Institut for Matematik og Datalogi February 15, 2024
Syddansk Universitet JBJ

DM553 — Spring 2024— Weekly Note 4

First set of exam problems
These are available from itslearning and the homepage of the couse from February 15.

Key points:

A Turing machine (TM) is an automaton whose head can move both left and right.
Furthermore, a TM may alter its tape which is one-way infinite.

TM’s are much more powerful than DFA’s and PDA’s. In fact, a TM is generally
accepted to be as powerful as modern computers, as hypothesized by the Church-
Turing thesis.

TM'’s provide insight into the theoretical limits of computation, i.e. what computers
can do and how fast they can do it.

A TM M recognizes a language L iff every string in L leads M to its accept state.
Strings not in L will either lead to the reject state or M will loop forever. L(M)
denotes the language recognized by M. Note that every TM recognizes exactly
one language, namely the set of strings started upon which it halts in its accept
state!

A language L is called recognizable if there is some TM M that recognizes L. The
class of recognizable languages is set of all the languages which are recognized by
some TM.

A TM M decides a language L iff every string in L leads M to its accept state and
every string not in L leads M to its reject state. In particular, M halts on every
string!

A decider is a TM that always halts (and thus ends in either its accept state or in
its reject state). Every TM which is a decider decides exactly one language
namely the set of strings started upon which it halts in its accept state!

A language L is called decidable if there is some TM M that decides L. The class
of decidable languages is set of all the languages which are decided by some TM.

If a language is decidable, then it is also recognizable but the opposite is not always
true as we shall see soon!

There are different ways to specify a TM: transition table, pseudo code, state diagram,
and high level description.

e Terminology:

Different books use different names for the same concept. In old exam problems you
may find names different from the ones used in the book.

— Turing computable (Turing beregneligt) = decidable (afggrligt) = recursive
(rekursivt)

— Partial Turing computable (partielt Turing beregneligt) = semidecidable (semi-
afgorligt) = recursively enumerable (rekursivt enumerabelt) = Turing enumer-
able (Turing enumerabelt) = recognizable

e [described a couple of elementary TM’s which can be used as subroutines These are

— Shift right (Sg) which starts in the configuration gyw and ends in the configu-
ration Quecept > W.

— Shift left (S;) which starts in the configuration gy#w and ends in the configu-
ration ggeceprw. Here # is some symbol not in the alphabet of the language L
that we work on.

These are just a few examples of useful subroutines one can easily make. There are
more in the exercises below. Note that given such subroutines we can now start
building more complicated ones by concattenating these or using them as “states”
in diagrams. By this we mean the following: Suppose My, My, M3 are different TMs
with the same input alphabet. Then by M;M;Ms; we mean the TM that starts in
the stating state of M; and runs M;. Then when M; would stop in its accepting
state, we start M, and run it etc. We can also make arrows like this M; — M, which
is supposed to mean that we first run M; and then if it stops in its accepting state
and the head is reading the symbol a, then we start M, with its head in the current

position. Similarly we could write M; i M3 to mean that when M; stops we start
M3 provided that the character current read is not 'a’. Finally M; — M, means the
TM that starts as M; and then, if M, finishes in its accepting state, starts My from
the tape position that M; stopped in. Now you should be able to continue this idea
and draw diagrams of fairly complicated TMs starting from simple TMs as building
blocks.

Lectures in Week 8:
These will be on Section 3.2 on various extensions of the standard Turing machine. I will

probably also start on Section 3.3. The relevant videos are Videos 8, 9 and some of Video
10.

Exercises in Week 8

e 3.2 (b)-(d) on page 187 (same in 3rd edition)

Figure 1: In (a) the TM moves right and the erases ’a’s until a symbol different from ’a’ is
read. In (b) we show a diagram of Sg (the right shifting machine). Note that here we use
the notation that the TM remembers a after reading it so that it can write it later (one
position to the right). The Turing machine R, moves right until it finds a blank to the
right of its starting position (so if it started on a blank, it will still move one step right).
You will study how to find the building blocks (small TMs) in the exercises below.

e 3.7 and 3.8 on page 188 (same in 3rd edition)

e Describe a Turing machine for deciding the language L = {a"b™|n > 1}. Here
nl=n-(n—1)-...- 1L

e Exam 2002 problem 5.

e This exercise is about constructing some simple Turing machines. For each of the
following you should explain how to realize TMs with excatly that property. Once
you have constructed a TM you may use it as a building block for constructing other
TMs. Note that we do not assume that these TMs are started on the leftmost cell
of the tape!

The TM R that just moves its head one position to the right from where it is
started and stops.

The TM L that just moves its head one position to the left from where it is
started and stops. Note that here you need to say what L will do if is it started
on the leftmost tape cell.

The TM R,, where a € T', for some alphabet I'. R, will move to the right until
it finds the symbol ’a’ and then it will stop. Note that if there is no 'a’ to the
right of the current head position, then R, will never stop. Note that R, always
moves at least one step to the right!

The TM R.q, where a € I', for some alphabet I'. R, will move to the right
until it finds a symbol that is different from ’a’. Again R, will always move at
least one step to the right.

— The left moving equivalents L, and L., of R, and R,.

— The TM a, where a € T', for some alphabet I"'. This TM simply writes the
symbol ’a’ and stops (gives over control to the next TM in some sequence that
we are building when we use this as a subroutine).

Here are some examples of what you can do with these simple machines:

— Construct a TM M that decides the language {a"b"c"|n > 0}. You should
explain important steps of the TM and produce a diagram of M as composed
by simple TMs ala the ones described above.

— Make a TM diagram for the TM C' (Copy). Recall that Copy starts in the
configuration g,w and ends in the configuration geceprww.

— Describe a Turing machine M which given a string w = wyws . . . w, returns the
string weqq where wygq = wiws . . . wy_ow, if nis odd and wyqq = wyws . . . W, _3w,_1
if n is even. That is, M starts in the configuration gyw and ends in the config-
uration GuceeptWodd-

