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Ugeseddel 5

Lecture Monday December 6, 2010:

Kleinberg and Tardoés: Sections 13.1-13.3. This is in the red notes

Lecture Friday December 10, 2010:

Kleinberg and Tardés: Sections 13.4-13.5, 13.9.

Exercises Wednesday December 8, 2010:

Left over exercises from previous weekly notes.
Section 7.5: 6, 8, 14, 24, 26.

Section 7.6: 2, 4, 6, 22

2003.13.5 page 2

2005.06.6 page 12. Hint: You can use indicator random variables to estimate the
number of times a bit shifts.

Second obligatory assignment Has been available on the course page since November

29.

Notes on inclusion-exclusion.

A probability version of inclusion-exclusion:

Theorem 0.1 Let Ay, As, ..., A, be events in a probability space and denote by Sy
the following sum

1<i1<ig...<ip <n

Then we have

p<A1UA2UUAn):5’1_S2+ _|_(_1)n71Sn

Proof: We give a proof using indicator random variables. For a given event A and
element s in the sample space, the random variable 14(s) equals 1 if s € A (e.g. If
S is the set of outcomes of rolling a pair of dice, then s is a possible outcome, say
s = (3,5), so if Ay is the event that one of the die show an even number and A,
the event that the sum of the dices is even, then I4,(s) = 0 and I4,(s) = 1). The
usefulness of indicator random variables comes from the fact that E(14) = p(A).
This is seen as follows:

E(Ix) =) La(s)p(s) = D> p(s)1+ > p(s)0 = p(A).
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First we reformulate Theorem 1 page 503 in Rosen as the following result about
indicator random variables:

Iy a4, =2 (=D ) Lay, (1)

=t k=1 (IC{1,2,...n)}:|[I|=k}

where Ay = A, N A, N...NA;, when I = {iy,ia,..., 0}

Then take expected value on both sides and use linearity of expectation:

By, )=S0 ¥ B 2)

{Ic{1,2,...n}:|1|=k}

Now use that the expected value of the indicator function 7,4 is p(A):

n n

p(UJ4) =2 (=) > p(Ar), (3)

i=1 k= {Ic{1,2,...n}:|I|=k}

n n

(U 4) = S (=D s, (4)

i=1 k=

We can also prove (1) by observing that the following equality holds for all s € S:

0= (Za(s) = La,(8))(Ta(s) = La,(5)) - - (1a(s) = La,(s)), (5)

where A = U, A;. To see this simply observe that both sides evaluate to 0 when
s ¢ Aand if s € A; for some i then the term (I4(s) — I4,(s)) is zero. Now we get
(1) by expanding (5). Here we use that I%5(s) = I4(s) for all k > 1 and similarly for
all A;’s. You should try to make this calculation to see that you really get (1).

At the lecture on November 24 1 covered the following stuff on the chromatic poly-
nomial of a graph. Let ¢ be a positive integer. A t-colouring of a graph G = (V| E)
is any mapping f : V — {1,2,...,t}. Hence a graph on n vertices has ¢/ different ¢
colourings. We say that a t-colouring f of G is a proper t-colouring if f(u) # f(v)
whenever uwv € F, that is, uv is an edge of G.

The chromatic polynomial of a graph G = (V, E), denoted Pg(t) is the number
of proper t colourings of G. For a given graph G = (V, E') and an edge e = uv € F
we denote by G — e the graph we obtain by deleting the edge e from G, that is,
G' = (V,E\{e}). We also denote by G/e the graph we obtain by contracting the
edge e, that is, we delete the edge uv, identify v and v into one new vertex w and
replace all edges in G of the kind xy where z € V' — {u,v} and y € {u,v} by the
edge rw.

Proposition 0.2 For every natural number t and every graph G = (V, E) we have

Po(t) = Pa-e(t) — Pgye(t), (6)

where e is an arbitrary edge of G.



Proof: We show that Pg;_.(t) = Pg(t) + Pge(t). This follows from the sum rule:
If e = wwv, then the set of proper colourings of G — e can be divided into those
that colour u and v with different colours and those that colour them by the same
colour. This shows that Po_.(t) < Pg(t)+ Pg/e(t). On the other hand, every proper
t-colouring of G is clearly also a proper t-colouring of G — e and given any proper
t-colouring of G/e we get a proper t-colouring of G — e by undoing the contraction
and deleting the edge uv. Thus Pg_.(t) > Pq(t) + Pgye(t). o

Theorem 0.3 Let G be obtained from two distinct complete graphs on 3 vertices by
identifying one vertex from the first with one vertex in the second, that is, G = (V, E)
with V = {1,2,3,4,5} and E = {12,13,23,34,35,45}. Then Pg(t) = t(t — 1)*(t —
2)2.

Proof: Let e = 45. Then H = G — e has edges {12, 13,23,34,35} and W = G/e is
isomorphic to the graph vertex set {1, 2, 3,4} and edges {12, 13,23, 34}. If we delete
the edge 35 from H we get a graph which is W plus one extra vertex connected
to nothing. Hence Py(t) = (t — 1)Pw(t). To find Py (t) we consider the edge 34.
Deleting 34 from W gives us the complete graph K5 on 3 vertices plus an extra edge
connected to nothing. Hence Py (t) = (t — 1) Pk, (t). Clearly P, (t) =t(t—1)(t—2)
so Py (t) = t(t — 1)%(t — 2). Inserting this above we get Py (t) = t(t — 1)3(t — 2).
Finally we have

Po(t) = Py(t) — Py (t) = t(t — 1)°(t — 2) —t(t — 1)*(t — 2) = t(t — 1)*(t — 2)*.

o

We can also prove Theorem 0.3 via the principle of inclusion-exclusion as we show
below. Note that this is more cumbersome but still it illustrates the usefulness of
this counting tool.

Let ey, es,...,e¢ be an ordering of the six edges of G and let the event A; be that
both endvertices of A; get the same colour. Use N;, j = 1,2,...,6 for the number
of events in which j of the events Ay, As, ..., Ag occur. That is, Ny is the number of
t-colourings where precisely one of the edges has both endvertices coloured with the
same colour, Ny is the number of ¢-colourings where precisely two of the edges have
both endvertices coloured with the same colour, etc. We wish to find the number
of proper t-colourings which, according to the principle of including and excluding,
is the same as the number

N(AL AL, AL = N-i(_mim. (7)

i=1

Np: N; = 6t* since the two endvertices of some edge must get the same colour (¢
choices) and the other 3 vertices can get any colour. We can choose the special

edge in (?) = 6 ways.

Ny: N, = 15t as we can choose the two special edges in (g) = 15 ways and each of
these have t3 possible colourings (if the special edges cover 3 vertices we have
t choices for these and ¢ for each of the remaining 2 vertices. If they cover 4
vertices then we have t choices for each of the two edges and ¢ choices for the
last vertex).



Ngl

N4:

N5:

N6:

Ny = 18t% 4 2t3. This is seen as follows: there are (g) = 20 different ways to
select the 3 edges where both ends will be coloured the same. If these 3 edges
form one of the 2 triangles we have t choices for these vertices and ¢ for each of
the last two vertices. On the other hand if the 3 edges cover 4 vertices all these
vertices must get the same colour (¢ choices) and the remaining vertex also has
t choices. If the 3 edges cover all vertices then there must be two connected
components in the graph consisting of the 5 vertices and these 3 edges so again
we get t? colourings.

N, = 9t + 6t2. This is seen as follows: there are (i) = 15 different ways to
select the 4 edges where both ends will be coloured the same. If these edges
cover 4 vertices of GG then it is the graph W above and there are 4 copies of
this in G. These vertices get one of ¢ colours and the remaining vertex also
has t choices. If the 4 edges cover all vertices but not in a connected way, then
they form a triangle and the opposite edge from the other triangle. There are
2 of these and they can also be coloured in t? ways. The remaining possibility
is that the 4 edges form a spanning tree of G and hence there are t choices.

N5 = 6t since there are (g) = 6 ways of choosing the 5 edges where both ends

will be coloured the same. They always give a connected spanning subgraph
of G.

Ng =t this is clear.

Inserting in (7) we get

N(AL AL, ALY = 5 — 6t + 156% — [181% + 2% + [9t + 61%] — 6t + ¢
2 — 6t + 13t° — 12t + 4t
= t(t—1)*(t-2)%



