also be applicable when deciding which products should be produced at
each of several possible manufacturing plants, or which customer should be assigned to
each delivery truck. Of course, each of these problems involves additional criteria and
constraints.

5.2.4 Set partitioning/covering/packing problems

Many problems in combinatorial optimization include (as subproblems) partitioning a
group of items into ”optimal” subsets. For example, vehicle routing requires that we
allocate customers to vehicles. Airline crew scheduling requires that we allocate flight
legs to a crew. Municipal garbage pickup requires that we allocate specific street blocks
to trucks. Each of these subproblems can be modeled in the following form as a set
partitioning problem:

min z =
∑m

j=1 cjyj

s.t.
∑m

j=1 aijyj = 1 for all i = 1, . . . , n

yj = 0 or 1 for all j = 1, . . . ,m,

where aij = 1 if item i belongs to (potential) subset j and aij = 0, otherwise. Each
column of the n × m constraint matrix A represents a feasible combination of items. For
example, each column might represent the items that could feasibly be loaded into a
truck for delivery to customers; or the items could be road segments that require garbage
collection, and a column would represent a feasible route for a truck to pick up garbage.
The cost cj represents the cost of delivering (or travelling, or producing) that subset of
items. A variable yj = 1 if we decide to include that particular subset in our solution.

In the set partitioning problem, all of the items must be included exactly once. In
vehicle routing, for example, we might typically require that exactly one truck travel to
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each customer. In a slightly different problem the set covering problem, we require that
each item be selected at least once. For example, in the garbage collection problem, and
in the crew scheduling problem, every street (every flight leg) must be covered at least
once; but it is also feasible to cover the same street (flight leg) twice, if this turns out to
be the most efficient solution. (The second truck would not pick up any garbage, and the
second flight crew would ride as passengers.) Set covering differs from set partitioning by
having ≥ inequality constraints instead of equalities.

The set packing problem describes another similar situation. In some production
scheduling problems, we are given a list of orders, and we have possible subsets of orders
that can be combined on different machines. In some cases, there may not be sufficient
resources to satisfy all of the demands. The problem is to select the optimal subset of
orders to maximize the combined profit of those orders that are processed. This problem
can be formulated as:

max z =
∑n

j=1 pjxj

s.t.
∑n

j=1 aijxj ≤ 1 for all i = 1, . . . ,m

xj = 0 or 1 for all j = 1, . . . , n,

We select as many items as possible, but we are not allowed to process any items more
than once.

5.2.5 Assignment problem and generalized assignment problem

We have already stated the assignment problem in Chapter 1. We have n persons p1, . . . , pn

and n jobs j1, . . . , jn, and the cost cij of having person i perform job j. We wish to find
an assignment of the persons to the jobs (one person per job) such that the total cost of
performing the jobs is minimum. The costs are normally given by matrix c = [cij ].

The assignment problem (AP) can be formulated as follows.

min z =
∑n

i=1

∑n
j=1 cijxij

s.t.
∑n

i=1 xij = 1, j = 1, 2, . . . , n
∑n

j=1 xij = 1, i = 1, 2, . . . , n

xij = 0 or 1, i, j = 1, . . . , n.

Thus, xij = 1 if employee i has been assigned to job j and xij = 0, otherwise. The
first constraint requires every job to be assigned to exactly one employee; and the second
constraint states that every employee must do exactly one job.
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The generalized assignment problem is a fairly simple extension in which every job
must be assigned to one employee, but each employee has the capacity to perform more
that one job. In particular, suppose that each employee, i, has a limited amount of time,
bi hours available, and that job j will occupy employee i for a total of aij hours. Then,
the generalized assignment problem can be formulated as:

min z =
∑n

i=1

∑n
j=1 cijxij

s.t.
∑n

j=1 xij = 1, j = 1, 2, . . . , n
∑n

i=1 aijxij ≤ bi, i = 1, 2, . . . , n

xij = 0 or 1, for all i, j.

5.3 Questions

Question 5.3.1. What is the difference between Linear Programming and Integer Pro-
gramming problems? Why can one not in general use the Simplex algorithm to solve
Integer Programming problems?

Question 5.3.2. Provide an Integer Programming formulation of the travelling salesman
problem. Explain the meaning of all parameters and variables.

Question 5.3.3. Provide an Integer Programming formulation of the knapsack problem.
Explain the meaning of all parameters and variables.

Question 5.3.4. Provide an Integer Programming formulation of the bin packing problem.
Explain the meaning of all parameters and variables.

Question 5.3.5. Provide an Integer Programming formulation of the generalized assign-
ment problem. Explain the meaning of all parameters and variables.

Question 5.3.6. (a) Of which problem is the following an instance:

max z = 2x1 + 3x2 + 5x3 − 4x4

s.t. x1 + x2 + 2x3 + 7x4 ≤ 12

xi = 0 or 1 for all i?

(b) Formulate the problem whose instance is given in (a).

Question 5.3.7. (a) Of which problem is the following an instance:

max z = 2x1,1 + x1,2 + 5x2,1 − 5x2,2

s.t. x1,1 + x2,1 = 1
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x1,2 + x2,2 = 1

x1,1 + x1,2 = 1

x2,1 + x2,2 = 1

xi,j = 0 or 1 for 1 ≤ i, j ≤ 2?

(b) Formulate the problem whose instance is given in (a).



Chapter 6

Branch-and-Bound Algorithm

6.1 A Simple Example for Integer and Mixed Programming

Branch-and-Bound algorithms are widely considered to be the most effective methods for
solving medium-sized general integer programming problems. These algorithms make no
assumptions about the structure of a problem except that the objective function and the
constraints are linear. Even these restrictions can be relaxed without changing the basic
framework of the technique.

In its simplest form, Branch-and-Bound is just an organized way of taking a hard
problem and splitting it into two or more smaller (and hence easier) subproblems. If these
subproblems are still too hard, we ”branch” again and further subdivide the problems.
The process is repeated until each of the subproblems can be easily solved. Branching is
done in such a way that solving each of the subproblems (and selecting the best answer
found) is equivalent to solving the original problem.

Consider the following simple example (from M.W. Carter and C.C. Price) in two
variables. A manufacturer has 300 person-hours available this week and 1800 units of raw
material. These resources can be used to build two products A and B. The requirements
and the profit for each item are given as follows:

Product Person-hours Raw Material Profit ($)
A 150 300 $600
B 10 400 $100

Let x1 and x2 represent the integer number of units of products A and B, respectively.
We can formulate this problem as an integer programming (IP) problem:

maximize z = 600x1 + 100x2

43
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Figure 6.1: An IP problem.

subject to 150x1 + 10x2 ≤ 300

300x1 + 400x2 ≤ 1800

x1, x2 ≥ 0 and integer

This problem is illustrated in Figure 6.1. The feasible region is given by the discrete
set of integer points within the constraint region. The optimal LP solution occurs at
x1=1.789 and x2=3.158 with a profit of z=1,389.47. Unfortunately, we cannot sell a
fractional number of items. One obvious alternative is to round down both values to x1=1
and x2=3, for a profit of $900. We will call the feasible integer solution xI = (1, 3) the
current incumbent solution, and we will update the current incumbent. Before reading
any further, try to locate the optimal integer solution to the problem in Figure 6.1, and
consider how integer solutions might be found in general.

The basic branch-and-bound algorithm stems from the following observations: The
feasible integer solution x=(1,3) with z=900 was fairly easy to find. The optimal integer
solution cannot have a lower value of z than $900 and we call this a lower bound on the
optimal solution. Each time we find a higher valued integer solution, we replace the lower
bound zI . This is the ”bound” part of branch-and-bound methods.

Over the whole feasible region, the largest possible value of z=1389.47, which is the
real valued solution obtained from the LP. We call this an upper bound on the optimal
integer function value.

The graphical solution shows that x2 = 3.158. This is infeasible because it is a fractional
solution. Since x2 must be an integer, apparently either x2 ≤ 3 or x2 ≥ 4. This is equivalent
to saying that x2 cannot lie part way between 3 and 4.

Consider the following two subproblems:
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150x1 + 10x2 ≤ 300

Figure 6.2: Problems (1) and (2).

(1) maximize z = 600x1 + 100x2

subject to 150x1 + 10x2 ≤ 300

300x1 + 400x2 ≤ 1800

x1 ≥ 0 and integer

x2 ≥ 4 and integer

(2) maximize z = 600x1 + 100x2

subject to 150x1 + 10x2 ≤ 300

300x1 + 400x2 ≤ 1800

x1, x2 ≥ 0 and integer

x2 ≤ 3

Observe that if we find the best integer solutions of these subproblems, then one of them
must be the optimal solution to the original problem. These subproblems are represented
graphically in Figure 6.2. We say that we have separated on variable x2.

Consider problem (1) first. The LP solutions occurs at x = (2/3, 4) with an objective
function value of z = 800. Notice that x2 is now integer valued. We will see that each time
we separate, the chosen variable will always be integer, although it does not necessarily
stay integer on subsequent iterations.
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By definition, the linear programming solution is the largest value possible for the
problem. Therefore, the value z=800 is an upper bound on all possible solutions in the
feasible region for problem (1). Any integer solution to (1) must be ≤ 800. However,
we already have a feasible integer solution with zI = 900. Therefore problem (1) can be
ignored. It cannot contain any answer better than 900. In branch-and-bound terminology,
we say that problem (1) can be ”fathomed”.

In general, a subproblem is called fathomed whenever it is no longer necessary to branch
any maximization problem, when the LP solution is infeasible, or when the LP relaxation
produces an integer solution.

Problem (2) has its optimal LP solution at x = (1.8, 3) with a function value of
z = 1380. This value gives us a new upper bound on the optimal integer solution. At each
iteration of the branch-and-bound process, the upper and lower bounds can be revised
until they eventually converge to the optimal solution. We now know that the optimal
value lies between 900 and 1380. Variable x2 is integer valued, but x1 is still fractional.
We can now further divide problem (2) into two subproblems based on the fact that x1 ≤ 1
or x1 ≥ 2 as follows:

(3) maximize z = 600x1 + 100x2

subject to 150x1 + 10x2 ≤ 300

300x1 + 400x2 ≤ 1800

x1, x2 ≥ 0 and integer

x1 ≤ 1

x2 ≤ 3

(4) maximize z = 600x1 + 100x2

subject to 150x1 + 10x2 ≤ 300

300x1 + 400x2 ≤ 1800

x2 ≥ 0 and integer

x1 ≥ 2 and integer

x2 ≤ 3

For problem (3), it is easy to see that the optimal LP solution occurs at point x = (1, 3)
with a function value z = 900. Since x is now integer valued, it must be optimal for this
subproblem. This subproblem is considered to be fathomed because it gives us an integer
solution; there is no need for further branching. It is also considered fathomed because
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Figure 6.3: Branch-and-Bound tree

the solution of 900 is no better than the one we already obtained earlier. In either case,
problem (3) is finished.

Problem (4) consists of the single point x = (2, 0) with a function value of z = 1200.
This solution is both integer, and better than the previous lower bound. Since x is integer,
subproblem (4) is fathomed and no further branching is required. Our new lower bound
increases to zI = 1200 and xI = (2, 0) becomes the new current incumbent.

At this point, we observe that all of our subproblems have been fathomed. Therefore,
xI = (2, 0) is the optimal integer solution and zI = 1200 is the optimal function value.

This example illustrates, in particular, the fact that the rounding up/down approach
does not work in general.

It is often convenient to display this procedure in the form of a branch-and-bound
tree. The tree corresponding to the previous example is illustrated in Figure 6.3. Each
subproblem is represented by a node in the tree. Each node must either be fathomed or
split into subproblems, which are shown by lower level nodes.

Now consider a mixed programming (MP) problem

maximize z = 600x1 + 100x2

subject to 150x1 + 10x2 ≤ 300
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300x1 + 400x2 ≤ 1800

x1, x2 ≥ 0 and x2 integer,

which is a modification of the IP problem above. To solve this problem by the branch-
and-bound algorithm, it suffices to consider only Problems (1) and (2). Problem (2) gives
the optimal solution to the MP problem: x1 = 1.8, x2 = 3, z∗ = 1380.

6.2 Knapsack example

Solve the following instance of the knapsack problem:

max z = 10x1 + 8x2 + 4x3 + 7x4

s.t. 2x1 + 2x2 + 4x3 + 5x4 ≤ 8

x1, x2, x3, x4 = 0 or 1.

Recall: When the 0-1 constraints are relaxed to solve the LP, we replace them with
the linear constraints:

0 ≤ xi ≤ 1.

To solve the LP relaxation of the knapsack problem the ratio choice rule defined below
is used. Recall the general knapsack formulation:

max z =
∑n

j=1 vjxj

s.t.
∑n

j=1 wjxj ≤ b

xi = 0 or 1 for all i,

where vi denotes the value of item i and wi denotes the unit of space of item i.

The LP relaxation of the knapsack problem is:

max z =
∑n

j=1 vjxj

s.t.
∑n

j=1 wjxj ≤ b

0 ≤ xi ≤ 1 for all i.
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For each i we compute the ratio vj/wj , which indicates the relative value of item i. It
is intuitively clear that we should assign xi = 1 first to the item i of highest ratio vi/wi,
than xi = 1 to the one with next highest ratio, etc. When we cannot assign xi = 1 to the
item i of the highest remaining ratio, we assign the corresponding fraction to xi and 0 to
all xi of smaller ratio. (Ties are broken in an arbitrary manner.) We call this rule the
ratio choice. The ratio choice gives an optimal solution to the LP relaxation, i.e., we do
not need use Simplex algorithm for the LP relaxation of the knapsack problem.

Let us return to our example and call (P0) the linear relaxation of

max z = 10x1 + 8x2 + 4x3 + 7x4

s.t. 2x1 + 2x2 + 4x3 + 5x4 ≤ 8

x1, x2, x3, x4 = 0 or 1.

To solve (P0), find the ratios

r1 = 10/2 = 5, r2 = 8/2 = 4, r3 = 4/4 = 1, r4 = 7/5.

Ordering the ratios gives, r1 > r2 > r4 > r3.

To obtain a solution for (P0), we will now start to fill up the knapsack in the order
the ratios give us. Therefore, we assign x1 = 1 ((2 × 1) ≤ 8, true). Next assign x2 = 1
((2× 1)+ (2× 1) = 4 ≤ 8, true). We now have to look at x4 and we can see that it is only
possible to assign a fraction of x4 to the knapsack, i.e. x4 = 4/5. Therefore, the solution
of (P0) is x1 = x2 = 1, x4 = 4/5, x3 = 0, which is an infeasible solution of the original IP
problem.

Let us now consider the subproblems (P1)=(P0) plus the extra constraint (x4 = 1),
and (P2)=(P0) with the extra constraint(x4 = 0).

To work out a solution of (P1), we assign x4 = x1 = 1 ((5× 1)+ (2× 1) ≤ 8, true) and
x2 has to be a fraction again to satisfy the constraint (8−7

2 = 1/2). The solution of (P1)
is x4 = x1 = 1, x2 = 1/2, x3 = 0, z = 21.

Finding the solution of (P2) we assign x4 = 0, x1 = x2 = 1, as required ((5× 0) + (2×
1)+(2×1) = 4 ≤ 8, true). We can now see that by assigning x3 = 1 we are still satisfying
the constraints and the solution is z = 22.

The last solution is feasible and is better than that of (P1). Thus, the optimal solution
is x4 = 0, x1 = x2 = x3 = 1, z = 22.
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6.3 Branching strategies

To control the selection of the next node for branching, it is typical to restrict the choice
of nodes from the list of currently active nodes in one of the following ways.

The Backtracking or Depth-First-Search Strategy: Always select a node that was
most recently added to the tree. Evaluate all nodes in one branch of the tree com-
pletely to the bottom, and then work back up to the top following all indicated side
branches. A typical order of evaluating nodes is illustrated in Figure 6.4 (the upper
tree). The number inside each node represents the time at which it is selected.

The Jumptracking (unrestricted) Strategy: As the name implies, each time the al-
gorithm selects a node, it can choose any active node anywhere in the tree. For
example, it might always choose the active node corresponding to the highest LP so-
lution, z∗. A possible order of solving subproblems under Jumptracking is illustrated
in Figure 6.4 (the lower tree).

At first glance, the Backtracking procedure appears to be unnecessarily restrictive.
The major advantages are conservation of storage required and a reduction in the amount
of computation required to solve the corresponding LP at each node. Observe that the
number of active subproblems in the list at any time is equal to the number of levels
in the current branch of the tree. Using Jumptracking, the size of the active list can
grow exponentially. Each node in the active list corresponds to a linear programming
problem with its own set of constraints. Consequently, storage space for subproblems is
an important consideration.

Computation time is an even more serious issue with Jumptracking. Observe that each
time we solve a subproblem, we solve an LP complete with a full Simplex tableau. When
we move down the tree, we add one new constraint to the LP. This can be done relatively
efficiently if the old tableau is still available.

To do this using the Jumptracking strategy, we would have to save the Simplex tableau
for each node (or at least enough information to generate the tableau easily). Hence,
Backtracking can save a large amount of LP computation time at each node. The efficiency
of solving subproblems is crucial to the success of a branch-and-bound method because
practical problems will typically generate trees with literally thousands of nodes.

The major advantage of Jumptracking is that, by judicious selection of the next active
node, we can usually solve the problem by examining far fewer nodes. Observe that when
we find the optimal integer solution, many of the nodes can be eliminated by the bounding
test. With Jumptracking, the integer solution is represented by a node at the bottom of
the branching tree. With Backtracking, each time we choose a branch, one is ”correct”
and the other is ”wrong”. If we choose the wrong branch, we must evaluate all nodes in
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Figure 6.4: Branching strategies: Backtracking (the upper tree) and Jumptracking (the
lower tree).

that branch before we can get back on the correct branch. Using Jumptracking, we can
return to the correct branch as soon as we realize that we may have made a mistake. When
we find the optimal solution, many of the nodes in the ”wrong” branch will be fathomed
at a higher level of the tree by the bounding test.

In short, there is a trade-off between Backtracking and Jumptracking, and many com-
mercial algorithms use a mixed strategy. Backtracking is used until there is a strong
indication of being in the wrong branch; then there is a jump to a more promising node
in the tree and a resumption of a Backtracking strategy from that point. The amount of
Jumptracking is determined by the definition of ”wrong”.

6.4 MAX-SAT Example

Often one is interested in variables and functions that take only two possible values, say
TRUE/FALSE or 1/0. These are called Boolean variables/functions, and are used to
model situations when it is only desirable to know whether something occurs or not, e.g.
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whether a switch is on or off, or whether there is current running through a wire or not
(but we do not care how much current). We will asume that the value of a Boolean variable
or function is always either 0 or 1. We denote negation by ¬, that is, ¬0 = 1 and ¬1 = 0.
If x, y are Boolean variables then the conjunction x∧ y has value 1 precisely when both x
and y have value 1 (logical AND), and the disjunction x∨ y has value 1 precisely when at
least one of x and y has value 1 (logical OR). An example of a Boolean function of three
Boolean variables would be F (x1, x2, x3) = (¬x1∨x2)∧¬x3. A clause is a special Boolean
function consisting only of disjunctions (and no conjunctions) between single variables or
their negations. For example ¬x1 ∨ x2 ∨ ¬x3 is a clause containing three variables. If
values are assigned to the variables of a clause in a way which makes its value equal to 1,
then we say that this assignment satisfies the clause.

An instance of the Maximum Satisfiability Problem (MAX-SAT) is a list of clauses
F1, F2, . . . , Fm containing Boolean variables x1, x2, . . . , xn. The goal is to find an assign-
ment of values to the variables such that the number of satisfied clauses is as large as
possible.

Consider the following example (from J. Hromkovič) with 10 clauses and 4 variables:

F1 = x1 ∨ ¬x2

F2 = x1 ∨ x3 ∨ ¬x4

F3 = ¬x1 ∨ x2

F4 = x1 ∨ ¬x3 ∨ x4

F5 = x2 ∨ x3 ∨ ¬x4

F6 = x1 ∨ ¬x3 ∨ ¬x4

F7 = x3

F8 = x1 ∨ x4

F9 = ¬x1 ∨ ¬x3

F10 = x1.

First we will solve the problem with Backtracking. At each node the following rule is
used: Assign a value to the first variable among x1, x2, x3, x4 which currently has no value
assigned to it, and let this value be 1 the first time when visiting the node, 0 the second
time.

The search tree is shown in Figure 6.5. At each interior node of the tree we note the
clauses which become violated at the moment the node is reached (they can no longer be
satisfied no matter which values are assigned to the variables having no values assigned to
them yet). Below any bottom node in the tree we note the value of the objective function
which follows from the current assignments. Thus at the bottom node corresponding to
the assignments x1 = x2 = x3 = x4 = 1, all clauses except F9 are satisfied, hence the
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Figure 6.5: Backtracking in MAX-SAT to the left.

number of satisfied clauses is 9. With zI now equal to 9, we will never separate on any
node for which some clause gets violated, since the optimal solution at such a node cannot
be better than the current incumbent.

In Figure 6.6 is shown the tree which is searched by Backtracking if, when separating
each node, we first assign the value 0 instead of 1 to the next variable. We observe that
the number of nodes visited by the algorithm, and hence its efficiency, depends very much
on the order in which the nodes are searched.

6.5 Questions

Question 6.5.1. Solve the problem stated in Section 6.1 by first separating on x1 instead
of x2.

Question 6.5.2. Solve the following problem by the Branch-and-Bound method:

maximize z = x1 + 5x2

subject to x1 + 10x2 ≤ 20

x1 ≤ 2

x1, x2 ≥ 0 and integer

Question 6.5.3. Solve the following IP problem by the Branch-and-Bound method:

maximize z = x1 + x2
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Figure 6.6: Backtracking in MAX-SAT to the right.

subject to x1 ≤ 2

x1 + 2x2 ≤ 5

x1, x2 ≥ 0 and integer

Question 6.5.4. Solve the following IP problem by the Branch-and-Bound method:

maximize z = x1 + 2x2

subject to x1 + x2 ≤ 2

x2 ≤ 1.5

x1, x2 ≥ 0 and integer

Question 6.5.5. Solve the following MP problem by the Branch-and-Bound method:

minimize z = x1 + x2

subject to 2x1 + 3x2 ≥ 6

3x1 + x2 ≤ 3

x1, x2 ≥ 0 and x1 integer

Question 6.5.6. Describe the Branch-and-Bound algorithm for IP maximization prob-
lems. What does it mean that a node (i.e., subproblem) is fathomed.

Question 6.5.7. (a) Describe the Backtracking and Jumptracking strategies for branching.

(b) What are he advantages and disadvantages of each of the two strategies?
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Question 6.5.8. Solve the MAX-SAT example of Section 6.5 by Jumptracking, using
the strategy to always separate on an active node with a minimal number of currently
violated clauses. Can you say something about the efficiency of Jumptracking compared to
Backtracking applied to this problem?

Question 6.5.9. Solve the following instance of the knapsack problem:

max z = 10x1 + 8x2 + 4x3 + 7x4

s.t. 2x1 + 2x2 + 4x3 + 5x4 ≤ 8

x1, x2, x3, x4 = 0 or 1.



Chapter 7

Construction Heuristics and Local
Search

Unfortunately, the vast majority of optimisation problems are NP-hard, and Branch-and-
Bound algorithms cannot solve them to optimality even for moderate instances, since
sometimes they need to search every node of the Branch-and-Bound tree. If we have
an IP problem with only n = 20 variables, each taking m = 3 possible values, then the
Branch-and-Bound tree may have as many as mn = 320 nodes at the lowest level of the
tree. However, 320 is already more than 3 billion. Of course, one may stop branching
and accept the current best solution of Branch-and-Bound algorithm (partial Branch-and-
Bound algorithms).

We will consider approaches that produce good solutions (but normally not optimal)
faster than partial Branch-and-Bound algorithms.

7.1 Combinatorial optimisation problems

To illustrate possible approaches, we will consider some selected optimisation problems.
One of them is the asymmetric travelling salesman problem (ATSP). This problem is one
of the most famous and studied optimisation problems. In the ATSP, we are given a
complete digraph D with vertices V = {1, . . . , n} and cost cij of every arc (i, j) and we
wish to find a cheapest tour in D. (A tour starts at a vertex, traverses a sequence of arcs
in their forward direction, thereby visiting every other vertex once, and returns to the
initial vertex.) See Figure 7.1.

The second problem is Max Cut. Here we are given an undirected graph G = (V,E)
with vertices V and edges E. A cost c(e) is assigned to every edge e ∈ E. A cut (X,V −X)
is the set of edges between X and V − X. We are to find a cut of maximum total cost.

56
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Figure 7.1: A complete digraph

Max Cut is of interest in many practical problems when we are to break graphs into
pieces with minimum possible number of edges (and thus maximum possible number of
edges between the pieces).

The two problems are among very many combinatorial optimisation problems. A com-
binatorial optimisation problem is given by a set S = {s1, . . . , sn} of elements, each of
some cost c(si), and a collection F of subsets of S. We wish to find a set F in F such that
the sum of the costs of elements in F is minimum/maximum among all sets in F .

7.2 Greedy-type algorithms

The greedy algorithm for a minimisation combinatorial optimisation problem works as
follows. We choose an element si1 of S that is contained in at least one set of F and
of minimum cost among such elements. Form X = {si1}. At every iteration choose an
element sik ∈ S−X such that X∪{sik} is a subset of some set in F and sik is of minimum
cost among all such elements. Add sik to X and proceed to the next iteration.

For example, let S = {a, b, d, e, f}, c(a) = 0, c(b) = 1, c(d) = 5, c(e) = 0.5, c(f) = 2,
and let F = {Y,Z}, where Y = {b, d, e}, Z = {e, f}. At iteration 0 we choose X = {e}.
At iteration 1, we have X = {e, b}. At iteration 2, we have X = {e, b, d} = Y .

This example shows the the greedy algorithm not always gives an optimal solution:
indeed, c(Y ) = 1 + 5 + 0.5 = 6.5 > c(Z) = 0.5 + 2 = 2.5. In ”Theoretical Analysis of
Heuristics”, we will see that even for the assignment problem the greedy algorithm may
produce the worst solution!

In Figure 7.1 for the ATSP, we see that the greedy algorithm may have a problem to
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start: there are two cheapest arcs (b, a) and (b, c). If the greedy algorithm chooses (b, a),
then it proceeds to choosing (c, b), (d, c) and (a, d). (It does not choose (a, c) rather than
(d, c) because addition of (a, c) would create a cycle shorter than a tour.) The total cost
of this tour T = badcb is 3+4+5+10 = 22. If the greedy algorithm chooses (b, c), then it
proceeds to choosing (a, b). (It cannot choose (b, a), (c, b), (d, c) since if we have added any
of them, we’d not be able to complete a tour: according to the description of the greedy
algorithm at every iteration we can only add arcs such that a subset of some tour(s) is
created.) Then we choose (c, d) and (d, a). The cost of this tour, T ′ = bcdab, is 29. Thus,
the issue of ties for the greedy algorithm might be important.

A natural problem for the instance of the ATSP in Figure 7.1 is to find a cheapest
tour. You can solve this question by examining all six tours of the instance. In general, if
the ATSP has n vertices, then there are (n−1)! = (n−1)×(n−2)×(n−3)×· · · ×3×2×1
tours there. To see that, fix a vertex, say vertex 1. We can move to one of the remaining
vertices 2, 3, . . . , n (n − 1 vertices). After choosing one of them, we can move to one of
n − 2 remaining vertices, etc.

Despite the fact the greedy algorithm does not always produce ”good” solutions, it
is of use since it is a very simple algorithm and it gives relatively good results for some
problems, see ”Computational Analysis of Heuristics”. There are even problems, for which
the greedy algorithm gives always optimal solutions. The most famous such problem is
the minimum spanning tree problem.

Even though the greedy algorithm is easy to describe it is not always easy to implement,
since we need to check which elements can be added to X and which cannot. This also
leads to the fact that the greedy algorithm is not as fast as we would like an algorithm to
be for a given combinatorial optimisation problem.

In such difficult cases, specialized greedy-type algorithms can be useful. For the ATSP,
such an algorithm is the nearest neighbour algorithm (NN). NN proceeds as follows. We
start from some vertex, say 1. We move to the nearest to 1, from there to the nearest to
that one, etc. (we never create a cycle shorter than a tour). For example, in Figure 7.1,
if we start at a, then we move to c, to b, to d, to a, and obtain the tour T ′ = acbda of
cost 30. If we start NN at d, however, we move to c, to b, to a, to d. We have obtained
tour T = dcbad of cost 22. This example suggests that it is a good idea to start from
each vertex in turn. However, this strategy slows down the algorithm. Indeed, NN is of
complexity O(n2) (see below), but if we start from every vertex we get O(n×n2) = O(n3).
Observe that O(n3) is too large for the ATSP as we cannot use NN even for n equal a few
thousands (we’d need several days to get the result). We consider the behavior of NN and
its repetitive modification in ”Computational Analysis of Heuristics” and ”Theoretical
Analysis of Heuristics” and see that NN produces results similar to the greedy algorithm
even though it is computationally more efficient for the ATSP.

In practice, NN is faster than the greedy algorithm. This is easy to predict by calcu-



7.3. SPECIAL ALGORITHMS FOR THE ATSP 59

lating and comparing the time complexities of the two algorithms. The complexity of NN
is O(n2). The greedy algorithm starts from sorting the costs of arcs in increasing order.
Algorithms to sort N numbers are of complexity O(N log N). There are N = n(n − 1)/2
numbers to sort for the greedy algorithm. Hence, we need O(n2 log n) time to sort the
costs. The greedy algorithm can be implemented such that its complexity is O(n2 log n).
Clearly, n2 log n > n2 and thus NN is faster than the greedy algorithm.

7.3 Special algorithms for the ATSP

The random insertion heuristic (RI) chooses randomly two initial vertices i1 and i2 and
forms the cycle i1i2i1. Then, in every iteration, it chooses randomly a vertex ℓ which is
not in the current cycle i1i2 . . . isi1 and inserts ℓ in the cycle (i.e., replaces an arc imim+1

of the cycle with the path imℓim+1) such that the cost of the cycle increases as little as
possible. The heuristic stops when all vertices have been included in the current cycle,
i.e., a tour is formed.

We illustrate RI using Figure 7.1. Let’s start from the cycle aba and insert c in the
optimal manner. We have to choose between the cycles acba and abca. While the first cycle
increases the cost of aba by cost(ac)+cost(cb)−cost(ab) = 3, the second one increases the
cost of aba by cost(bc) + cost(ca) − cost(ba) = 7. Hence we choose acba. Now we have to
choose between the cycles adcba, acdba and acbda. They cause an increase to the cost of
the current cycle of cost(ad)+ cost(dc)− cost(ac) = 10, cost(cd)+ cost(db)− cost(cb) = 11
and cost(bd)+cost(da)−cost(ba) = 18, respectively. Hence, we choose the tour T = adcba
of cost 22.

The complexity of RI is O(n2).

Our next heuristic is based on the operation called patching. Let C = i1i2 . . . iki1 and
Z = j1j2 . . . jℓj1 be a pair of disjoint cycles. For any pair s, t of indices the corresponding
patching is deletion of the arcs (is, is+1) and (jt, jt+1) and addition of arcs (is, jt+1) and
(jt, is+1). As a result, we get one cycle X = isjt+1jt+2 . . . j1j2 . . . jtis+1is+2 . . . i1i2 . . . is.
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There are kℓ choices of pair s, t and thus kℓ different patchings of the pair of cycles
above. The cheapest patching is the one for which the resulting cycle X is cheapest.
We can choose the cheapest by selecting X with minimum cost(isjt+1) + cost(jtis+1) −
cost(isis+1) − cost(jtjt+1). So, to find the cheapest patching we need O(kℓ) time.

The patching algorithm can be outlined as follows:

1. Construct a collection F of disjoint cycles covering all vertices of minimum cost.

2. Choose two longest (not cheapest) cycles C and Z in the current F and replace C
and Z in F by their cheapest patching.

3. Repeat Step 2 until the current F is reduced to a single cycle, i.e., a tour.

To find a collection F of disjoint cycles covering all vertices of minimum cost, it suffices
to solve the Assignment Problem. Indeed, consider a complete digraph D = (V,A) with
cost costD(a) on every arc a. Construct a complete bipartite graph B = (V, V ′;E) in
which V = {v′ : v ∈ V }, i.e., V ′ is a copy of V , and costB(uv′) = costD(uv) if u 6= v and
costB(uv′) = M, where M is a very large constant, otherwise. A minimum cost perfect
matching u1v

′

1, u2v
′

2, ..., unv′n in B corresponds to a minimum cost collection of cycles in
D with arcs u1v1, u2v2, ..., unvn.

Taking into consideration that to find a cheapest patching for a current pair of cycles
we need to consider only arcs not considered before, and that each arc is considered only
once, we conclude that the search for a patching will take O(n2) time. However, to find a
collection of disjoint cycles covering all vertices we need to solve the AP. Algorithms for
the AP take O(n3) time (in practice, they are much faster and close to O(n2)). Thus, the
patching algorithm’s complexity is O(n3). In practice, however, the complexity is lower
and not much larger than O(n2), which makes the patching algorithm fast enough.
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7.4 Improvement local search

The algorithms presented so far are called construction heuristics. They produce a solution
(a tour for the ATSP) and stop. Their advantage is the fact they are fast, but their
disadvantage is that their solution could be of poor quality. To improve a solution produced
by a construction heuristic, several approaches are used. The simplest one is improvement
local search, which we discuss here. However, there are other approaches called meta-
heuristics, which we consider later.

The idea of improvement local search is as follows. We have a solution sol1 produced
by a construction heuristic. We look at a collection of solutions somewhat close to sol1 and
try to find there a better (or best solution) sol2. (We call a collection of solutions somewhat
close to sol1 a neighbourhood of sol1.) At iteration i, we have soli found in iteration i− 1.
We proceed by looking at a neighbourhood of soli and try to find a solution soli+1 better
than soli. If soli+1 is not found (none of the solution in the neighbourhood are better
than soli) we stop.

There are two types of improvement local search: the one where soli+1 is better than
soli and the other one where soli+1 is the best in the neighborhood of soli. In practice
mostly the first type is used, in theoretical investigations the second type is mostly used.

To specify improvement local search, we have to define a neighbourhood for every
solution. So, we proceed by considering neighbourhoods for the ATSP.

One of the easiest and most useful are k-Opt neighbourhoods. Local search that uses
k-Opt neighbourhoods is called k-Opt. The k-Opt neighbourhood of a tour T is obtained
by deleting k arcs from T followed by adding k arcs to form a tour. If we delete three arcs
from a tour, there are only two ways to add three arcs (not necessarily different from the
deleted ones) in order to reconstruct a tour. To see this, contract each of the three paths
obtained after deletion of three arcs to a vertex. As a result, we get a complete digraph
with 3 vertices. This digraph has only two tours.
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We can choose three arcs to delete in n(n−1)(n−2)/6 ways and each such way leads to
2 tours. Thus, a 3-Opt neighbourhood has O(n3) tours. Similarly, one can see that a k-Opt
neighbourhood has O(nk) tours. In order to see whether deletion of three arcs and addition
of three arcs to form a tour leads to improvement it suffices to find the difference in the
cost of deleted and added arcs. If the difference is positive, we have found an improvement.
It is important that to examine any new tour we need only constant time. This means
that O(nk) time is enough to find the best tour in a k-Opt neighbourhood. However, even
for k = 3, the time is too large for even moderate instances of the ATSP. Hence we have
to try to restrict our choice of candidates for improvement to only some tours in a 3-Opt
neighbourhood, and only if this fails, we may look at the entire neighbourhood. Several
possibilities to implement this strategy are considered in the literature on the ATSP, but
we will not look at them here.

Question 7.4.1. Design neighbourhoods for Max Cut and show how we can economically
find a better cut in the neighbourhood of a given cut.

Normally, only 3-Opt neighbourhoods are used in practical implementations since ot-
herwise restrictions on the fraction of tours to consider must be very strong. The reason
is that we spend a constant time on a tour. Can we do better? A positive answer to this
question is provided in the rest of this section.

Let C = x1x2...xkx1 be a cycle. The operation of removal of a vertex xi (1 ≤ i ≤ k)
results in the cycle x1x2...xi−1xi+1 . . . xkx1 (thus, removal of xi is not deletion of xi from C;
deletion of xi gives the path xi+1xi+2 . . . xkx1x2 . . . xi−1). Let y be a vertex not in C. The
operation of insertion of y into an arc (xi, xi+1) results in the cycle x1x2...xiyxi+1 . . . xkx1.
The cost of the insertion is defined as c(xi, y) + c(y, xi+1) − c(xi, xi+1). For a set Z =
{z1, . . . , zs} (s ≤ k) of vertices not in C, an insertion of Z into C results in the tour
obtained by inserting the nodes of Z into different arcs of the cycle. In particular, insertion
of y into C involves insertion of y into one of the arcs of C.

Let T = x1x2...xnx1 be a tour and let Z = {xi1 , xi2 , ..., xis} be a set of non-adjacent
vertices of T , i.e., 2 ≤ |ik − ir| ≤ n − 2 for all 1 ≤ k < r ≤ s. The assign neighbourhood
of T with respect to Z, N(T,Z), consists of the tours that can be obtained from T by
removal of the vertices in Z one by one followed by an insertion of Z into the cycle derived
after the removal. For example,

N(x1x2x3x4x5x1, {x1, x3}) =
{x2xix4xjx5x2, x2xix4x5xjx2, x2x4xix5xjx2 : {i, j} = {1, 3}}.

The neighbourhood N(T,Z) has exactly (n − s)!/(n − 2s)! tours. In particular, if
s = n/2, then N(T,Z) has (n/2)! tours. Thus, N(T,Z) has exponential number of tours.
Interestingly we do not need to spend exponential time to find the best tour in that
neighbourhood.

Theorem 7.4.2. The best tour in the neighbourhood N(T,Z) can be found in time O(n3).
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Proof: Let C = y1y2...yn−sy1 be the cycle obtained from T after removal of Z and let
Z = {z1, z2, ..., zs}. By the definition of insertion, we have n− s ≥ s. Let φ be an injective
mapping from Z to Y = {y1, y2, ..., yn−s}. (The requirement that φ is injective means
that φ(zi) 6= φ(zj) if i 6= j.) If we insert some zi into an arc (yj , yj+1), then the cost of
C will be increased by c(yj , zi) + c(zi, yj+1) − c(yj , yj+1). Therefore, if we insert every zi,
i = 1, 2, ..., s, into yφ(i)yφ(i)+1, the cost of C will be increased by

g(φ) =

s
∑

i=1

c(yφ(i), zi) + c(zi, yφ(i)+1) − c(yφ(i), yφ(i)+1).

Clearly, to find a cheapest tour of N(T,Z), it suffices to minimize g(φ) on the set of
all injections φ from Z to Y. This can be done using the following complete bipartite
graph G. The partite sets of G are Z and Y . The cost of an edge ziyj is set to be
c(yj , zi) + c(zi, yj+1) − c(yj , yj+1).

By the definition of G, every maximum matching M of G corresponds to an injection
φM from Z to Y. Moreover, the costs of M and φM coincide. A cheapest maximum
matching in G can be found by solving the assignment problem. Therefore, in O(n3) time,
we can find the best tour in N(T,Z). QED

7.5 Questions

Question 7.5.1. Give the definition of a combinatorial optimisation (CO) problem. For-
mulate the greedy algorithm for CO. Give examples when the greedy algorithm finds the
worst solution.

Question 7.5.2. Describe the greedy, nearest neighbour and random insertion algorithms
for the asymmetric travelling salesman problem. Illustrate the algorithms on an instance
of the ATSP with 5 vertices.
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Question 7.5.3. Describe the greedy algorithm for Max Cut.

Question 7.5.4. Describe the ideas of local search algorithms for the Symmetric TSP, in
general, and k-Opt, in particular.



Chapter 8

Computational Analysis of
Heuristics

8.1 Experiments with ATSP heuristics

This section is based on a chapter by D.S. Johnson, G. Gutin, L. McGeoch, A. Yeo, W.
Zhang and A. Zverovich in the book ”The Traveling Salesman Problem and its Variations”,
G. Gutin and A. Punnen (eds.), Kluwer, 2002. In this section we consider only part
of heuristics analyzed in the chapter, namely, Patch, COP, 3opt, Greedy and NN. We
described all these heuristics, apart from COP, earlier. COP is an improved version of
Patch, which is not described in these notes.

In many cases it is impossible to find optimal tours for the instances of the ATSP
considered here. To see how far the tour obtained by a heuristic is from optimum, we
use lower bounds. One lower bound is the AP lower bound, i.e., the cost of a cheapest
collection of disjoint cycles. To see that this is indeed a lower bound, it suffices to notice
that a tour is a collection of disjoint cycles (that consists of a unique cycle). Another lower
bound is the so-called Held-Karp lower bound (HK), which is normally better than AP.
To compute HK one needs to solve several LP problems related to the ATSP (some LP
relaxations of the ATSP); we will not provide details on HK.

8.2 Testbeds

There are various families of instances of the ATSP that are of practical and theoretical
interest. Thus, it makes sense to study the behavior of ATSP heuristics not on one family
of instances, but a set of families. We start by giving short description of the families of
instances and analyzing their properties. We first family, rect, has not been used in the
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experiments, but provided a basis for some other families.

Random 2-Dimensional Rectilinear Instances (rect). The cities correspond to
random points uniformly distributed in a 106 by 106 square, and the distance between
points (x1, y1) and (x2, y2) is |x2 − x1| + |y2 − y1|.

Random Asymmetric Matrices (amat). The random asymmetric distance matrix
generator chooses each distance d(ci, cj) as an independent random integer x, 0 ≤ x ≤ 106.
For these instances it is known that both the optimal tour length and the AP bound
approach a constant (the same constant) as N → ∞. The rate of approach appears to
be faster if the upper bound U on the distance range is smaller, or if the upper bound
is set to the number of vertices n, a common assumption in papers about optimization
algorithms for the ATSP.

Shortest-Path Closure of amat (tmat). One of the reasons the previous class is
uninteresting is the total lack of correlation between distances. Note that instances of this
type are unlikely to obey the triangle inequality, i.e., there can be three cities c1, c2, c3

such d(c1, c3) > d(c1, c2) + d(c2, c3). A somewhat more reasonable instance class can be
obtained by taking Random Asymmetric Matrices and closing them under shortest path
computation. That is, if d(ci, cj) > d(ci, ck) + d(ck, cj) then set d(ci, cj) = d(ci, ck) +
d(ck, cj) and repeat until no more changes can be made. This is also a commonly studied
class.

Tilted Drilling Machine Instances, Additive Norm (rtilt). These instances
correspond to the following potential application. One wishes to drill a collection of holes
on a tilted surface, and the drill is moved using two motors. The first moves the drill to
its new x-coordinate, after which the second moves it to its new y-coordinate. Because
the surface is tilted, the second motor can move faster when the y-coordinate is decreasing
than when it is increasing. The generator starts with an instance of rect and modifies it
based on three parameters: ux, the multiplier on |∆x| that tells how much time the first
motor takes, and u+

y and u−

y , the multipliers on |∆y| when the direction is up/down. For
this class, the parameters ux = 1, u+

y = 2, and u−

y = 0 were chosen, which yields the same
optimal tour lengths as the original symmetric rect instances because in a cycle the sum
of the upward movements is precisely balanced by the sum of the downward ones.

Tilted Drilling Machine Instances, Sup Norm (stilt). For many drilling ma-
chines, the motors operate in parallel and so the proper metric is the maximum of the
times to move in the x and y directions rather than the sum. This generator has the same
three parameters as for rtilt, although now the distance is the maximum of ux|∆x| and
u−

y |∆y| (downward motion) or u+
y |∆y| (upward motion). For this class, the parameters

ux = 2, u+
y = 4, and u−

y = 1 were chosen.

Random Euclidean Stacker Crane Instances (crane). In the Stacker Crane
Problem one is given a collection of source-destination pairs si, di in a metric space where
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for each pair the crane must pick up an object at location si and deliver it to location
di. The goal is to order these tasks so as to minimize the time spent by the crane going
between tasks, i.e., moving from the destination of one pair to the source of the next
one. This can be viewed as an ATSP in which city ci corresponds to the pair si, di and
the distance from ci to cj is the metric distance between di and sj. The generator has
a single parameter u ≥ 1, and constructs its source-destination pairs as follows. The
sources are picked as in an instance of rect. Then we pick two integers x and y uniformly
and independently from the interval [−106/u, 106/u]. The destination is the vector sum
s + (x, y). In order to preserve a sense of geometric locality, we let u vary as a function
of N , choosing values so that the expected number of other sources that are closer to a
given source than its destination is roughly a constant, independent of N . These instances
do not necessarily obey the triangle inequality since the time for traveling from source to
destination is not counted.

Disk Drive Instances (disk). These instances attempt to capture some of the
structure of the problem of scheduling the read head on a computer disk. This problem is
similar to the stacker crane problem in that the files to be read have a start position and
an end position in their tracks. Sources are again generated as in rect instances, but now
the destination has the same y-coordinate as the source. To determine the destination’s
x-coordinate, we generate a random integer x ∈ [0, 106/u] and add it to the x-coordinate
of the source modulo 106, thus capturing the fact that tracks can wrap around the disk.
The distance from a destination to the next source is computed based on the assumption
that the disk is spinning in the x-direction at a given rate and that the time for moving in
the y direction is proportional to the distance traveled at a significantly slower rate. To
get to the next source we first move to the required y-coordinate and then wait for the
spinning disk to deliver the x-coordinate to us.

Pay Phone Coin Collection Instances (coin). These instances model the problem
of collecting money from pay phones in a grid-like city. We assume that the city is a k by
k grid of city blocks with 2-way streets running between them and a 1-way street running
around the exterior boundary of the city. The pay phones are uniformly distributed over
the boundaries of the blocks. We can only collect from a pay phone if it is on the same
side of the street as we are currently driving on, and we cannot make “U-turns” either
between or at street corners. Finding the shortest route is trivial if there are so many pay
phones that most blocks have one on all four of their sides. This class is thus generated
by letting k grow with N , in particular as the nearest integer to 10

√
N .

No-Wait Flowshop Instances (shop). In a k-processor no-wait flowshop, a job ū
consists of a sequence of tasks (u1, u2, . . . , uk) that must be performed by a fixed sequence
of machines. The processing of ui+1 must start on machine i + 1 as soon as processing of
ui is complete on machine i. This models the processing of heated materials that must
not be allowed to cool down and situations where there is no storage space to hold waiting
jobs. These instances have k = 50 processors and task lengths are independently chosen
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random integers between 0 and 1000. The distance from job v̄ to job ū is the minimum
possible amount by which the finish time for uk can exceed that for vk if ū is the next job
to be started after v̄.

Approx. Shortest Common Superstring Instances (super). This class is in-
tended to capture some of the structure in a computational biology problem relevant to
genome reconstruction. Given a collection of strings C, we wish to find a short superstring
S in which all are (at least approximately) contained. If we did not allow mismatches the
distance from string A to string B would be the length of B minus the length of the
longest prefix of B that is also a suffix of A. Here we add a penalty equal to twice the
number of mismatches, and the distance from string A to string B is the length of B
minus max{j +2k: there is a prefix of B of length j that matches a suffix of A in all but k
positions}. The generator uses this metric applied to random binary strings of length 20.

In what follows we shall consider which measurable properties of instances correlate
with heuristic performance. Likely candidates include (1) the gap between the AP and
HK bounds, (2) the extent to which the distance metric departs from symmetry, and (3)
the extent to which it violates the triangle inequality. The specific metrics we use for these
properties are as follows. For (1) we use the percentage by which the AP bound falls short
of the HK bound. For (2) we use the ratio of the average value of |d(ci, cj) − d(cj , ci)| to
the average value of |d(ci, cj) + d(cj , ci)|, a quantity that is 0 for symmetric matrices and
has a maximum value of 1. For (3) we first compute, for each pair ci, cj of distinct cities,
the minimum of d(ci, cj) and min{d(ci, ck)+ d(ck, cj) : 1 ≤ k ≤ N} (call it d′(ci, cj)). The
metric is then the average, over all pairs ci, cj , of (d(ci, cj) − d′(ci, cj))/d(ci, cj). A value
of 0 implies that the instance obeys the triangle inequality.

Table 8.1 reports the values for these metrics on our randomly generated classes. For
the random instances, average values are given for n = 100, 316, and 1,000. In Table 8.1
the classes are ordered by increasing value of the HK-AP gap for the 1,000-city entry. For
the random instance classes, there seems to be little correlation between the three metrics
(1),(2) and (3), although for some there is a dependency on the number n of vertices.

8.3 Comparison of TSP heuristics

Since TSP heuristics are normally used when n ≥ 1000, to analyze the relative value of
heuristics, we will mostly consider computational results for n = 3162, 1000 (see Tables 6
and 7), but the rest of results is also of interest to predict the behaviour of the heuristics
for n > 3162.

We first analyze the relative performance of the heuristics for the family instances
separately and then make more general conclusions.

For tmat, COP appears to be the best heuristic w.r.t. both time and quality. Patch
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% HK-AP Asymmetry Triangle
100 316 1,000 100 316 1,000 100 316 1,000

tmat .34 .16 .03 .232 .189 .165 – – –
amat .64 .29 .05 .333 .332 .333 .633 .752 .837
shop .50 .22 .15 .508 .498 .515 – – –
disk 2.28 .71 .34 .044 .045 .046 .250 .313 .354
super 1.04 1.02 1.17 .076 .075 .075 – – –
crane 7.19 6.34 5.21 .061 .035 .020 .101 .087 .066
coin 15.04 13.60 13.96 .010 .007 .003 – – –
stilt 18.41 14.98 14.65 .329 .333 .336 – – –
rtilt 20.42 17.75 17.17 .496 .500 .503 – – –

Table 8.1: For the 100-, 316-, and 1000-city instances of each class, the average percentage
shortfall of the AP bound from the HK bound and the average asymmetry and triangle
inequality metrics as defined in the text. “–” stands for .000.

appears to be the second best choice. For amat, all heuristic are of similar running time,
but the COP and Patch solutions are of higher quality, which COP being the best. For
shop, Greedy, NN and 3opt are fast heuristics, while Patch and COP are rather slow. COP

is particularly slow, and moreover it is too slow for a heuristic algorithm. But, if the
running time is not an issue, then Patch and COP are the heuristics of choice as they
produce tours close to optimal. If the time is an issue, then 3opt should be used.

Similar comments are for disk. For super, COP is again the heuristic of choice if the
time is not very limited. If the time is limited, 3opt provides the best choice. We leave it
to the reader to comment on crane. We observe that 3opt is of higher quality than Patch

or COP for coin, stilt and rtilt and is the heuristic of choice for the tree families of
TSP instances.

Overall, we see that COP and 3opt are the best candidates and should be used together
with 3opt running first. If the quality of its solution is sufficient, we stop, and otherwise
run COP. The problem with COP is that its running time grows very quickly and the heuristic
becomes too slow for large values of n.
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Greedy

Percent above HK Time in Seconds
Class 100 316 1000 3162 100 316 1000 3162

tmat 31.23 29.04 26.53 26.25 .03 .26 1.7 20
amat 243.09 362.86 418.56 695.29 .04 .27 1.9 21
shop 49.34 56.07 61.55 66.29 .03 .26 2.1 40
disk 188.82 307.14 625.76 1171.62 .03 .28 2.7 23
super 6.03 5.40 5.16 5.79 .03 .22 1.5 18
crane 41.86 44.09 39.70 41.60 .03 .27 1.9 21
coin 48.73 46.76 42.33 35.94 .04 .24 1.7 20
stilt 106.25 143.89 178.34 215.84 .04 .28 1.9 23
rtilt 350.12 705.56 1290.63 2350.38 .03 .28 2.0 23

NN

Percent above HK Time in Seconds
Class 100 316 1000 3162 100 316 1000 3162

tmat 38.20 37.10 37.55 36.66 .03 .24 1.7 20
amat 195.23 253.97 318.79 384.90 .03 .26 1.9 21
shop 16.97 14.65 13.29 11.87 .03 .23 2.5 20
disk 96.24 102.54 115.51 161.99 .04 .27 1.9 23
super 8.57 8.98 9.75 10.62 .03 .21 1.5 18
crane 40.72 41.66 43.88 43.18 .03 .26 1.9 21
coin 26.08 26.71 26.80 25.60 .03 .23 1.7 20
stilt 30.31 30.56 27.62 24.79 .03 .30 1.9 22
rtilt 28.47 28.28 27.52 24.60 .04 .26 1.9 22

3opt

Percent above HK Time in Seconds
Class 100 316 1000 3162 100 316 1000 3162

tmat 6.44 9.59 12.66 16.20 .19 1.71 5.5 20
amat 39.23 58.57 83.77 112.08 .19 1.75 5.8 21
shop 3.02 7.25 10.22 10.88 .23 1.78 5.6 21
disk 12.11 16.96 20.85 25.64 .19 1.82 6.1 23
super 3.12 4.30 5.90 7.94 .15 1.43 4.8 18
crane 9.48 9.41 10.65 10.64 .19 1.76 7.3 22
coin 8.06 9.39 9.86 9.92 .18 1.62 5.3 20
stilt 11.39 12.65 12.62 12.27 .19 1.80 8.2 22
rtilt 10.04 13.09 18.00 19.83 .19 2.05 6.6 23

Table 8.2: Tour quality and running times for Greedy, NN, and 3-Opt.
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Patch

Percent above HK Time in Seconds
Class 100 316 1000 3162 100 316 1000 3162

tmat .84 .64 .17 .00 .03 .22 1.8 29
amat 10.95 6.50 2.66 1.88 .03 .22 1.9 18
shop 1.15 .59 .39 .24 .04 .48 8.4 260
disk 9.40 2.35 .88 .30 .03 .26 2.9 75
super 1.86 2.84 3.99 6.22 .02 .19 1.7 29
crane 9.40 10.18 9.45 8.24 .03 .21 1.5 23
coin 16.48 16.97 17.45 18.20 .02 .18 1.4 17
stilt 23.33 22.79 23.18 24.41 .03 .24 2.2 29
rtilt 17.03 18.91 18.38 19.39 .03 .28 2.9 54

COP

Percent above HK Time in Seconds
Class 100 316 1000 3162 100 316 1000 3162

tmat .57 .36 .16 .00 .01 .12 .7 15
amat 9.31 3.15 2.66 1.01 .01 .15 .6 26
shop .68 .36 .19 .10 .08 1.41 29.1 1152
disk 6.00 1.13 .51 .15 .03 .31 8.7 297
super 1.01 1.20 1.22 2.06 .03 .24 4.6 243
crane 10.32 9.08 7.28 6.21 .04 .44 3.5 53
coin 16.44 17.68 16.23 16.06 .02 .10 1.2 22
stilt 22.48 23.31 22.80 22.90 .07 .94 8.1 105
rtilt 19.62 22.86 20.95 20.37 .05 .33 5.6 117

Table 8.3: Tour quality and running times for the patching algorithm and COP.



Chapter 9

Theoretical Analysis of Heuristics

Previously we have considered experimental performance of TSP heuristics. While exper-
imental analysis is of a certain importance, it cannot cover all possible families of TSP
instances and, in particular, it normally does not cover the hardest ones. Experimental
analysis provides little theoretical explanation why certain heuristics are successful while
some others are not. This limits our ability to improve on the quality and efficiency of
existing algorithms. It also limits our ability to extend approaches successful for the TSP
to other combinatorial optimization (CO) problems.

This part of the course is devoted to theoretical approaches that allow one to analyze
properties of optimal solutions of heuristics.

9.1 Property of 2-Opt optimal tours

An instance of the Euclidean TSP is given by a collection of points in the plane (vertices);
the distance between any pair of points u = (xu, yu), v = (xv, yv) is the Euclidean distance
between the points, i.e. dist(u, v) =

√

(xu − xv)2 + (yu − yv)2. Clearly, the Euclidean TSP
is symmetric, i.e. dist(u, v) = dist(v, u).

Recall that the 2-Opt neighbourhood of a tour T consists of all tours that can be
obtained from T by deleting two edges of T and than adding two edges.

Theorem 9.1.1. For the Euclidean TSP, a tour T which is the best in its 2-Opt neigh-
bourhood, does not have self-intersections.

Proof: Let T be a tour in an instance of the Euclidean TSP that has self-intersection;
let y be such an intersection, which is of course not a vertex (no vertex can be visited by
travelling salesman twice!). See Figure 9.1. To prove that the intersection in the figure
is impossible, it suffices to see that the tour T ′ that is obtained from T by deleting edges
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y
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v
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w

Figure 9.1: A tour with self-intersection

xv and uw and adding edges uv and xw is shorter than T, i.e. dist(x, v) + dist(u,w) >
dist(u, v) + dist(x,w). (Indeed, T ′ is in the 2-Opt neighbourhood of T and thus has to be
longer than T by the condition of the theorem.)

By the triangle inequality, we have:

dist(u, y) + dist(y, v) > dist(u, v) and dist(x, y) + dist(y,w) > dist(x,w).

Add these two inequalities:

(dist(u, y) + dist(y,w)) + (dist(x, y) + dist(y, v)) > dist(u, v) + dist(x,w),

or dist(x, v) + dist(u,w) > dist(u, v) + dist(x,w). QED

9.2 Approximation Analysis

In Approximation Analysis, we study the approximation ratios of heuristics. The approx-
imation ratio of a heuristic H for the (TSP) is an upper bound on the ratio c/c∗, where c
is the cost of a tour found by H and c∗ is the optimal cost of a tour.

9.2.1 Travelling Salesman Problem

In what follows, we assume that all costs are non-negative.

As an example, we consider the double tree heuristic (DTH) for the Symmetric TSP
with triangle inequality, i.e. with the inequality cost(x, y) + cost(y, z) ≥ cost(x, z) for any
triple x, y, z of vertices.

To introduce DTH we recall some notions of graph theory. In an undirected multigraph
G a trail is a sequence of edges such that every two consecutive edges have a common
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Figure 9.2: An example for DTH

vertex. If every edge belongs to a trail, without repetition of any edge, then the trail is
called Euler. Not every multigraph has an Euler trail. Multigraphs that have Euler trails
are called Euler.

Theorem 9.2.1 (Euler Theorem). A multigraph G has an Euler trail if and only if G is
connected and every vertex has even degree.

In DTH, we

1. Find a minimum cost spanning tree S∗ in the complete graph of the STSP

2. Double its edges obtaining an Euler multigraph GE (see Euler Theorem)

3. Find an Euler trail F in GE

4. Going along F delete any repetition of vertices in F , obtaining a tour T

DTH is illustrated in Figure 9.2.

Suppose that a minimum cost spanning tree is given in the left hand side of the figure.
After doubling its edges, we get the graph in the right hand side of the figure. We find an
Euler trail (as a sequence of vertices for simplicity):

acbcdfdedghgdca.

After deleting vertex repetitions, we get a tour T = acbdfegha.

Theorem 9.2.2. For the Symmetric TSP with triangle inequality, a tour found by DTH
is at most twice as long as an optimal tour.

Proof: Consider an instance of the Symmetric TSP with triangle inequality. Let
T ∗ be an optimal tour of the instance. Observe that after deleting an edge from T ∗
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we get a spanning tree S of the complete graph. Clearly, cost(S) ≤ cost(T ∗). By the
definition of S∗, cost(S∗) ≤ cost(S). Observe that by the definitions of GE and F , we
have cost(F ) = cost(GE) = 2cost(S∗). By the triangle inequality, any short cuts (i.e.
deleting repetitive vertices in F ) cannot increase the cost of the derived tour T . Hence,
cost(T ) ≤ cost(F ). Thus,

cost(T ) ≤ cost(F ) = 2cost(S∗) ≤ 2cost(S) ≤ 2cost(T ∗).

QED

9.2.2 Knapsack Problem

Recall the knapsack problem. Assume that we have a number of items, and we must
choose some subset of the items to fill our ”knapsack”, which has limited space b. Each
item, i, has a value vi and takes up bi units of space in the knapsack. We wish to choose
a collection of the items with total space less than b and with maximum total value.

In what follows we assume that bi ≤ b since any item j with bj > b cannot be put
in the knapsack. Also assume that b1 + b2 + · · · + bn > b since otherwise the problem is
trivial.

For the branch-and-bound algorithm above, we used the following simple heuristic H1:
order items in the non-increasing value of the ratio ri = vi/bi and place in the knapsack
as many items as possible putting them in the obtained order. The heuristic H1 seems
very good, but there are examples that show that this is not true.

Consider the following example, let b = 400 and there are four items with v1 = v2 =
v3 = 1, b1 = b2 = b3 = 1, v4 = 399, b4 = 400. The heuristic will compute the ratios
r1 = r2 = r3 = 1 and r4 = 399

400 and put the first three items in the knapsack. The value
obtained is 3. However, if we put only the forth item in the knapsack, we get value equal
399. This is the optimal solution. Thus, the solution obtained by the heuristic is 133 times
smaller than that of the optimal solution.

This example show that the heuristic is not that good after all. Perhaps, the reason
for that is that we do not consider the largest value item for inclusion in our solution.
Consider another heuristic H2 that puts the most valuable item in the knapsack first and
then applies H1 to the remaining items. This heuristic would find the optimal solution in
the example above, but it’ll fail badly on other examples (for example, take v4 = 2).

Let us combine H1 and H2, i.e., run both of them on input and choose the best among
the obtained solutions. We denote this heuristic by H. We show that there is a guarantee
of the quality of solutions obtained by H.

Theorem 9.2.3. The value of the solution obtained by H is always at least half of the
value of the optimal solution.
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Proof: Consider an arbitrary instance of the knapsack problem given by n items with
values v1, v2, . . . , vn and sizes b1, b2, . . . , bn. Let ri = vi/bi as before. We may assume that
r1 ≥ r2 ≥ · · · ≥ rn. Let vopt be the value of the optimal solution and vH the value of
the solution obtained by H. Clearly, vH = max{vH1

, vH2
}, where vHk

is the value of the
solution obtained by Hk.

For some j, the heuristic H1 will put, in the knapsack, items 1, 2, . . . , j − 1 one by
one. Suppose that item j will not fit into knapsack with the fist j − 1 items already there.
Thus,

v̂j := v1 + v2 + · · · + vj−1 = vH1
≤ vH

and
b̂j = b1 + b2 + · · · + bj−1 ≤ b.

Since r1 ≥ r2 ≥ · · · ≥ rn, if we were allowed to place, in the knapsack, part of item j, we
would get the (LP) optimal solution v̂j + (b − b̂j)rj . This is not worse than vopt. Thus,

vopt ≤ v̂j + (b − b̂j)vj/bj < v̂j + vj .

The last inequality follows from the fact that (b − b̂j)/bj < 1.

To complete the proof we consider two possible cases. If vj ≤ v̂j then

vopt < v̂j + vj ≤ 2v̂j ≤ 2vH1
≤ 2vH .

If vj > v̂j then vmax > v̂j , where vmax is the maximum value of an item. Thus,

vopt < v̂j + vj ≤ v̂j + vmax < 2vmax ≤ 2vH .

In both cases, the theorem follows. QED

Section 6.3 has an instance of the knapsack problem for which H gives the optimal
solution, while the use of H1 requires lengthy computations by branch-and-bound to get
the optimal solution.

9.2.3 Bin Packing Problem

Recall that in the Bin Packing Problem (BPP), we are given a positive integer number b
and a sequence of N items of sizes L = (s1, s2, . . . , sN ) such that 0 < si ≤ b. Our aim is
to pack the items into minimum number of bins, each of capacity b. For example, if b = 1
and L = (1

2 , 1
2 , 1

3 , 1
3 , 1

3 ), then the minimum number of bins is 2 as we can pack the first two
items in Bin 1 and the remaining items in Bin 2.

One of the simplest heuristics for BPP is the Next Fit heuristic (NF). In NF we start
from Bin 1. We pack items into Bin 1 one by one as long as its capacity b is not exceeded.
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Once the capacity is exceeded, we put the current item (not fitting into Bin 1) into Bin 2
and pack items into Bin 2 as long as its capacity b is not exceeded, etc.

Example. Let b = 1 and

L = (
1

2
,
1

6
,
1

2
,
1

6
,
1

2
,
1

6
,
1

2
,
1

6
,
1

2
,
1

6
,
1

2
,
1

6
).

Since a pair 1/2, 1/2 completely fill in a bin and six 1/6 also fill in a bin, the optimal
number of bins is 4 (no wasted space at all). Check that NF fills in 6 bins!

In what follows, assume b = 1.

Theorem 9.2.4. Let p be the minimum number of bins required in BPP; then NF always
packs items in at most 2p bins.

Proof: Let p′ be the number of bins used by NF and let b1, b2, . . . , bp′ be the packed
part of Bins 1,2,. . . , p′, respectively. By the definition of NF, bi + bi+1 > 1 for each
i = 1, 2, . . . , p′ − 1 (otherwise Bin i can be used instead of Bins i and i + 1). Summing up
and adding b1 and bp′ , we get 2(b1 + b2 + · · ·+ bp′) > p′−1. However, p ≥ b1 + b2 + · · ·+ bp′

and, thus,

2p ≥ 2(b1 + b2 + · · · + bp′) > p′ − 1.

Therefore, 2p > p′ − 1 and, since 2p is an integer, 2p ≥ p′. QED.

There are examples that generalize the example above that show that the theorem is
asymptotically sharp (i.e., cannot be improved).

Consider a little bit more sophisticated heuristic First Fit (FF). In FF we start from
Bin 1. We pack items into Bin 1 one by one as long as its capacity b is not exceeded. Once
the capacity is exceeded, we put the current item (not fitting into Bin 1) into Bin 2. The
next item is placed in Bin 1 if it can be put there. If not, it is placed in Bin 2 if it can be
put there. In the case neither of Bin 1 and Bin 2 can accommodate the item, the item is
put in Bin 3, etc.

The following theorem (without proof) holds.

Theorem 9.2.5. Let p be the minimum number of bins required in BPP; then FF always
packs items in at most 1.7p + 2 bins.

As we can see, FF appears to be better than NF in the worst case.

The First Fit Decreasing heuristic (FFD) puts the items in non-increasing order of
their sizes.

Theorem 9.2.6. Let p be the minimum number of bins required in BPP; then FF always
packs items in at most 1.5p bins.
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Proof: (scheme) Let s1 ≤ s2 ≤ . . . ≤ sN . Partition the items into four sets

A = {i : si > 2/3}, B = {i : 1/2 < si ≤ 2/3},

C = {i : 1/3 < si ≤ 1/2}, D = {i : si < 1/3}.

Consider the solution obtained by FFD. If there is at least one bin that contains only
items from D, then there is at most one used bin of occupancy less than 2/3, and the
bound follows.

If there is no bin containing only items from D, then it possible to prove that the
solution is optimal. QED.

9.2.4 Online Problems and Algorithms

Often in practice, items are become available one by one and once they are available they
must be packed irreversibly. In such cases we have the online BPP. Heuristics NF and FF
can be used for the online BPP; FFD cannot. In fact, it is proved that no algorithm for
the online BPP can satisfy Theorem 9.2.6.

There are many other online problems, for example the online AP and TSP. Algorithms
for online problems are called online algorithms.

9.3 Domination Analysis

Domination analysis provides an alternative to approximation analysis. In domination
analysis, we are interested in the number of solutions that are worse or equal in quality to
the heuristic one, which is called the domination number of the heuristic solution. In many
cases, domination analysis is very useful. In particular, some heuristics have domination
number 1 for the TSP. In other words, those heuristics, in the worst case, produce the
unique worst possible solution. At the same time, the approximation ratio is not bounded
by any constant. In this case, the domination number provides a far better insight into
the performance of the heuristics.

The domination number domn(H,n) of a heuristic H for the TSP is the maximal
number of tours that are more expensive or equal in cost to the tour produced by H, for
every instance of the TSP on n vertices. For example, domn(H,n) ≥ (n− 2)! means that
H always produces a tour that is better or of the same cost as at least (n − 2)! tours for
every instance on n vertices.

Theorem 9.3.1. For the STSP with triangle inequality, DTH has domination number 1.

Proof: Consider an instance of the DTH with vertices v1, v2, ..., vn−1, vn. Let the cost
of the edges v3v4, ..., vn−1vn, vnv2 be 2 and the cost of the rest of the edges be 1. Notice
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that the tour v1v3v4...vn−1vnv2v1 is the unique most expensive tour as it is the only tour
that includes all edges of cost 2.

The tree S with edges v1vi, i = 2, 3, ..., n is a minimum cost spanning tree. Suppose
that DTH chooses S (DTH may choose any minimum cost spanning tree). After doubling
edges of S, we get an Euler graph G;

F = v2v1v3v1v4v1v5v1...v1vnv1v2

is an Euler trail of G and suppose that DTH constructs F . After deleting repeated vertices,
we get the tour v1v3v4...vn−1vnv2v1, which is unique most expensive. QED

Recall that in the Assignment Problem, we are given a complete bipartite graph B
with n vertices in each partite set and a non-negative cost assigned to each edge of B.
We are required to find a perfect matching (i.e. matching with n edges) in B of minimum
cost.

Theorem 9.3.2. For the Assignment Problem, the greedy algorithm has domination num-
ber 1.

Proof: Let B be a complete bipartite graph with n vertices in each partite set and let
u1, u2, ..., un and v1, v2, ..., vn be the two partite sets of B. Let M be any number greater
than n. We assign cost Mi to the edge uivi for i = 1, 2, ..., n and cost M × min{i, j} + 1
to every edges uivj, i 6= j; see Figure 9.3 for an illustration in the case n = 3.

We classify edges of B as follows: uivj is horizontal (forward, backward) if i = j (i < j,
i > j). See Figure 9.3.

The greedy algorithm will choose edges u1v1, u2v2, ..., unvn (and in that order). We
call this perfect matching P and we will prove that P is the unique most expensive perfect
matching in B. The cost of P is cost(P ) = M + 2M + ... + nM.

Choose an arbitrary perfect matching P ′ in B distinct from P. Assume that P ′ has
edges u1vp1

, u2vp2
, ..., unvpn . By the definition of the costs in B, cost(uivpi

) ≤ Mi + 1.
Since P ′ is distinct from P , it must have edges that are not horizontal. This means it has
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horizontal edge

M

2M

3M

M+1

2M+1

backward edge

forward edge

Figure 9.3: Assignment of costs for n = 3; classification of edges

backward edges. If ukvpk
is a backward edge, i.e. pk < k, then cost(ukvpk

) ≤ M(k−1)+1 =
(Mk + 1) − M. Hence,

cost(P ′) ≤ (M + 2M + ... + nM) + n − M = cost(P ) + n − M.

Thus, cost(P ′) < cost(P ). QED

Notice that there are algorithms for the Assignment Problem with much larger domi-
nation number. The Assignment Problem can be solved to optimality by the O(n3)-time
Hungarian algorithm. The Hungarian algorithm is of domination number equal to the
number of all perfect matchings in B, hence equal to n!

It is possible to prove that the greedy algorithm and NN for the TSP are of domination
number 1. However, the vertex insertion heuristic is proved to be of domination number
at least (n − 2)! for the Asymmetric TSP. Clearly, the vertex insertion heuristic appears
to be more robust than the greedy algorithm and NN.

9.4 Questions

Question 9.4.1. Find an optimal tour for the STSP with cost matrix

(a) C =









0 2 4 3
2 0 2.5 5
4 2.5 0 3.5
3 5 3.5 0









(b) C =









0 2 6 3
2 0 1 4
6 1 0 7
3 4 7 0
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n3

n

2n

3n

4n

5n

Figure 9.4: NN is of domination number 1 for the ATSP

Find a tour by DTH. Compare the tours.

Can we apply Theorem 9.2.2 to the instances above? Why?

Question 9.4.2. Prove that for the Euclidean TSP, if a tour T is the best in its 2-Opt
neighbourhood, then T does not have self-intersections.

Question 9.4.3. Describe the Double Tree Heuristic (DTH) for the Symmetric TSP.
Illustrate DTH using an instance of the STSP with 5 vertices (given by the cost matrix).

Question 9.4.4. Prove that, for the STSP with triangle inequality, the Double Tree
Heuristic always produces a tour of cost at most twice the cost of the optimal tour.

Question 9.4.5. Define the domination number of a heuristic. What does it mean that
a heuristic has domination number 1 for the problem in hand ?

Question 9.4.6. Prove that for the Assignment Problem, the greedy algorithm has dom-
ination number 1.

Question 9.4.7. (For interested students) Prove that NN is of domination number 1 for
the Asymmetric TSP. Hint: Consider an instance of the ATSP with vertices 1,2,...,n and
arc costs given as follows: cost(i, i + 1) = in for 1 ≤ i ≤ n − 1, cost(n, 1) = n3 and
cost(i, j) = n × min{i, j} + 1 for any arc (i, j) whose cost is not defined earlier. Prove
that NN will choose the tour (1, 2, 3, ..., n, 1) and this tour is unique most expensive. See
Figure 9.4.

Question 9.4.8. Let b = 1 and

L = (
1

2
,
1

8
,
1

2
,
1

8
,
1

2
,
1

8
,
1

2
,
1

8
,
1
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,
1

8
,
1

2
,
1
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,
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,
1
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1

2
,
1

8
).

What is the minimum number of bins required and what is the number of items found by
Next Fit? Justify your answers.



Chapter 10

Advanced Local Search and
Meta-heuristics

10.1 Advanced Local Search Techniques

Most of improvement local search algorithms have the advantage of being generally ap-
plicable and flexible, i.e., they require only a specification of solutions, a cost function, a
neighbourhood function, and an efficient method of exploring a neighbourhood, all of which
can be readily obtained for most optimisation problems. Nevertheless, poor local optima
are found in several cases. To remedy this drawback - while maintaining the paradigm
of neighbourhood search - many researchers have been investigating the possibilities of
broadening the scope of local search to obtain neighbourhood search algorithms that can
find high-quality solutions in possibly low running times. A straightforward extension
of local search would be to run a simple local search algorithm a number of times using
different start solutions and to keep the best solution found as the final solution. Several
researchers have investigated this multistart approach, but no major successes have been
reported.

Instead of restarting from an arbitrary solution, one could consider an approach that
applies multiple runs of a local search algorithm by combining several neighbourhoods,
i.e., by restarting the search in one neighbourhood from a solution found in another one.
Such approaches are called multilevel. An example is iterated local search, in which the
start solutions of subsequent local searches are obtained by modifying the local optima of
a previous run. Examples for the Symmetric TSP are iterated Lin-Kernighan algorithms
investigated by some researchers, which are currently the best known heuristics for the
Symmetric TSP.

In addition there are several approaches that take advantage of search strategies in
which cost-deteriorating neighbours are accepted. We briefly describe these strategies in

82
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the following section.

10.2 Meta-heuristics

All of the approaches below are together called meta-heuristics as they are very general
and can be applied to a vast number of different optimisation problems. The approaches
model certain kinds of optimisation in Nature.

10.2.1 Simulated Annealing

Simulated annealing (SA) is based on analogy with the physical process of annealing,
in which a pure lattice structure of a solid is made by heating up the solid in a heat
bath until it melts, then cooling it down slowly until it solidifies into a low-energy state.
From the point of view of combinatorial optimisation, simulated annealing is a randomized
neighbourhood search algorithm. In addition to better cost neighbours, which are always
accepted if they are selected, worse-case neighbours are also accepted, although with a
probability that is gradually decreased in the course of the algorithm’s execution. Lowering
the acceptance probability is controlled by a set of parameters whose values are determined
by a cooling schedule.

SA has been widely used with considerable success. The randomized nature enables
asymptotic convergence to optimal solutions under certain mild conditions. Unfortunately,
the convergence typically requires exponential time, making simulated annealing imprac-
tical as a means of obtaining optimal solutions. Instead, like most local search algorithms,
it is normally used as an approximation algorithm, for which much faster convergence
rates are acceptable.

10.2.2 Genetic Algorithms

Genetic algorithms use concepts from population genetics and evolution theory to con-
struct algorithms that try to optimise the fitness of a population of elements through
recombination and mutation of their genes. There are many variations known in the lit-
erature of algorithms that follow these concepts. As an example, we discuss genetic local
search, also called the Memetic Algorithm. The general idea of genetic local search is
explained below.

• Step 1, initialize. Construct an initial population of n solutions.

• Step 2, improve. Use local search to replace the n solutions in the population by n
local optima.
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String Fitness Selection probability
i xi fi = f(xi) fi/

∑

fi

1 11000 48 0.381
2 00101 10 0.079
3 10110 44 0.349
4 01100 24 0.191

Sum 126 1.000
Average 31.5 0.250

Max 48 0.381

Table 10.1: Four strings and their fitness values.

• Step 3, recombine. Select pairs of individuals from the population to participate in
recombination. Augment the population by adding the m offspring solutions; the
population size now equals n + m.

• Step 4, improve. Use local search to replace the m offspring solutions by m local
optima.

• Step 5, select. Reduce the population to its original size by selecting n solutions
from the current population.

• Step 6, evolute. Repeat Steps 3-5 until a stop criterion is satisfied.

Eventually, recombination is an important step, since here one must try to take advan-
tage of the fact that more than one local optimum is available, i.e., one must exploit the
structure present in the available local optima.

The above scheme has been applied to several problems, and good results have been
reported. The general class of genetic algorithms contains many other approaches that
are significantly different from the scheme above.

To illustrate the main ideas, we will consider an example (due to Stephen D. Scott)
of a genetic local search applied to a simple optimization problem. To make the example
even simpler, we will skip Steps 2 and 4 of the general description, which involve the local
search part of the heuristics.

Consider strings with five bits 0 or 1, x = x5x4x3x2x1, where xj = 0 or 1, for j =
1, 2, 3, 4, 5, and an objective function f(x) = 2x1 + 4x2 + 8x3 + 16x4 + 32x5 (the j’s stand
for superscripts, not powers). For example x = 10101 is such a string having objective
function value f(x) = 2 + 8 + 32 = 42. The goal is to maximize the objective function
f(x) over all such strings. Now imagine a population of the four strings in Table 10.1,
generated at random. The fitness values come from the objective function f(x).



10.2. META-HEURISTICS 85

After Parent Crossover After Fitness
reprod. Parents strings point crossover fi = f(xi)

x5 x1 11|000 2 11110 60
x6 x3 10|110 2 10000 32

x7 x1 1|1000 1 11100 56
x8 x4 0|1100 1 01000 16

Sum 164
Average 41

Max 60

Table 10.2: The next generation after selection and crossover.

The values in the “fi/
∑

fi” column provide the probability of each string’s selection.
So initially 11000 has a 38.1% chance of selection, 00101 has an 7.9% chance, and so on.
Based on these probabilities, we randomly select two pairs of strings to be recombined;
suppose that the random selection produces the pairs (x1, x3) and (x1, x4).

After selecting the pairs, the genetic algorithm looks at each pair individually. For each
pair (e.g. x1 = A = 11000 and x3 = B = 10110), the algorithm decides whether or not to
perform crossover recombination. If it does not, then both strings in the pair are placed
into the population with possible mutations (described below). If it does, then a random
crossover point is selected and crossover proceeds as follows: A = 11|000 B = 10|110 are
crossed and become A′ = 11110 B′ = 10000.

Then the children A′ and B′ are placed in the population with possible mutations. The
genetic algorithm invokes the mutation operator on the new strings very rarely (usually on
the order of < 0.01 probability), generating a random number for each bit and flipping that
particular bit only if the random number is less than or equal to the mutation probability.

After the current generation’s selections, crossovers, and mutations are complete, the
new strings representing the next generation is shown in Table 10.2. In this example,
average fitness increased from one generation to the next by approximately 30% and
maximum fitness increased by 25%.

Reducing the population to its original size 4, we select the best solutions x1, x3, x5, x7

from the current population, see Table 10.3. This finishes one iteration of the algorithm.
The simple process would continue for several generations until a stopping criterion is met.

Question 10.2.1. Give a brief description of genetic local search.

10.2.3 Tabu Search

Tabu search ”models” intelligent human argumentation while searching for a good solution.
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String Fitness Selection probability
i xi fi = f(xi) fi/

∑

fi

1 11000 48 0.231
3 10110 44 0.212
5 11110 60 0.288
7 11100 56 0.269

Sum 208 1.000
Average 52.0 0.250

Max 60 0.288

Table 10.3: The population after one iteration.

Tabu search combines the deterministic iterative improvement algorithm with a possi-
bility to accept cost-increasing solutions. In this way the search is directed away from local
minima1, such that other parts of the search space can be explored. The next solution
visited is always chosen to be a legal neighbour of the current solution with the best cost,
even if that cost is worse than that of the current solution. The set of legal neighbours is
restricted by a tabu list designed to prevent us from going back to recently visited solution.
The tabu list is dynamically updated during the execution of the algorithm. The tabu
search list defines solutions that are not acceptable in the next few iterations. However,
a solution on the tabu list may be accepted if its quality is in some sense good enough, in
which case it is said to attain a certain aspiration level.

Tabu search has also been applied to large variety of problems with considerable suc-
cesses. Tabu search is a general search scheme that must be tailored to the details of
the problem at hand. Unfortunately, there is little theoretical knowledge that guides this
tailoring process, and users have to resort to the available practical experience.

We will now consider a basic algorithm of tabu search, where only so-called short term
memory is used and no aspiration criteria are of use. We will describe the basic algorithm
applied to the so-called k-tree problem. In this problem, we are given a positive integer
k and a graph G with costs on it edges. We are required to compute a minimum cost
subgraph of G, which is a tree with exactly k edges.

Consider the graph G depicted in Figure 10.1. We will try to solve the 3-tree problem
for G.

We start from an initial feasible solution T0 consisting of the edges {1, 2}, {1, 5} and
{1, 6}. The cost of T0 is 22, see Figure 10.2 (a). No edge of T0 is tabu.

Now we will move to another solution by deleting a non-tabu edge in T0 and adding to
the remaining graph another non-tabu edge such that the result is a tree. (This way, we

1We are speaking of minimisation problems; the similar approach applies to maximisation problems.
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Figure 10.1: Graph G.

have a so-called swap neighbourhood.) We will make such a move that brings us the cheap-
est possible solution. It is easy to see that we will obtain T1 with edges {1, 5}, {1, 6}, {2, 6}
and of cost 14. See Figure 10.2 (b). We have deleted {1, 2} and make it tabu for 2 itera-
tions. We cannot add {1, 2} back during the next two iterations. In other words, the tabu
time for deleted edges is fixed to 2. We have added {2, 6} and make it tabu for 1 iteration.
We cannot delete {1, 2} back during the next iteration. In other words, the tabu time for
added edges is fixed to 1.

Observe that no swap of an edge in T1 can produce a solution cheaper than T1. In
other words, the improvement local search is the swap neighbourhood of T1 will not be
able to find a better solution, i.e., T1 is local minimum and the improvement local search
would be stuck in it.

Since edge {1, 2} is tabu, our next move gives us T2 consisting of edges {1, 6}, {2, 6}, {6, 7}
of cost 17. (The increase of cost is not surprising in the light of the previous paragraph.)

In the next iteration, we can delete {1, 6} and add {7, 8}. We get a solution of cost
12, see Figure 10.2 (d). The results of the last two iterations are depicted in Figure 10.2
(e) and (f). Interestingly, the last solution is optimal.

One can modify the basic tabu search algorithm by adding aspiration criteria. One of
the most used aspiration criteria is the record-improving one. Here we may add or delete
tabu edges as long as we get a solution of cost lower than the best known one.

Question 10.2.2. Consider the example for the 3-tree problem above. Replace the basic
tabu search by that with the record-improving aspiration criterium. Will any solution be
changed?

Question 10.2.3. Consider the graph G in Figure 10.1.

(a) Apply the nearest neighbour algorithm to compute an initial solution for the 2-tree
problem on G.

(b) Do five iterations of the basic tabu search algorithm to improve the initial solution.
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Figure 10.2: Iterations of the basic tabu search algorithm.
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Figure 10.3: Graph H.

The tabu times for deleted and added edges are 2 and 1, resp.

(c) Replace the basic tabu search by that with the record-improving aspiration criterium.
Will any solution be changed?

Question 10.2.4. Consider the graph H in Figure 10.3.

(a) Apply the nearest neighbour algorithm to compute an initial solution for the 2-tree
problem on H.

(b) Do five iterations of the basic tabu search algorithm to improve the initial solution.
The tabu times for deleted and added edges are 2 and 1, resp.

(c) Replace the basic tabu search by that with the record-improving aspiration criterium.
Will any solution be changed?


