Expectation is not everything...

With probability 0.99, you owe me \$10; with probability 0.01, I owe you \$1000. Would you play this game?

Expectation is not everything. . .

With probability 0.99, you owe me \$10; with probability 0.01, I owe you \$1000. Would you play this game?

$$X = your$$
 winning (in \$). $E[X] = 0.1$.

$$Y = my$$
 winning (in \$). $E[Y] = -0.1$.

Expectation is not everything. . .

With probability 0.99, you owe me \$10; with probability 0.01, I owe you \$1000. Would you play this game?

$$X = your \text{ winning (in \$)}. \ \mathbf{E}[X] = 0.1. \ \text{But } Pr(X \ge \mathbf{E}[X]) = 0.01$$
 (in fact, $Pr(X \ge 0) = 0.01$)

$$Y = my$$
 winning (in \$). $\mathbf{E}[Y] = -0.1$. But $Pr(Y \ge \mathbf{E}[Y]) = 0.99$ (in fact, $Pr(Y > 0) = 0.99$)

Which algorithm would you prefer?

- 1 The expected run time of the algorithm is 1 hour but it will take 100 hours in 1% of the runs.
- 2 The run time is always 2 hours.

We need to bound the probability that the run time of the algorithm deviates significantly from its average.

Bounding Deviation from Expectation

Theorem

[Markov Inequality] For any non-negative random variable X, and for all a > 0,

$$Pr(X \ge a) \le \frac{E[X]}{a}$$
.

Proof.

$$E[X] = \sum iPr(X = i) \ge a \sum_{i \ge a} Pr(X = i) = aPr(X \ge a).$$

Example: What is the probability of getting more than $\frac{3N}{4}$ heads in N coin flips? $\leq \frac{N/2}{3N/4} \leq \frac{2}{3}$.

Variance

Definition

The **variance** of a random variable X is

$$Var[X] = \mathbf{E}[(X - \mathbf{E}[X])^2] = \mathbf{E}[X^2] - (\mathbf{E}[X])^2.$$

Definition

The **standard deviation** of a random variable X is

$$\sigma(X) = \sqrt{Var[X]}.$$

Example: Let X be a 0-1 random variable with

$$Pr(X = 0) = Pr(X = 1) = 1/2.$$

$$E[X] = 1/2.$$

$$Var[X] = E[(X - E[X])^{2}]$$

$$= \frac{1}{2} \left(1 - \frac{1}{2}\right)^{2} + \frac{1}{2} \left(0 - \frac{1}{2}\right)^{2}$$

$$= \frac{1}{4}$$

Chebyshev's Inequality

Theorem

For any random variable X, and any a > 0,

$$Pr(|X - E[X]| \ge a) \le \frac{Var[X]}{a^2}$$
.

Proof.

$$Pr(|X - E[X]| \ge a) = Pr((X - E[X])^2 \ge a^2)$$

By Markov inequality

$$Pr((X - E[X])^2 \ge a^2) \le \frac{E[(X - E[X])^2]}{a^2}$$

$$= \frac{Var[X]}{a^2}$$

For any random variable X and any a > 0:

$$Pr(|X - E[X]| \ge a\sigma[X]) \le \frac{1}{a^2}.$$

Theorem

For any random variable X and any $\varepsilon > 0$:

$$Pr(|X - E[X]| \ge \varepsilon E[X]) \le \frac{Var[X]}{\varepsilon^2 (E[X])^2}.$$

If X and Y are independent random variables

$$E[XY] = E[X] \cdot E[Y].$$

Proof.

$$E[XY] = \sum_{i} \sum_{j} i \cdot j Pr((X = i) \cap (Y = j)) =$$

$$\sum_{i} \sum_{j} ij Pr(X = i) \cdot Pr(Y = j) =$$

$$\left(\sum_{i} iPr(X = i)\right) \left(\sum_{i} jPr(Y = j)\right).$$

If X and Y are independent random variables

$$Var[X + Y] = Var[X] + Var[Y].$$

Proof.

$$Var[X + Y] = E[(X + Y - E[X] - E[Y])^{2}] =$$

$$E[(X - E[X])^{2} + (Y - E[Y])^{2} + 2(X - E[X])(Y - E[Y])] =$$

Var[X] + Var[Y] + 2E[X - E[X]]E[Y - E[Y]]

Since the random variables X - E[X] and Y - E[Y] are independent.

But E[X - E[X]] = E[X] - E[X] = 0.

Bernoulli Trial

Let X be a 0-1 random variable such that

$$Pr(X = 1) = p,$$
 $Pr(X = 0) = 1 - p.$

$$E[X] = 1 \cdot p + 0 \cdot (1 - p) = p.$$

$$Var[X] = p(1-p)^2 + (1-p)(0-p)^2 = p(1-p)(1-p+p) =$$

$$p(1-p)$$
.

A Binomial Random variable

Consider a sequence of n independent Bernoulli trials $X_1, ..., X_n$. Let

$$X = \sum_{i=1}^{n} X_i.$$

X has a **Binomial** distribution $X \sim B(n, p)$.

$$Pr(X = k) = \binom{n}{k} p^k (1-p)^{n-k}.$$

$$E[X] = np.$$

$$Var[X] = np(1-p).$$

Back to Coin Flips

Assume again that we flip N coins. Let X be the number of heads. $X_i = 1$ if the i-th flip was a head else $X_i = 0$. $E[X_i] = 1/2$. $Var[X_i] = 1/4$.

$$Pr(X \ge 3N/4) \le Pr(|X - E[X]| \ge N/4) =$$
 $Pr(|X - E[X]| \ge E[X]/2) \le \frac{Var[X]}{(E[X])^2(1/4)} =$
 $\frac{N/4}{(N^2/4)(1/4)} = 4/N.$

A significantly better bound than 2/3.

The Advantage of Multiple Samples

Theorem

For any random variable X and constant a,

$$Var[aX] = a^2 Var[X].$$

Proof.

$$Var[aX] = E[(aX - E[aX])^2] = E[a^2(X - E[X])^2]$$

= $a^2E[(X - E[X])^2] = a^2Var[X].$

Let X_1, \ldots, X_n be *n* independent, identically distributed random

variables. Let
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
.

$$Var[\bar{X}] = Var \left[\frac{1}{n} \sum_{i=1}^{n} X_i \right] = \frac{1}{n^2} Var \left[\sum_{i=1}^{n} X_i \right] = \frac{1}{n} Var[X_i].$$

The (Weak) Law of Large Numbers

Theorem

Let $X_1, ..., X_n$ be independent, identically distributed, random variables. Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. For any constant $\varepsilon > 0$,

$$\lim_{n\to\infty} \Pr(|\bar{X}_n - \mathbf{E}[X_i]| \le \varepsilon) = 1.$$

Proof.

 $Var[\bar{X_n}] = \frac{1}{n} Var[X_i]$. Applying Chebyshev's inequality

$$\Pr(|\bar{X}_n - \mathbf{E}[X_i]| > \varepsilon) \le \frac{Var[X_i]}{n\varepsilon^2}.$$

[Can be proven even when $Var[X_i]$ is not bounded.]

Algorithm for Computing the Median

The **median** of a set S of n distinct elements is the $\lceil \frac{n}{2} \rceil$ largest element in the set.

If n = 2k + 1, the median element is the k + 1-th element in the sorted order.

Algorithm for Computing the Median

The **median** of a set S of n distinct elements is the $\lceil \frac{n}{2} \rceil$ largest element in the set.

If n = 2k + 1, the median element is the k + 1-th element in the sorted order.

Easily computed through sorting in $O(n \log n)$ time. There exists a complicated O(n) deterministic algorithm.

Randomized Median Algorithm

Input: A set S of n = 2k + 1 elements from a totally ordered universe.

Output: The k + 1-th largest element in the set.

- 1 Pick a (multi)-set R of $s = n^{3/4}$ elements in S, chosen independently and uniformly at random with replacement. Sort the set R.
- 2 Let d be the $(\frac{1}{2}n^{3/4} \sqrt{n})$ -th smallest element in the sorted set R.
- 3 Let u be the $(\frac{1}{2}n^{3/4} + \sqrt{n})$ -th smallest element in the sorted set R.
- 4 By comparing every element in S to d and u compute the set

$$C = \{x \in S : d \le x \le u\}$$
, and the numbers $\ell_d = |\{x \in S : x < d\}|$ and $\ell_u = |\{x \in S : x > u\}|$.

- $\ell_d = |\{x \in S : x < d\}| \text{ and } \ell_u = |\{x \in S : x > u\}|.$ **5** If $\ell_d > n/2$ or $\ell_u > n/2$ then FAIL.
- 6 If $|C| \le 4n^{3/4}$ then sort the set C, otherwise FAIL.
- 7 Output the $(\lfloor \frac{n}{2} \rfloor \ell_d + 1)$ -st element in the sorted order of C.

Analysis

Theorem

The randomized median algorithm terminates in O(n) time.

Theorem

If the randomized median algorithm does not output FAIL, then it outputs the median of ${\bf S}$.

Analysis

Theorem

The randomized median algorithm succeeds with probability

$$\geq 1 - \frac{1}{n^{1/4}}$$
.

Intuition

- We can sort sets of size $< n/\log n$ in linear time.
- The sample of *R* elements are spaced "more or less" evenly among the elements of *S*.
- W.h.p. more than $\frac{1}{2}n^{3/4} \sqrt{n}$ samples are smaller than the median.
- W.h.p. more than $\frac{1}{2}n^{3/4} \sqrt{n}$ samples are larger than the median.
- W.h.p. the median is in the set C, and $|C| \le 4n^{3/4}$.

Let Y_1 be the number of samples below the median.

Let $\frac{Y_2}{Y_2}$ be the number of samples above the median.

The algorithm fails to compute the median in O(n) time if and only if at least one of the following three events occurs:

1
$$E_1: Y_1 < \frac{1}{2}n^{3/4} - \sqrt{n}$$
.

2
$$E_2: Y_2 < \frac{1}{2}n^{3/4} - \sqrt{n}$$
.

3
$$E_3: |C| > 4n^{3/4}$$
.

What is the probability that the three random variables Y_1 , Y_2 and |C| are all within the required ranges?

The sample space in execution of this algorithm is the set of all possible choices of $n^{3/4}$ elements from n, with repetitions. (The sample space has $\Theta(n^{3/4})$ points.)

Each point in the sample space defines values for Y_1 , Y_2 and |C|. Computing the probabilities directly is too complicated, instead we use bounds on deviation from the expectation.

 Y_1 be the number of samples below the median. What is the probability that $Y_1 < \frac{1}{2} n^{3/4} - \sqrt{n}$? Viewing Y_1 as the sum of $n^{3/4}$ independent 0-1 random variables, each with expectation 1/2 and variance 1/4 we prove (not counting the median itself):

$$E[Y_1] = \frac{1}{2}n^{3/4}.$$

$$Var[Y_1] = \frac{1}{4}n^{3/4}.$$

Applying Chebyshev Inequality we get:

$$Pr(E_1) = Pr\left(Y_1 < \frac{1}{2}n^{3/4} - \sqrt{n}\right) \le Pr(|Y_1 - E[Y_1]| > \sqrt{n}) \le$$

$$\frac{Var[Y_1]}{n} = \frac{n^{3/4}/4}{n} = \frac{1}{4}n^{-1/4}.$$

Similarly

$$Pr(E_2) = Pr\left(Y_2 < \frac{1}{2}n^{3/4} - \sqrt{n}\right) \le \frac{1}{4}n^{-1/4}.$$

$$Pr(E_1 \cup E_2) \leq \frac{1}{2}n^{-1/4}.$$

Recall: E_3 : $|C| > 4n^{3/4}$.

Lemma

$$\Pr(E_3) \leq \frac{1}{2} n^{-1/4}.$$

Define the following two events:

- **1** $\mathcal{E}_{3,1}$: at least $2n^{3/4}$ elements of C are greater than the median;
- 2 $\mathcal{E}_{3,2}$: at least $2n^{3/4}$ elements of C are smaller than the median.

If $|C| > 4n^{3/4}$, then at least one of the above two events occurs.

We bound $\mathcal{E}_{3,1}$: at least $2n^{3/4}$ elements of C are greater than the median;

At least $2n^{3/4}$ elements of *C* above the median \Rightarrow

u is at least the $\frac{1}{2}n + 2n^{3/4}$ largest in $S \Rightarrow$

R had at least $\frac{1}{2}n^{3/4} - \sqrt{n}$ samples among the $\frac{1}{2}n - 2n^{3/4}$ largest elements in *S*.

Let X be the number of samples (in R) among the $\frac{1}{2}n - 2n^{3/4}$ largest elements in S. Let $X = \sum_{i=1}^{n^{3/4}} X_i$ where

$$X_i = \begin{cases} 1 & \text{the } i\text{-th sample in } \frac{1}{2}n - 2n^{3/4} \\ & \text{largest elements in } S \\ 0 & \text{otherwise.} \end{cases}$$

$$E[X_i] = E[(X_i)^2] = \frac{1}{2} - 2n^{-1/4}$$

$$Var[X_i] = E[(X_i)^2] - (E[X_i])^2 \le \frac{1}{4}.$$

$$E[X]=rac{1}{2}n^{3/4}-2\sqrt{n}$$
 $Var[X]\leqrac{1}{4}n^{3/4}$

Applying Chebyshev's Inequality yields

$$\Pr(\mathcal{E}_{3,1}) = \Pr\left(X \ge \frac{1}{2}n^{3/4} - \sqrt{n}\right)$$

$$\le \Pr(|X - E[X]| \ge \sqrt{n})$$

$$\le \frac{Var[X]}{n} \le \frac{\frac{n^{\frac{3}{4}}}{4}}{n} = \frac{1}{4}n^{-\frac{1}{4}}.$$

Similarly,

$$\Pr(\mathcal{E}_{3,2}) \leq \frac{1}{4} n^{-\frac{1}{4}},$$

and

$$\Pr(E_3) \le \Pr(\mathcal{E}_{3,1}) + \Pr(\mathcal{E}_{3,2}) \le \frac{1}{2} n^{-\frac{1}{4}}.$$

The probability that the algorithm succeeds is

$$0 \geq 1 - (Pr(E_1) + Pr(E_2) + Pr(E_3)) \geq 1 - \frac{1}{n^{1/4}}.$$

The Geometric Distribution

- How many times do we need to perform a trial with probability p for success till we get the first success?
- How many times do we need to roll a dice until we get the first 6?

Definition

A geometric random variable X with parameter p is given by the following probability distribution on n = 1, 2, ...

$$\Pr(X = n) = (1 - p)^{n-1}p.$$

Memoryless Distribution

Lemma

For a geometric random variable with parameter p and n > 0,

$$Pr(X = n + k \mid X > k) = Pr(X = n).$$

Proof.

Example: Coupon Collector's Problem

Suppose that each box of cereal contains a random coupon from a set of n different coupons.

How many boxes of cereal do you need to buy before you obtain at least one of every type of coupon?

Let X be the number of boxes bought until at least one of every type of coupon is obtained.

Let X_i be the number of boxes bought while you had exactly i-1 different coupons.

$$X = \sum_{i=1}^{n} X_i$$

 X_i is a geometric random variable with parameter

$$p_i = 1 - \frac{i-1}{n}$$
.

$$\mathbf{E}[X_i] = \frac{1}{p_i} = \frac{n}{n-i+1}.$$

$$\mathbf{E}[X] = E\left[\sum_{i=1}^{n} X_i\right]$$

$$\mathbf{E}[X] = E\left[\sum_{i=1}^{n} X_{i}\right]$$
$$= \sum_{i=1}^{n} \mathbf{E}[X_{i}]$$

$$= \sum_{i=1}^{n} \mathbf{E}[X_i]$$

$$= \sum_{i=1}^{n} \mathbf{E}[X_i]$$

$$= \sum_{i=1}^{n} \mathbf{E}[X_i]$$

$$= \sum_{i=1}^{n} \frac{n}{n-i+1}$$

$$= \sum_{i=1}^{n} \frac{n}{n-i+1}$$

- $= n\sum_{i=1}^{n}\frac{1}{i}=n\ln n+\Theta(n).$

Variance of a Geometric Random Variable

We use

$$Var[X] = \mathbf{E}[(X - \mathbf{E}[X])^2] = \mathbf{E}[X^2] - (\mathbf{E}[X])^2.$$

• To compute $\mathbf{E}[X^2]$, let Y = 1 if the first trial is a success, Y = 0 otherwise.

$$\mathbf{E}[X^2] = \Pr(Y = 0)\mathbf{E}[X^2 \mid Y = 0] + \Pr(Y = 1)\mathbf{E}[X^2 \mid Y = 1]$$

= $(1 - p)\mathbf{E}[X^2 \mid Y = 0] + p\mathbf{E}[X^2 \mid Y = 1].$

• If Y = 0 let Z be the number of trials after the first one.

$$\mathbf{E}[X^2] = (1-p)\mathbf{E}[(Z+1)^2] + p \cdot 1 = (1-p)\mathbf{E}[Z^2] + 2(1-p)\mathbf{E}[Z] + 1,$$

• E[Z] = 1/p and $E[Z^2] = E[X^2]$.

$$\mathbf{E}[X^2] = (1-p)\mathbf{E}[(Z+1)^2] + p \cdot 1
= (1-p)\mathbf{E}[Z^2] + 2(1-p)\mathbf{E}[Z] + 1,$$

 $\mathbf{E}[X^2] = (1-p)\mathbf{E}[X^2] + 2(1-p)/p + 1 = (1-p)\mathbf{E}[X^2] + (2-p)/p,$

• $\mathbf{E}[X^2] = (2-p)/p^2$.

 $Var[X] = \mathbf{E}[X^2] - \mathbf{E}[X]^2$

Back to the Coupon Collector's Problem

- Suppose that each box of cereal contains a random coupon from a set of n different coupons.
- Let X be the number of boxes bought until at least one of every type of coupon is obtained.
- $E[X] = nH_n = n \ln n + \Theta(n)$
- What is $Pr(X \ge 2E[X])$?
- Applying Markov's inequality

$$\Pr(X \geq 2nH_n) \leq \frac{1}{2}.$$

• Can we do better?

- Let X_i be the number of boxes bought while you had exactly i-1 different coupons.
- $X = \sum_{i=1}^n X_i$.
- X_i is a geometric random variable with parameter $p_i = 1 \frac{i-1}{n}$.
- $Var[X_i] \leq \frac{1}{n^2} \leq (\frac{n}{n-i+1})^2$.

$$\textit{Var}[X] = \sum_{i=1}^{n} \textit{Var}[X_i] \leq \sum_{i=1}^{n} \left(\frac{n}{n-i+1}\right)^2 = n^2 \sum_{i=1}^{n} \left(\frac{1}{i}\right)^2 \leq \frac{\pi^2 n^2}{6}.$$

By Chebyshev's inequality

$$\Pr(|X - nH_n| \ge nH_n) \le \frac{n^2\pi^2/6}{(nH_n)^2} = \frac{\pi^2}{6(H_n)^2} = O\left(\frac{1}{\ln^2 n}\right).$$

Direct Bound

 The probability of not obtaining the *i*-th coupon after *n* ln *n* + *cn* steps:

$$\left(1 - \frac{1}{n}\right)^{n(\ln n + c)} \le e^{-(\ln n + c)} = \frac{1}{e^c n}.$$

- By a union bound, the probability that some coupon has not been collected after $n \ln n + cn$ step is e^{-c} .
- The probability that all coupons are not collected after $2n \ln n$ steps is at most 1/n.