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Theorem 0.1 (Hoffmann’s circulation theorem) Let N = (V,A, `, u) be a network. There ex-
ists a feasible circulation in N if and only if the following holds

`(S, S̄) ≤ u(S̄, S) for all ∅ 6= S ⊂ V

1 Generalized matchings in graphs

A generalized matching MG in a graph is a collection of edges e1, e2 . . . , ek, k ≥ 0 and odd cycles
C1, . . . , Cr, r ≥ 0, such that e1, e2 . . . , ek form a matching M and C1, . . . , Cr are disjoint and none of
them contain a vertex from M .

Theorem 1.1 Let G = (V,E) be an undirected graph. Then G has a generalized matching if and
only if G does not contain a set of vertices X which is independent (no edge inside G[X]) and has
|N(X)| < |X|.

Proof: If G has a generalized matching MG, then there cannot exist an independent set X with
|N(X)| < |X| since each vertex in X will have a private neighbour outside S in MG (there are no
edges inside X). We will show how to use Hoffmann’s circulation theorem to prove the other direction
in the claim.

For a given undirected graph G = (V,E) we denote by
↔
G the digraph we obtain from G be replac-

ing each edge by a directed 2-cycle.

Observation 1: G has a generalized matching if and only if
↔
G has a cycle factor.

To see this, first consider a generalized matching MG consisting of edges e1, e2 . . . , ek, k ≥ 0 and

odd cycles C1, . . . , Cr, r ≥ 0. In
↔
G these correspond to a cycle factor consisting of a 2-cycle uvu for

each edge ei = uv and an an odd directed cycle C ′
i obtained by fixing an orientation of Ci as a directed

cycle for each cycle Ci. For the other direction suppose that F = W1,W2, . . . ,Wp,Wp+1, . . . ,Wp+q

is a cycle factor in
↔
G, where W1, . . . ,Wp are even cycles and Wp+1, . . . ,Wp+q are odd cycles. Then

we obtain a generalized matching MG by taking every second arc of the even cycles in W1, . . . ,Wp,
deleting the orientation of those arcs, and, for each cycle Wp+i, taking the odd cycle Cp+i in G which
corresponds to Wp+i (delete the orientation of the arcs of Wp+i).

Now let D be obtained from
↔
G by performing the vertex-splitting technique, that is, we replace

each vertex v by two copies v′, v′′, add the arc v′v′′ and for each arc vw of
↔
G we add the arc v′′w′.

Note that by this process every 2-cycle wvw of
↔
G becomes a directed 4-cycle w′w′′v′v′′w′.

Observation 2: D has a cycle factor if and only if
↔
G has a cycle factor.

This is easy to see: if w1w2 . . . wkw1 is a cycle in
↔
G, then w′

1w
′′
1w

′
2w

′′
2 . . . w

′
kw

′′
kw

′
1 is a cycle in D

and conversely.
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Let N be the network that we obtain from D by adding the following lower bounds and capacities.

• Arcs of the type v′v′′ (split arcs) have `v′v′′ = uv′v′′ = 1

• Arcs of the type v′′w′ have `v′′w′ = 0 and uv′′w′ =∞.

Observation 3: D has a cycle factor if and only if N has a feasible circulation

If D has a cycle factor C1, C2, . . . , Ck, then we obtain a feasible circulation in N by sending one
unit of flow along each of the cycles. Conversely, if x is a feasible circulation in N , then x decomposes
into cycle flows of value one along cycles W1, . . . ,Wr. These are all disjoint because uv′v′′ = 1 which
ensures that at most one unit of flow can pass through the arcs (and `v′v′′ = 1, then ensures that
exactly one unit of flow will pass through that arc). Hence W1, . . . ,Wr is a cycle factor of D.

Now we are ready to finish the proof of the theorem. Suppose that there is no generalized matching
in G. By the observations above, this means that there is no feasible circulation in N . By Theorem 0.1
this means that there is a cut (S, S̄) such that `(S, S̄) > u(S̄, S). The only arcs that have a non-zero
lower bound come from the arcs of the form v′v′′. Let X ′ ⊆ S be the set of tails of arcs with lower
bound 1 from S to S̄, let X ′′ ⊆ S̄ be the heads of those arcs and let X be the corresponding set of

vertices in
↔
G (so X ′ = {v′|v ∈ X} and X ′′ = {v′′|v ∈ X}). Since uv′′w′ =∞ for every arc in N which

is not a split arc and `(S, S̄) > u(S̄, S), we conclude that there is no arc from X ′′ to X ′ in N . Thus

X is an independent set in
↔
G (and hence in G). As u(S̄, S) < `(S, S̄) the only arcs that can cross

from S̄ to S are those of the form w′w′′ where w′ ∈ S̄ and w′′ ∈ S. As we described above, an edge
of G corresponds to a 4-cycle in N , so if w ∈ V −X is adjacent in G to some vertex v ∈ V , then the
4-cycle v′′w′w′′v′v′′ is in N and since the arcs v′′w and w′′v′ have infinite capacity we get that w′ ∈ S̄
and w′′ ∈ S, implying that the arc w′w′′ goes from S̄ to S. But since u(S̄, S) < `(S, S̄) this means
that there can be at most |X| − 1 such vertices w in G. This shows that |N(X)| < |X|. �

2 Cycle subgraphs covering prescribed vertex sets

Recall that for a digraph D we denote by α(D) the size of a maximum independent set in D. For a
subset Z of the vertices of a digraph D we denote by D[Z] the subdigraph induced by the vertices in
Z, that is, we keep only the vertices of Z and those arcs that have both end vertices in Z.

Theorem 2.1 Let D′ = (V,A) be a k-strong digraph and let Z ⊂ V satisfy that α(Z) ≤ k. Then D′

has a cycle subdigraph which covers Z.

Proof: Let D be obtained from D′ by the vertex splitting technique as we obtained D from
↔
G

in the proof of Theorem 1.1. Construct the network N by adding the following lower bounds and
capacities to the arcs of D.

• Arcs of the kind v′v′′ where v ∈ Z have `v′v′′ = uv′v′′ = 1.

• Arcs of the kind v′v′′ where v 6∈ Z have `v′v′′ = 0 and = uv′v′′ = 1.

• Arcs of the kind v′′w′ have `v′′w′ = 0 and uv′′w′ =∞

As in the proof of Theorem 1.1 it is easy to see that D′ has a cycle subdigraph which covers Z if
and only if N has a feasible circulation (this time a feasible circulation still decomposes into disjoint
cycles of D but these no longer need to cover all vertices, just those corresponding to Z vertices).
Hence it suffices to prove that there must exist a feasible circulation on N when D′ is k-strong.

Suppose there is no such circulation. Then by Theorem 0.1 there is a cut (S, S̄) satisfying that
`(S, S̄) > u(S̄, S). Let X ′, X ′′ be the sets that we defined in the proof of Theorem 1.1 (those that are
end vertices of arcs with lower bound 1 from S to S̄. As in that proof we can conclude that N has no
arc from a vertex in X ′′ to one in X ′ so X is an independent set in D′. We can also conclude that
|X| > 1 since D′ is k-strong and k ≥ 1 (we just need that D is strongly connected) which implies that
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there is at least one arc from S̄ to S. We are going to show that there are in fact at least |X| such
arcs and thus that u(S̄, S) ≥ `(S, S̄), contradicting the assumption above.

Fix two vertices v1, v2 ∈ X. As D′ is k-strong and there is no arc from V1 to v2 in D′ (X is
independent) it follows from Menger’s theorem that D′ has k internally disjoint paths P1, . . . , Pk from
v1 to v2. In N these correspond to k internally disjoint paths Q1, . . . , Qk from v′′1 to v′2 (by vertex
splitting along each path). Each of these paths start in S̄ and end in S so they each contribute at least
one to u(S̄, S). But now we get the contradiction `(S, S̄) = |X| ≤ α(D[Z]) ≤ k ≤ u(S̄, S), completing
the proof. �

By inspecting the proof above we can easily see that the following holds.

Corollary 2.2 A digraph D = (V,A) has a cycle factor if and only if there is no subset W ⊆ V such
that W is independent and we can kill all paths from W to itself by deleting less than |W | vertices.

Proof: This is because paths from the independent set X, that we identified in the proof above
from the assumption that there exist a set S with `(S, S̄) > u(S̄, S), to itself will correspond to paths
from X ′′ to X ′ in N and each will contribute at least one to u(S̄, S). Hence if the assumption of
the corollary holds, then we need to delete at least |X| vertices to kill all paths from X to itself. So
u(S̄, S) will be at least |X|, implying that `(S, S̄) > u(S̄, S) cannot hold (if it was smaller we could
delete the vertices of D corresponding to the arcs crossing from S̄ to S). �
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