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Lecture Monday December 6, 2010:

• Kleinberg and Tardós: Sections 13.1-13.3. This is in the red notes

Lecture Friday December 10, 2010:

• Kleinberg and Tardós: Sections 13.4-13.5, 13.9.

Exercises Wednesday December 8, 2010:

• Left over exercises from previous weekly notes.

• Section 7.5: 6, 8, 14, 24, 26.

• Section 7.6: 2, 4, 6, 22

• 2003.13.5 page 2

• 2005.06.6 page 12. Hint: You can use indicator random variables to estimate the
number of times a bit shifts.

Second obligatory assignment Has been available on the course page since November
29.
Notes on inclusion-exclusion.

• A probability version of inclusion-exclusion:

Theorem 0.1 Let A1, A2, . . . , An be events in a probability space and denote by Sk

the following sum

Sk =
∑

1≤i1<i2...<ik≤n
p(Ai1 ∩ Ai2 ∩ . . . ∩ Aik).

Then we have

p(A1 ∪ A2 ∪ . . . ∪ An) = S1 − S2 + . . . + (−1)n−1Sn

Proof: We give a proof using indicator random variables. For a given event A and
element s in the sample space, the random variable IA(s) equals 1 if s ∈ A (e.g. If
S is the set of outcomes of rolling a pair of dice, then s is a possible outcome, say
s = (3, 5), so if A1 is the event that one of the die show an even number and A2

the event that the sum of the dices is even, then IA1(s) = 0 and IA2(s) = 1). The
usefulness of indicator random variables comes from the fact that E(IA) = p(A).
This is seen as follows:

E(IA) =
∑
s∈S

IA(s)p(s) =
∑
s∈A

p(s)1 +
∑
s∈Ā

p(s)0 = p(A).



First we reformulate Theorem 1 page 503 in Rosen as the following result about
indicator random variables:

I⋃n

i=1
Ai

=
n∑

k=1

(−1)k−1
∑

{I⊂{1,2,...,n}:|I|=k}
IAI

, (1)

where AI = Ai1 ∩ Ai2 ∩ . . . ∩ Aik when I = {i1, i2, . . . , ik}
Then take expected value on both sides and use linearity of expectation:

E(I⋃n

i=1
Ai

) =
n∑

k=1

(−1)k−1
∑

{I⊂{1,2,...,n}:|I|=k}
E(IAI

), (2)

Now use that the expected value of the indicator function IA is p(A):

p(
n⋃

i=1

Ai) =
n∑

k=1

(−1)k−1
∑

{I⊂{1,2,...,n}:|I|=k}
p(AI), (3)

p(
n⋃

i=1

Ai) =
n∑

k=1

(−1)k−1Sk, (4)

We can also prove (1) by observing that the following equality holds for all s ∈ S:

0 = (IA(s)− IA1(s))(IA(s)− IA2(s)) . . . (IA(s)− IAn(s)), (5)

where A =
⋃n

i=1 Ai. To see this simply observe that both sides evaluate to 0 when
s 6∈ A and if s ∈ Ai for some i then the term (IA(s) − IAi

(s)) is zero. Now we get
(1) by expanding (5). Here we use that IkA(s) = IA(s) for all k ≥ 1 and similarly for
all Ai’s. You should try to make this calculation to see that you really get (1).

• At the lecture on November 24 I covered the following stuff on the chromatic poly-
nomial of a graph. Let t be a positive integer. A t-colouring of a graph G = (V,E)
is any mapping f : V → {1, 2, . . . , t}. Hence a graph on n vertices has t|V | different t
colourings. We say that a t-colouring f of G is a proper t-colouring if f(u) 6= f(v)
whenever uv ∈ E, that is, uv is an edge of G.

The chromatic polynomial of a graph G = (V,E), denoted PG(t) is the number
of proper t colourings of G. For a given graph G = (V,E) and an edge e = uv ∈ E
we denote by G − e the graph we obtain by deleting the edge e from G, that is,
G′ = (V,E \ {e}). We also denote by G/e the graph we obtain by contracting the
edge e, that is, we delete the edge uv, identify u and v into one new vertex w and
replace all edges in G of the kind xy where x ∈ V − {u, v} and y ∈ {u, v} by the
edge xw.

Proposition 0.2 For every natural number t and every graph G = (V,E) we have

PG(t) = PG−e(t)− PG/e(t), (6)

where e is an arbitrary edge of G.



Proof: We show that PG−e(t) = PG(t) + PG/e(t). This follows from the sum rule:
If e = uv, then the set of proper colourings of G − e can be divided into those
that colour u and v with different colours and those that colour them by the same
colour. This shows that PG−e(t) ≤ PG(t)+PG/e(t). On the other hand, every proper
t-colouring of G is clearly also a proper t-colouring of G − e and given any proper
t-colouring of G/e we get a proper t-colouring of G− e by undoing the contraction
and deleting the edge uv. Thus PG−e(t) ≥ PG(t) + PG/e(t). �

Theorem 0.3 Let G be obtained from two distinct complete graphs on 3 vertices by
identifying one vertex from the first with one vertex in the second, that is, G = (V,E)
with V = {1, 2, 3, 4, 5} and E = {12, 13, 23, 34, 35, 45}. Then PG(t) = t(t − 1)2(t −
2)2.

Proof: Let e = 45. Then H = G− e has edges {12, 13, 23, 34, 35} and W = G/e is
isomorphic to the graph vertex set {1, 2, 3, 4} and edges {12, 13, 23, 34}. If we delete
the edge 35 from H we get a graph which is W plus one extra vertex connected
to nothing. Hence PH(t) = (t − 1)PW (t). To find PW (t) we consider the edge 34.
Deleting 34 from W gives us the complete graph K3 on 3 vertices plus an extra edge
connected to nothing. Hence PW (t) = (t−1)PK3(t). Clearly PK3(t) = t(t−1)(t−2)
so PW (t) = t(t − 1)2(t − 2). Inserting this above we get PH(t) = t(t − 1)3(t − 2).
Finally we have

PG(t) = PH(t)− PW (t) = t(t− 1)3(t− 2)− t(t− 1)2(t− 2) = t(t− 1)2(t− 2)2.

�
We can also prove Theorem 0.3 via the principle of inclusion-exclusion as we show
below. Note that this is more cumbersome but still it illustrates the usefulness of
this counting tool.

Let e1, e2, . . . , e6 be an ordering of the six edges of G and let the event Ai be that
both endvertices of Ai get the same colour. Use Nj, j = 1, 2, . . . , 6 for the number
of events in which j of the events A1, A2, . . . , A6 occur. That is, N1 is the number of
t-colourings where precisely one of the edges has both endvertices coloured with the
same colour, N2 is the number of t-colourings where precisely two of the edges have
both endvertices coloured with the same colour, etc. We wish to find the number
of proper t-colourings which, according to the principle of including and excluding,
is the same as the number

N(A′1, A
′
2, . . . , A

′
6) = N −

6∑
i=1

(−1)iNi. (7)

N1: N1 = 6t4 since the two endvertices of some edge must get the same colour (t
choices) and the other 3 vertices can get any colour. We can choose the special

edge in
(

6
1

)
= 6 ways.

N2: N2 = 15t3 as we can choose the two special edges in
(

6
2

)
= 15 ways and each of

these have t3 possible colourings (if the special edges cover 3 vertices we have
t choices for these and t for each of the remaining 2 vertices. If they cover 4
vertices then we have t choices for each of the two edges and t choices for the
last vertex).



N3: N3 = 18t2 + 2t3. This is seen as follows: there are
(

6
3

)
= 20 different ways to

select the 3 edges where both ends will be coloured the same. If these 3 edges
form one of the 2 triangles we have t choices for these vertices and t for each of
the last two vertices. On the other hand if the 3 edges cover 4 vertices all these
vertices must get the same colour (t choices) and the remaining vertex also has
t choices. If the 3 edges cover all vertices then there must be two connected
components in the graph consisting of the 5 vertices and these 3 edges so again
we get t2 colourings.

N4: N4 = 9t + 6t2. This is seen as follows: there are
(

6
4

)
= 15 different ways to

select the 4 edges where both ends will be coloured the same. If these edges
cover 4 vertices of G then it is the graph W above and there are 4 copies of
this in G. These vertices get one of t colours and the remaining vertex also
has t choices. If the 4 edges cover all vertices but not in a connected way, then
they form a triangle and the opposite edge from the other triangle. There are
2 of these and they can also be coloured in t2 ways. The remaining possibility
is that the 4 edges form a spanning tree of G and hence there are t choices.

N5: N5 = 6t since there are
(

6
5

)
= 6 ways of choosing the 5 edges where both ends

will be coloured the same. They always give a connected spanning subgraph
of G.

N6: N6 = t this is clear.

Inserting in (7) we get

N(A′1, A
′
2, . . . , A

′
6) = t5 − 6t4 + 15t3 − [18t2 + 2t3] + [9t + 6t2]− 6t + t

= t5 − 6t4 + 13t3 − 12t2 + 4t

= t(t− 1)2(t− 2)2.


