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DM515 – Spring 2011 – Weekly Note 3

NB: Switch of classes:

• There will be exercise classes on Monday April 18, 12-14 in U20

• There will be Lecture on Wednesday April 27 8-10 in U140

• There will be exercises on Thursday April 28 12-14 in U20

Obligatory Assignment :

This is available by the end of week 15 on the homepage of the course. As the name indi-
cates you must hand in a satisfactory solution to this assignment in order to be allowed to
attend the exam in June.

You may (and should!) work in groups of up to 3 on these problems and you must hand in
your answer (one per group) to Alessandro on May 11 at the exercises or by putting your
solutions in his mailbox at the secretarys office. Note that there will be no second round
of handing in solutions so you have to get it right the first time!

We do not insist on 100% correct solutions in order for you to have the assignment approved
but it must be clear from your report that you have worked carefully on the problems.

Stuff covered in Week 15:

• MG Sections 4.1-4.2.

• MG Sections 5.1-5.3.

Exercises April 18 in U20:

• Questions 3.4.1-3.4.7 in Gutin’s notes (see homepage of course). Not all of these will
be covered at the exercises as at least 1 hour will be spent on the exercises below.

• Valid in-equalities for integer programming problems. Suppose we are given
an integer program (IP): max{cx : x ∈ X}, where X = {x : Ax ≤ b, x ∈ Zn

+} is the
set of integer points in Rn which satisfy Ax ≤ b (where A is an m × n matrix and
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b ∈ Rm. We say that the inequality rx ≤ r0 (where r ∈ Rn and r0 ∈ R) is valid for
X if rx ≤ r0 holds for every x ∈ X. That is, by adding this inequality to the problem
(IP) we do not change the set of feasible solutions (note that we may exclude several
non-integer solutions, which is exactly what we want to do!!). The definition extends
to mixed integer programming problems with the obvious extension of the definition.

1. Consider the maximum weight matching problem from MG page 33 and recall
that the formulation (3.1) also works for the general case when G = (V,E) is
not necessarily bipartite. Here X = {x ∈ {0, 1}m :

∑
{v:uv∈E} xuv = 1 for all u ∈

V }, where m = |E| and the objective is to maximize the objective
∑

uv∈E wuvxuv.
Argue that for every subset T ⊆ V with |T | ≡ 1 modulo 2 and |T | ≥ 3, the
following is a valid inequality with respect to the set X:∑

uv∈E(T )

xuv ≤
|T | − 1

2
,

where E(T ) = {uv ∈ E : u, v ∈ T}.
2. Suppose below that X = {x ∈ Zn

+ : Ax ≤ b}, A is an m×n matrix with columns
a1, a2, . . . , am and u ∈ Rm

+ is a vector of coefficients.

(i) Argue that the following inequality is valid for X:

n∑
j=1

m∑
i=1

uiaijxj ≤
m∑
j=1

ujbj (1)

This says that taking any non-negative combination of the original inequal-
ities gives a valid inequality.

(ii) Argue that the following inequality is valid for X:

n∑
j=1

b
m∑
i=1

uiaijcxj ≤
m∑
j=1

ujbj (2)

Argue that the following inequality is valid for X:

n∑
j=1

b
m∑
i=1

uiaijcxj ≤ b
m∑
j=1

ujbjc (3)

The 3 step procedure above is called the Chvàtal-Gomory procedure and
it can be shown that every valid inequality of an integer program can be con-
structed using these simple steps.

• Gomory cuts. Consider the integer program (IP) zIP = max{cx : Ax = b, x ≥
0 and integer} and its LP-relaxation (LP) zLP = max{cx : Ax = b, x ≥ 0}. Suppose
that we have solved (LP) using the Simplex method. If all basic variables are integers
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then we have solved (IP) so suppose this is not the case. Choose a basic variable xBi

so that xBi
is not an integer in the optimal solution to (LP). Since xBi

can be read
off the last Simplex tableau, in that tableau we have expressed xBi

as follows (recall
MG page 65):

xBi
= pi +

n−m∑
j=1

QijxNj
, (4)

where xN1 , . . . , xNn−m are the non-basic variables and pi > 0 is not an integer.

(I) Show that the following inequality is valid for (IP):

xBi
+

n−m∑
j=1

b −QijcxNj
≤ bpic. (5)

Hint: isolate pi and use that in any solution to (IP) all variables are non-negative
integers.

(II) Show that the following is a valid inequality for (IP):

n−m∑
j=1

(−Qij − b −Qijc)xNj
≥ (pi − bpic). (6)

(III) Argue that the optimal LP solution given by xB1 , . . . , xBm does not satisfy the
inequality (6). Hint: the right hand side is larger than zero.

Thus adding this to the formulation of (IP), giving a new equivalent formulation
(IP’), eliminates the current optimal LP solution and hopefully tightens the
upper bound provided by the LP-relaxation of the extended problem (IP’). This
procedure of adding valid inequalities to an integer programming formulation
and thereby improving the bound provided by the LP relaxation is known as
the cutting plane method. Eventually, when we have added enough of these
cuts we reach the so-called ideal formulation where all extreme points are
integer points and now solving the corresponding LP gives the optimum integer
solution.

• Consider the integer program (IP)

z = max 4x1 − x2

7x1 − 2x2 ≤ 14

x2 ≤ 3

2x1 − 2x2 ≤ 3

x1, x2 ≥ 0 and integer
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1. Convert the integer program to one in equality form by adding slack variables
and observe that these variables must also be integers since all data is integer.

2. Solve the LP-relaxation of this new IP in equality form by the Simplex method.

3. Identify a basic variable which is not an integer and use the procedure above to
construct a Gomory cut which when added to the IP formulation will eliminate
the current optimal LP solution.

4. If you have the energy, then try to make a few more rounds of solving the LP,
finding a Gomory cut, adding it and resolving.

Lecture April 27 in U140:

• Some remarks on the rest of Chapter 5 on the Simplex method.

• Gutin Chapter 4 and Section 6.1-6.3 in MG. See also Chapter 2 in Clausen and
Larsen.

Exercises April 28 in U20:

1. Summer exam 2008 Problem 1 (a)-(c)

2. Summer exam 2008 Problem 3

3. The uncapacitated facility location problem (UFL) is as follows:

Given a set N = {1, 2, . . . , n} of potential depots and M = {1, 2, . . . ,m} of clients,
suppose there is a fixed cost fj associated with the use of depot j (opening it etc.)
and a transportation cost cij if all of client i’s order is delivered from depot j. The
problem now is to determine which depots to open and which depot serves each client
so as to minimize the sum of the fixed costs and the transportation costs.

(a) Argue that the following models the problem. Here xij ∈ [0, 1] is the fraction
of the demand of client i which is satisfied by depot j and yj = 1 if depot j is
opened and yj = 0 otherwise.

zUFL = min
∑
i∈M

∑
j∈N

cijxij +
∑
j∈N

fjyj

such that

n∑
j=1

xij = 1 for all i ∈M (7)
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∑
i∈M

xij ≤ myj for all j ∈ N (8)

yj ∈ {0, 1} for all j ∈ N (9)

0 ≤ xij ≤ 1 for all i ∈M, j ∈ N (10)

(b) Explain why we can replace the condition in (8) by the following and still have
the same set of feasible solutions.,

xij ≤ yj for all i ∈ N, j ∈M (11)

(c) Now consider the LP-relaxation of these two versions of UFL (using (8) re-
spectively, (11)), where we replace the condition yj ∈ {0, 1} by the condition
0 ≤ yj ≤ 1 for each j ∈ N .

i. Argue that for both versions the optimum solution to the LP-relaxation is
a lower bound for ZUFL.

ii. Show that every feasible solution to the LP-relaxation of the second formu-
lation (using (11) is also a feasible solution to the LP-relaxation of the first
formulation (using (8)).

iii. Suppose that n divides m, so m = kn for some integer k ≥ 2. Construct a
solution to the LP-relaxation of the first formulation which is not a feasible
solution to the LP-relaxation of the second formulation. Hint: let each
depot serve k clients.

iv. Which is the two models for UFL would you consider the better in terms
of using the LP-relaxation to get information about integer (in y variables)
solutions to UFL?
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