
Institut for Matematik & Datalogi November 15, 2010
Syddansk Universitet JBJ

DM528: Combinatorics, Probability and Randomized
Algorithms — Ugeseddel 3

Stuff covered in Week 46: Rosen 6.1-6.2. The parts of Rosen 5.6 that were
not covered at the lecture in week 45 will be left for self study.

Lecture Monday November 22, 2010:

• Rosen Sections 6.3-6.4.

• More stuff on the probabilistic method based on notes on the weekly
note.

Lecture Friday November 26, 2010:

• Rosen Section 7.1 this is mostly a repetition of what you learned in
DM507.

• Rosen 7.2-7.3.

Exercises Wednesday November 24, 2010:

• Section 6.3: 4, 6, 8, 12, 16

• Section 6.4: 6, 8, 12, 16, 18, 20, 26, 30

• If there is more time do the following previous exam problems from
earlier courses with similar content DM72/DM504 available form the
course pages. Those that are not covered now will be considered later:

– 2004.06.5 page 5

– 2004.06.6 page 5

First obligatory assignment Is available from the course page.

Handing in obligatory assignment 1 This must be handed in to Magnus Find at
at latest at the exercise class on December 1st.

If you wish to get a receipt for having handed in the assignment you
may do any of of the following things:

• Prepare a receipt to be signed by the instructor. The receipt should
contain the names of everybody in the group who made the report.
Make a copy for the instructor also so he can see which receipts he has
signed.

• Hand in the assignment via Blackboard as follows:

– Choose DM528 fall 2010

– Click on the small white box just above DM528 in the title of the
course).

– Choose “Course tools”

– Choose “Assignment hand in”

– Fill out the formular (including uploading the report as a PDF)
and press submit

– Print your receipt (you will get one via email also)

If for any reason this does not work, please report back to me asap.

1 Notes on the probabilistic method

The following important examples of the usefulness of the probabilistic
method is not in Rosen (Markov’s inequality is covered in Exercise 31 of
Section 6.4):

Markov’s Inequality For any non-negative random variable X on a sam-
ple space S,

p(X ≥ t) ≤ E(X)

t
Proof: By Theorem 1 page 427 in Rosen we have E(X) =

∑
i∈X(S) p(X =

i)i. Since X(s) ≥ 0 for every s ∈ S this gives
E(X) ≥ ∑

i∈X(S),i≥t p(X = i)i ≥ t
∑
i∈X(S),i≥t p(X = i) = p(X ≥ t)t. �

First Moment Principle If E(X) ≤ t then p(X ≤ t) > 0.

Proof: Suppose p(X ≤ t) = 0. Then we have
E(X) =

∑
i∈X(S) p(X = i)i ≥ ∑

i∈X(S),i>t p(X = i)i > t
∑
i∈X(S),i≥t p(X =

i) = t, where we used that p(X ≤ t) = 0. �

A boolean variable x is a variable that can assume only two values 0
and 1. The sum of boolean variables x1 +x2 + . . . +xk is defined to be 1 if
at least one of the xi’s is 1 and 0 otherwise. The negation x of a boolean
variable x is the variable that assumes the value 1− x. Hence x = x. Let

X be a set of boolean variables. For every x ∈ X there are two literals,
over x, namely, x itself and x. A clause C over a set of boolean variables
X is a sum of literals over the variables from X. The size of a clause
is the number of literals it contains. For example, if u, v, w are boolean
variables with values u = 0, v = 0 and w = 1, then C = (u + v + w) is
a clause of size 3, its value is 1 and the literals in C are u, v and w. An
assignment of values to the set of variables X of a boolean expression is
called a truth assignment. If the variables are x1, . . . , xk, then we denote
a truth assignment by t = (t1, . . . , tk). Here it is understood that xi will
be assigned the value ti for i ∈ {1, 2, . . . , k}.

The satisfiability problem, also called SAT, is the following problem.
Let X = {x1, . . . , xn} be a set of boolean variables and let C1, . . . , Cm be
a collection of clauses for which every literal is over X. Decide if there
exists a truth assignment t = (t1, . . . , tn) to the variables in X such that
the value of every clause will be 1. This is equivalent to asking whether
or not the boolean expression F = C1 ∗ . . . ∗ Cm can take the value 1.
Depending on whether this is possible or not, we say that F is satisfiable
or unsatisfiable. Here ‘∗’ stands for boolean multiplication, that is,
1 ∗ 1 = 1, 1 ∗ 0 = 0 ∗ 1 = 0 ∗ 0 = 0. For a given truth assignment
t = (t1, . . . , tn) and literal q we denote by q(t) the value of q when we use
the truth assignment t (i.e., if q = x3 and t3 = 1, then q(t) = 1− 1 = 0).

To illustrate the definitions, let X = {x1, x2, x3} and let C1 = (x1 + x3),
C2 = (x2 + x3), C3 = (x1 + x3) and C4 = (x2 + x3). Then it is not
difficult to check that F = C1 ∗ C2 ∗ C3 ∗ C4 is satisfiable and that taking
x1 = 0, x2 = 1, x3 = 1 we obtain F = 1.

If all clauses have the same number k of literals, then we have an instance
of k-SAT (the example above is an instance of 2-SAT). Generally k-SAT
is a very difficult problem and you will see in DM508 that is one of the
so-called NP-complete problems for which no-one knows a polynomial
algorithm.

Theorem A For every natural number k, every k-SAT formula with less
than 2k clauses is satisfiable.

Proof: Consider a random truth assignment which sets variable xi to 1
with probability 1

2 and to 0 with probability 1
2 for i = 1, 2, . . . , n. Note that

by this assignment, each of the 2n possible truth assignments are equally
likely (they all have probability 2−n).

Let X be the random variable defined on the set of all truth assignments
which to a given truth assignment t = (t1, . . . , tn) assigns the value X(t) =
the number of clauses among C1, C2, . . . , Cm which are not satisfied by t.
Similarly, for each clause Ci we let the random variable Xi take the value

Xi(t) = 1 if t does not satisfy Ci and Xi(t) = 0 if t satisfies Ci. Thus
X(t) = X1(t) +X2(t) + . . . +Xm(t). We call the Xi’s indicator random
variables and their expectations are easy to calculate:

E(Xi) = p(Xi = 1)1 + p(Xi = 0)0 = p(Xi = 1) = 2−k, since the i’th
clause evaluates to 0 precisely if all k literals are 0 and each of these are 0
with probability 1/2.

Now we get, by linearity of expectations

E(X) =
∑m
i=1E(Xi) =

∑m
i=1 2−k = 2−k

∑m
i=1 1 = m2−k < 1, since m < 2k.

Hence, by Markov’s inequality, p(X ≥ 1) ≤ E(X)
1 = E(X) < 1 so

p(X = 0) > 0. This shows that there is at least one of the 2n truth
assignments which satisfies all m clauses. �

The bound on the number of clauses in Theorem A is best possible:
suppose we have n = k and all the 2k clauses of size k over these variables
(every clause contains each variable either with or without negation), then
clearly this instance is not satisfiable, since no matter which truth assign-
ment we take, some clause will have all literals evaluating to 0. But observe
that removing just one we get a satisfiable instance by the theorem!

Using the same argument as above we get the following bound for general
SAT (clauses may have any size):

Theorem B Let F = C1 ∗C2 ∗ . . . ∗Cm be an instance of SAT1. If we have∑m
i=1 2−|Ci| < 1, then F is satisfiable. �

Corollary For all ε > 0 there exists a polynomial algorithm for solving
any instance of SAT over n variables x1, x2, . . . , xn in which all clauses have
size at least εn.

Proof: Let ε > 0 be given and let F = C1 ∗C2 ∗ . . . ∗Cm over the variables
x1, x2, . . . , xn satisfy that |Ci| ≥ εn for each i ∈ {1, 2, . . . ,m}. Suppose
first that m < 2εn. Then we have

m∑
i=1

2−|Ci| ≤
m∑
i=1

2−εn = m2−εn < 1

Hence it follows from Theorem B that F is satisfiable and our algo-
rithm stops with a “yes”. Clearly this can be checked in time polynomial
in |F| since we just need to check whether the number of clauses is less
than 2εn. Note that in this case we do not find a satisfying truth
assignment! We just answer correctly that there exists one.

1Over variables x1, x2, . . . , xn but they play no role in the argument.

Now suppose that we found that there was at least 2εn clauses. Then
we simply check all the 2n possible truth assignments to see whether one
of these satisfies F . If we find one that does, we stop and answer “yes”
otherwise, after checking that none of them satisfy F , we answer “no”.
The time required to do this is proportional to 2n|F|, where |F| is the size
of the formula F and hence of the input. Clearly |F| ≥ 2εn as all clauses
have size at least 1 (in fact |F| ≥ εn2εn). Form this we get that 2n ≤ |F| 1ε
so the running time of our algorithm is proportional to 2n|F| ≤ |F|1+ 1

ε

which is a polynomial in |F| because ε is a constant (when we have chosen
it). �

