342 9. Branchings

Corollary 9.1.3 (Kirchoff’s Matrix Tree Theorem) [596] The number
of spanning trees in an undirected graph G on n vertices is equal to any one

of the numbers det(K(a;-)), i € [n].

Proof: Fix an arbitrary vertex r in G and observe that every spanning tree T’

in G corresponds to a unique out-branching B;' in 5 Now the claim follows
from Theorem 9.1.2. O

Since the determinant of a matrix can be calculated efficiently we obtain
the following (see, e.g., [405, page 53]).

Corollary 9.1.4 There is an O(n®) algorithm for finding the number of out-
branchings rooted at a given of a directed multigraph on n vertices. O

If we actually wanted to list all out-branchings in a digraph D, we clearly
have to spend time at least proportional to the number of such branchings in
D. In [582] Kapoor and Ramesh give an O(Nn + n?) algorithm for listing all
out-branchings in a directed multigraph on n vertices and N out-branchings.
The algorithm is based on generating one out-branching from another by a
series of arc swaps.

9.2 Optimum Branchings

Given a directed multigraph D = (V, A) a special vertex s and a non-negative
cost function w on the arcs. What is the minimum cost (measured as the sums
of the arc costs) of an out-branching B;" rooted at s in D? This problem,
which is a natural generalization of the minimum spanning tree problem for
undirected graphs (Exercise 9.6), is called the minimum cost branching
probl em The problem arises naturally in applications where one is seeking a
minimum cost subnetwork which allows communication from a given source
to all other vertices in the network (see the discussion at the end of the
section).

It is easy to find a minimum spanning tree in an undirected graph. The
greedy approach works as follows: order the edges according to their weights
in increasing order £ = {ey, ea,...,€en, }. Start from 7' = () and go through &
while always adding the next edge to T if it can be added without creating a
cycle. This is the so-called Kruskal algorithm (see, e.g., [232]). It is not difficult
to construct examples which show that using a similar greedy approach to
find a minimum cost out-branching in a directed multigraph may be incorrect
(Exercise 9.2).

The minimum cost branching problem was first shown to be polynomially
solvable by Edmonds [283]. Later Fulkerson [366] gave a two-phase greedy al-
gorithm which solves the problem very elegantly. The fastest algorithm for the
problem is due to Tarjan [844]. Tarjan’s algorithm solves the problem in time



9.2 Optimum Branchings 343

O(mlogn), that is, with the same time complexity as Kruskal’s algorithm for
undirected graphs [231]. The purpose of this section is to describe two differ-
ent algorithms for finding minimum cost out-branching in a weighted directed
multigraph. First we show how to solve the problem using matroids and then
we give a simple direct algorithm based on Edmonds’ original algorithm.

9.2.1 Matroid Intersection Formulation

To illustrate the generality of matroids, let us show how to formulate the
minimum cost branching problem as a weighted matroid intersection problem.
We refer to Section 18.8 for relevant definitions on matroids.

Let D = (V, A) be a directed multigraph and let r € V' be a vertex which
can reach all other vertices by directed paths. We define M; = (A,Z;) and
M, = (A, T,) as follows (here I;,Z, C 24):

e A’ € I; if and only if no two arcs in A’ have a common head and no arc
has head r,
e A" € T, if and only if UG(D(A")) has no cycle.

It follows from the definition of M, that M, is the circuit matroid of
UG(D) (see Section 18.8). It is easy to show that M; satisfies the axioms
(I1)-(I3) and hence is a matroid. In particular, all maximal members of Z;
have the same size n — 1 (by our assumption, every vertex in V — r has at
least one in-neighbour) and thus the rank of M; isn — 1.

Since r can reach all other vertices, UG(D) is connected and hence the
rank of My is also n — 1. We claim that every common base of M; and M,
is an out-branching with root r. This follows easily from the definition of an
out-branching and the fact that any common base corresponds to a spanning
tree in UG(D), since M2 has rank n — 1.

Thus we can find an out-branching with root r by applying the algorithm
for matroid intersection of Theorem 18.8.11 to the pair M;, M. Of course
such an out-branching can be found much easier by using, e.g., DFS starting
from r. However, the point is that using the algorithm for weighted ma-
troid intersection, we can find a minimum cost out-branching B;" in D. It is
easy to see that the required oracles for testing independence in M; and M,
can be implemented very efficiently (Exercise 9.3). In fact (and much more
importantly in the light of the existence of other and more efficient algo-
rithms for minimum cost branchings), using matroid intersection algorithms
we can even find a minimum cost subdigraph which has k£ out-branchings
with a specified root s in a directed multigraph with non-negative weights
on the arcs (Exercise 9.4). Furthermore, in Exercise 9.5, the reader is asked
to show that one can also solve the following problem, using matroid inter-
section: Given directed multigraphs D = (V, A) and D’ = (V, A’) on the
same vertices, a cost function ¢ on A’, a natural number k£ and a vertex
s € V. Find a minimum cost set of arcs A* C A’ such that the directed
multigraph D* = (V, AU A*) has k arc-disjoint out-branchings rooted at s.



344 9. Branchings

Clearly, the minimum cost branching problem corresponds to the case when
A = (). Hence, using matroid intersection formulations, one can in fact solve
problems which are much more general than the minimum cost branching
problem.

9.2.2 A Simple Algorithm for Finding a Minimum Cost
Out-Branching

Below we will often call a minimum cost out-branching an optimum out-
branching. Let D = (V, A) be a directed multigraph with a designated root
r € V and ¢ a non-negative cost vector on A. Denote by y,, v € V —r, the
minimum cost of an arc entering v. The following easy observation is the key
to the algorithm below.

Lemma 9.2.1 Let ¢ be the cost function on A defined by ¢’ (uv) = c(uv) —
yy. Then B} is an optimum branching with respect to c if and only if it is
optimum with respect to c'.

Proof: Since every vertex except r has precisely one arc entering it in any
out-branching, ¢(B;") = ¢/(Bjf) + 3> ,cy_, ¥» holds for an arbitrary out-
branching B; and the claim follows. O

For a given directed multigraph D and weight function ¢, let F* be a
subdigraph of D obtained by taking a minimum cost arc entering each vertex
except r, that is, dp.(v) = 1 for v # r. Note that the cost of F* is zero with
respect to ¢’ and hence the following holds, by Lemma 9.2.1.

Lemma 9.2.2 If F* is an out-branching, then it is optimum. O

The following result is due to Karp.

Lemma 9.2.3 [584] There exists an optimum out-branching with root r
which contains all but one arc of every cycle C in F*.

Proof: Let B; be an optimum out-branching which contains the maximum
number of arcs from F*. If F'* is itself a branching, then, by Lemma 9.2.2,
we have B = F*, so assume that C is a cycle in F* and suppose A(C) —
A(B}) = {uiv1,uqvs, ..., uxvx} has at least 2 arcs and occurring in that
order on C. Consider an arbitrary vertex v;, ¢ € [k], and denote by a(v;) the
arc entering v; in B;". By the choice of B;', H; = B;} + u;v; — a(v;) is not an
out-branching. This implies that H; contains a cycle which consists of the arc
u;v; and a path P, which starts in v; and ends in u;. Consider the last arc zy
of P; which does not belong to C. As H; contains all the arcs of Clv;_1,u;]
and every vertex of C has in-degree one in H; it follows that y = v;_; (indices
are taken modulo k). Thus we have shown that H; and hence B;" contains
a (vi,v;—1)-path. However, this holds for every i € [k] and so B; contains a



9.3 Arc-Disjoint Branchings 345

directed cycle!, a contradiction. Hence we have shown that B;" contains all
but one arc of C. O

When we contract the cycle C below to get the weighted directed multi-
graph D/C, the arcs incident to ve inherit the costs from the original arcs
between C' and V — C.

Lemma 9.2.4 If C is a cycle in F* and W' is an optimum out-branching
in D/C (the directed multigraph obtained by contracting C to a vertex vc),
then we can obtain an optimum branching B} in D by replacing ve by C
minus one arc.

Proof: Let zvc be the unique arc of W, entering ve and let y € V(C)
be chosen so that zy € A and has the same cost as zve in D/C. Clearly
we can extend W, to an out-branching B, of D by blowing up C' again
and deleting the unique arc of C which enters y (arcs leaving vc in W, are
replaced by corresponding arcs starting in vertices from C'). By Lemma 9.2.3,
there exists an optimum out-branching B,*’ containing all but one arc of C' and
contracting C will transform B; into an out-branching B;* in D/C. Now, by
Lemma 9.2.1, it follows from the fact that W' is an optimum out-branching
in D/C and C has cost zero w.r.t. ¢ that ¢/(B;}) > ¢/(B;}), implying that
B; is an optimum out-branching. O

Theorem 9.2.5 [283] There is a polynomial algorithm for the minimum cost
out-branching problem.

Proof: We may assume that the root r can reach every other vertex, as
otherwise no branching exists. The algorithm is very simple. First construct
F* and search for a cycle in it. If F'* is acyclic, it is the desired branching.
If F* contains a cycle C, let D' = D/C and solve the problem recursively
in D'. Finally convert the optimum out-branching in D’ to an optimum out-
branching of D as described in the proof of Lemma 9.2.4. This algorithm can
easily be implemented as an O(n(n + m)) algorithm. O

9.3 Arc-Disjoint Branchings

This section is devoted to a very important result due to Edmonds [285].
The result can be viewed as just a fairly simple generalization of Menger’s
theorem. However, as will be clear from the next subsections, it has many
important consequences.

! Note that when k = 1 we do not get the contradiction since P, is simply C[v1,u1].



