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Abstract

We describe a novel randomized method, the

method of color-coding for finding simple paths

and cycles of a specified length k, and other small

subgraphs, within a given graph G = (V, E). The

randomized algorithms obtained using this method

can be derandomized using families of perfect hash

functions, Using the color-coding method we

obtain, among others, the following new results:

● For every fixed k, if a graph G = (V, E)

contains a simple cycle of size ezactly k, then

such a cycle can be found in either O(VU)

expected time or O (VW log V) worst-case time,

where u < 2.376 is the exponent of matrix

multiplication. (Here and in what follows we

use V and 1? instead of IVI and IEI whenever

no confusion may arise. )

● For every fixed k, if a planar graph G = (V, 1?)

contains a simple cycle of size exactly k, then
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●

such a cycle can be found in either O(V)

expected time or O (V log V) worst-case time.

The same algorithm applies, in fact, not only

to planar graphs, but to any minor closed

family of graphs which is not the family of all

graphs.

If a graph G = (V, E) contains a subgraph

isomorphic to a bounded tree-width graph H =

(V~, E~) where lV~l = O(log V), then such a

copy of H can be found in polynomial time,

This was not previously known even if H were

just a path of length O(log V).

These results improve upon previous results of

many authors. The t bird result resolves in the

affirmative a conjecture of Papadimitriou and

Yannakakis that the LOG PATH problem is in P.

We can even show that the LOG PATH problem is

in NC.

1 Introduction

Though the general subgraph isomorphism problem

is NP-complete, various special cases of it are

known to be jixed parameter tractable (see, e.g.,

[DF92] for a definition), and can be solved in

polynomial time. In this work we introduce

the color-coding method. Using this method we

are able to solve more subcases of the subgraph

isomorphism problem in polynomial time. We also

obtain more efficient solutions to some subcases

that already had polynomial time solutions.

The color-coding method is a randomized method.

The vertices of the graph G = (V, E) in which a
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subgraph isomorphic to H = (V~, EH) is sought

are randomly colored by k = /V~/ colors. If /V~[ =

O(log V), then with a small probability, but only

polynomially small (i.e., one over a polynomial), all

the vertices of a subgraph of G which is isomorphic

to II, if there is such a subgraph, will be colored

by distinct colors. This, as we shall see, makes the

task of finding this ‘color-coded’ subgraph much

easier.

The randomized algorithms obtained using the

color-coding method are easily derandomized with

only a small loss in efficiency. All that is needed

to derandomize them is a family of colorings of

G = (V, E) so that every subset of k vertices of G

is assigned distinct colors by at least one of these

colorings. What is required, in other words, is a

family of perfect hash junctions from {1,2,..., IV[}

to{l,2, . . ..k}.

Perhaps the simplest interesting subcases of the

subgraph isomorphisrn problem are the following:

Given a (directed) graph G = (V, E) and a number

k, does G contain a. simple (directed) path of length

k? Does G contain a simple (directed) cycle of size

exactly k?

We show, using color-coding, that a simple directed

path of length k, in a directed graph G =

(V, E) that contains such a path, can be found

in either 2°tkJ . E expected time or in 20(k) .

E log V or O(k! o E) worst-case times. If the

graph G = (V, E) is undirected then E in the

above bounds can be replaced by V. This

improves a recent 0(2kk!. V) worst-case bound of

Bodlaender [Bod93] that applies only to undirected

graphs. Note in particular that we can decide

in polynomial time whether a (directed) graph

G = (V, E) contains a simple (directed) path of

length @(log V). This resolves in the affirmative

a conjecture of Papadimitriou and Yanna,kakis

[PY93]. The exponential dependence on k in

the above bounds is probably unavoidable as the

problem is NP-complete if k is part of the iilput.

By another application of the color-coding method,

we show that a simple (directed) cycle of size

exactly k, in a (directed) graph G = (V, E) that

contains such a cycle, can be found in either 20(k).

VI? or 2°(k).VW expected time or in 2°(k).VE log V

or 20(k) cVW log V worst-case time. This improves

(in many cases) an O(k!. VE) worst-case bound

obtained by Monien [Mon85].

For k < 7 we can count the number of cycles of

length k in a graph G = (V, E) in O(VW) worst-

case time. This uses different techniques and will

appear elsewhere. In [YZ94], it is shown that for

any even k, cycles of lengt h k in undirected graphs

that contain them can be found in 0(V2) worst-

case time.

When applied to planar graphs, or to any non-

trivial minor-closed family of graphs, the color-

coding method yields optimal (in the expected

case) or almost optimal (in the worst-case) algo-

rithms for finding simple cycles of a given length.

These algorithms use the fact that graphs from

a non-trivial minor-closed family of graphs are of

bounded degeneracy (see Section 5 for definition).

We remind the reader that a minor ojf a graph G is

any graph that can be obtained from G by remov-

ing and contracting edges. A family C of graphs is

minor-closed if a minor of a member of C is also a

member of C. A family C is non- triviall if it does not

include all the graphs. The family of planar graphs

is easily seen to be such a non-trivial minor-closed

family. Given a (directed) planar graph G = (V, E)

(or a graph from a non-trivial minor-closed fam-

ily C) that contains a simple (directed) cycle of

size k, such a (directed) cycle can be found in O(V)

expected time or O(V log V) worst-case time and

even in O(V) worst-case time if k < 5. This im-

proves and greatly extends an O(V log V) worst-

case bound, for k = 5,6, obtained by Richards

[Ric86] using planar separators and an O(V) worst-

case bound, for k = 3,4, obtained by Chiba and

Nishizeki [CN85]. Algorithms for finding triangles

in planar graphs in O(V) time were also obtained

by Papadimitriou and Yannakakis [PY81] and Itai

and Rodeh [IR78].

Our initial goal was to obtain efficient algorithms

for finding simple paths and cycles in graphs. The

algorithms we developed using the color-coding

method turned out however to have ii. much wider

range of applicability. The linear time: (i.e., 2°ik).E

for directed graphs and 20(k) . V fcm undirected

graphs) bounds quoted above for simple paths

apply in fact to any forest on k vlertices. The
20(~). Vu bound quoted for simple cycles applies

in fact to any series-parallel graph cm k vertices.

More generally, if G = (V, E) contains a subgraph
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isomorphic to a graph H = (V~, E~) whose tree-

width is at most t, then such a subgraph can be

found in 2°tkJ . Vt+l expected time, where k =

lV~l. Note that forests have tree-width 1 while

series-parallel graphs have tree-width 2. Similar

results, but with a worse dependence on k, were

obtained by Plehn and Voigt [PV90], This, as

far as we know, gives the most general subcase of

the subgraph isomorphism problem known to be

solvable in polynomial time.

The concept of tree-width was introduced by

Robertson and Seymour (see e.g., [RS86a]) in their

series of works on graph minors. Robertson and

Seymour use this concept, together with other

ingredients, some of them non-constructive, to

show that the subgraph homomorphism problem

(given a graph G = (V, E) and a graph H =

(V~, EH), does G have a subgraph homomorphic

to H?) and the minor containment problem (given

a graph G = (V, E) and a graph H = (VH, J?IH),

does G have H as a minor?) can be solved in

0(V3) time for every fixed If and even in O(V)

time if H is a path (see [Joh87] for a survey of

these results). A graph cent ains a simple path of

length k, as a subgraph, if and only if it contains

such a path as a minor. This gives therefore

an alternative O(V) time algorithm for deciding

whether an undirected graph contains a simple

path of length k. The obtained aJgorithm has

however a worse dependence on k.

Furer and Raghavachari [FR92] and Karger et al.

[KMR93] give algorithms for finding, in polynomial

time, a simple path of length logz V in Hamiltonian

or weakly Hamiltonian graphs. Our results greatly

extend this result as we can find, in polynomial

time, a simple path of length c logz V, for any fixed

c > 0, in any directed or undirected graph that

contains such a path.

In the next section we describe a simplified ver-

sion of the color-coding method called the method

of random orientations. The basic color-coding

method is described in Section 3. In Section 4 we

show how to derandomize the algorithms obtained

using these met hods. More sophisticated applica-

tions of the color-coding method are described in

Sections 5 and 6.

2 Random Orientations

Let G = (V, E) be an undirected graph. Suppose

we want to find pairs of vertices connected by

simple paths of length ezactly k. By raising the

adjacency matrix A = AG of G = (V, E) to the

k-th power, or by using other methods, we can

easily find all pairs of vertices connected by paths of

length k. Most of these paths, however, would not

be simple. How can we weed out the non-simple

paths? An easy way of doing this is by choosing a

random acyclic orientation of the graph G. Such

an orient at ion is obtained by choosing a random

permutation r : V + {1,..., IVI} and directing

an edge (u, v) G E from u to v if and only if

~(u) < m(v). Denote the resulting directed graph

by ~. Every directed path of length k in ~ is

simple and corresponds to a simple path of length k

in G. Every simple path of length k in G, on the

other hand, has a 2/(k + 1)!chance of becoming

a directed path (in either direction) in ~. This

simple observation yields the following two results:

Theorem 2.1 A simple (directed) path of length k

in a (directed) graph G = (V, E) that contains such

a path can be found in O((k + 2)!. V) expected time

in the undirected case and in O((k + 1)!*E) expected

time in the directed case.

Proof: An algorithm with O((k+ 1)!*E) expected

time is immediate. Simply choose a random

acyclically oriented version ~ of G and find the

longest directed path in it. This can easily be done

in O(E) time (s~e e.g., [CLR90], p. 538). The

longest path in G would be of length at least k

with a probability of at least 2/(k + l)!. If the

longest path is of length less than k, repeat the

process. The expected number of times this process

is repeated before the desired path is found is at

most (k + 1)!/2.

To reduce the O((k + 1)! o E) complexity to the

desired O((k + 2)! -V) we use the well known (and

easy) fact that every graph with V vertices and at

least klVl edges contains a path of length k. The

known proofs of this fact easily supply a method

of finding such a path in O(k” V) time. A specific

way of incorporating this into our algorithm follows

an idea of Boadlaender [Bod93]. We start a DFS

(depth-first search) on the graph. If a vertex of
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depth k is ever found, we stop and output the path

from the root to this vertex. If no such vertex is

found, the graph contains at most IcIVI edges (as all

back-edges point to ancestors) and we may apply

the algorithm described above.

An almost identical technique can be used for

directed graphs. To turn a directed graph G =

(V, E) into an acyclic graph we again choose a

random permutation T : v ~ {1,. ... [V[} and

then delete every edge (u, v) c E for which r(u) >

r(v). The O((k + 1)!. E) expected time algorithm

described above works also in this case. a

Theorem 2.2 A simple cycle of length k in a

graph G = (V, E) that contains such a cycle can

be found in O(k! log k.Vw) expected time.

Proof: The algorithm used is very similar to the

one used in the proof of Theorem 2.1, We choose

a random acyclically oriented version ~ of G. We

now raise the adjacency matrix of ~ to the k – l-st

power. This gives us all pairs of vertices connected

by directed paths of length k – 1 in ~, If the

vertices in any one of these pairs are connected

by an edge, a k-cycle is found. This will happen

with a probability of at least 2/k!, This process

is repeated an expected number of at most k!/2

times. A very similar algorithm can be used to

find directed simple cycles in directed graphs. ❑

We can match the performance of the algorithm

described in Theorem 2.1 using a deterministic

algorithm by combining techniques of Monien

[Mon85] and Bodlaender [Bod93]. The obtained

algorithm works in O ( k!.E) time for directed graphs

or in O(k! cV) time for undirected graphs, As this

algorithm does not use the color-coding method we

omit its description from this extended abstract.

We note that although the O(VW) algorithm of

Theorem 2.2 is extremely simple, no such result

was previously known. The k! dependence on k

in Theorems 2,1 and 2.2 is improved in the next

section.

3 Random colorings

Let G = (V, E) be a directed or undirected

graph. Consider again the problem of finding

simple (directed) paths of length k – 1 in G. Choose

a random coloring of the vertices of G with k colors.

A path in G is said to be colorful if each vertex

on it is colored by a distinct color. A colorful

path in G is clearly simple, Each simple path of

length k – 1, on the other hand, has a chance of

k!/kk > e ‘k to become colorful. Note that this

is only exponentially small in k. HIOW much time

is needed to find a colorful path o~f length k – 1

in G, if one exists, or all pairs of vertices connected

by colorful paths of length k – 1 in G? The next

Lemmas give answers to these questions.

Lemma 3.1 Let G = (V, E) be a directed or

undirected graph and let c : V ~ {1, . . . . k} be a

coloring of its vertices with k colors. A colorful

path of length k – 1 in G, if one exists, can be

found in 2°1kJ E worst-case time.

Proof : We describe at first an 2°ikJ . E time

algorithm that receives as input th~e graph G =

(V, E), the coloring c : V - {1,.. .,k} and a vertex

v E V, and finds a colorful path of length k – 1 that

starts at v, if one exists. To find a colorful path of

length k – 1 in G that starts somewhere, we just

add a new vertex s’ to V, color it with a new color O

and connect it with edges to all the vertices of V.

We now look for a colorful path of length k that

starts at s’.

A colorful path of length k – 1 that starts at

some specified vertex s is found using a dynamic

programming approach. Suppose we already found

for each vertex v c V the possible sets of colors on

colorful paths of length i that connect s and v.

Note that we do not record all colorful paths

connecting s and v, we only record the color sets

appearing on such paths. For each vertex v we

have therefore a collection of at nmost (~) color

sets. We inspect every subset C that belongs to

the collection of v, and every edg~e (v, u) E E.

If c(u) @ C, we add the set C U {c(u)} to the

collection of u that corresponds to colorful paths

of length i + 1. The graph G contains a colorful

path of length k – 1 with respect to the coloring c if

and only if the final collection, that corresponding

to paths of length k – 1, of at least one vertex is

non-empty. The number of operations performed

by the algorithm outlined is at most ~~=o i(~). IE[

which is clearly 0(k2k. E). n
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Lemma 3.2 Let G = (V, E) be a directed or

undirected graph and let c : V h {1,....k} be a

coloring of its vertices with k colors. All pairs of

vertices connected by colorful paths of length k – 1

in G can be found in either 2°(kJ .VE or 2°(kl *VW

worst-case time.

Proof : The 2°1kJ . VE algorithm is obtained

by simply running the algorithm described in the

proof of the previous Lemma [Vl times, once for

each starting vertex.

To obtain the 20(k) oVW algorithm we use the fol-

lowing recursive approach. Enumerate all parti-

tions of the color set {1, 2,..., k} into two subsets

Cl, C’z each, roughly, of size k/2. There are only

(~z) <2’ such partitions. For each such partition

Cl, Cz, let VI be the set of vertices of G colored by

colors from Cl and V2 be the set of vertices of G

colored by colors from C2. Let G1 and G2 be the

subgraphs of G induced by VI and V2 respectively.

Recursively find all pairs of vertices in G1 and in

G2 connected by colorful paths of length k/2 – 1.

Collect this information into two Boolean matrices

Al and A2. Let B be a Boolean matrix that de-

scribes the adjacency relations between the vertices

of V1 and those of V2. The Boolean product Al l?A2

gives all pairs of vertices in V that are connected

by colorful paths of length exactly k – 1, where the

first k/2 vertices on the paths are colored by colors

from Cl and the last k/2 vertices are colored by col-

ors from C2. By OR-ing the matrices obtained for

all the partitions we obtain the desired result. It is

easy to verify that the complexity of this approach

is indeed 2°(kl. VW. •1

The 20(k) . V’” algorithm outlined above finds all

pairs of vertices connected by colorful paths of

length k – 1. To find the colorful paths themselves

we can use an algorithm by Alon and Naor

[AN94] for finding witnesses for Boolean matrix

multiplication. We omit the details.

Using the above Lemmas we immediately get the

following results.

Theorem 3.3 A simple (directed) path of length k–

1 in a (directed) graph G = (V, E) that contains

such a path can be found in 20(k). V expected time

in the undirected case and in 2°(kl -E expected time

in the directed case.

Theorem 3.4 A simple (directed) qycle of size k

in a (directed) gmph G = (V, E) that contains such

a cycle can be found in either 2°(k).VE or 2°(k).Vw

expected time.

As mentioned in the introduction, the color-coding

method can be used to efficiently find not only

paths and cycles but any subgraph with a bounded

tree-width. This generalization is presented in

Section 6.

4

The

Derandomized

and colorings

randomized algorithms

orientations

of the previous two

sections can be derandomized with onlv a small.
loss of efficiency. The 20(k) dependence on k is

retained for the small price of an extra log V factor

to the complexity.

What we need, if we want to give every simple path

of length, say, k – 1 in a graph G = (V, E) a chance

of being discovered, is a list of colorings of V such

that for every subset V’ ~ V of size IV’1 = k there

exists a coloring in the list that gives each vertex

in V’ a distinct color. What we need, in other

words, is a k-perfect family of hash functions from

{1,2,...,lVl} to{l,2, k}., k}.

Schmidt and Siegal [SS90], following Fredman,

Kom16s and Szemer6di [FKS84], give an explicit

construction of a k-perfect family from {1, 2, . . . . n}

to {1,2,. ... k} in which each function is specified

using O(k) + 2 log log n bits. The size of the family

is therefore 20(k) log2 n. The value of each one

of these functions on each specified element of

{1, 2,..., n} can be evaluated in O(1) time. Using

this family we can derandomize the algorithms

presented in the previous sections but the incurred

cost would be a multiplicative factor of log2 V and

not of log V as promised.

As pointed out by Moni Naor, the size of the

desired family of hash functions can be reduced

to 20(k) log n in the following way. First con-

struct a k-perfect family that maps {1,2, . . . . n}

to {1,2, ..., k2}. Next construct a k-perfect fam-

ily that maps {1,2, . . . . k2} to {1,2,..., k}. The

desired family is obtained by composing these two

families of hash

size 20(k) from

functions. A k-perfect family of

{1,2 ,..., k2} to {1,2,..., k} can
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be obtained using the construction of Schmidt and

Siegal [SS90].

To construct a k-perfect family of size I@(l) log n

from {1,2,. ... n} to {1,2,. ... k2} we use small

probability spaces that support sequences of almost

t-wise independent random variables. A sequence

xl, . . ., Xn of random Boolean variables is (E, t)-

independent if for any 1 positions il < iz < --- < it

and any 1 bits al, . . . . ~e we have

Pr[X~l = al,...%~~~~ = ~/]–2–~ <5 .

Note in particular that if the sequence Xl,. . . . Xn

is (2-~, 1)-independent, then any subset of /? vari-

ables attains each one of its 2e possible values with

some positive probability.

Constructions of small probability spaces that

admit almost l-wise independent random variables

were obtained by Naor and Naor [NN90] and

Alon et al. ([AGHP92], [ABN+92]). The size of

sample spaces that support n random variables

that are (E, I)-independent can be as small as

2°tzf10g ~) logn and they can be constructed in

20(~+10g ~)n log n time.

To construct a k-perfect family of size k“(l) log n

from {1,2,. ... n} to {1,2,. ... k2} we use a prob-

ability space of size k“(l) log n that supports in

random variables that are (2–2(, 2f)-independent,

where / = 2 log k. We attach / random variables

to each element of{ 1,2 , , .,, n} thereby assigning it

a color from {1,2, . . ., k2}. Consider two elements

1 < z < j ~ n. The probability that i and j are

assigned the same color is at most 21–e = 2/k2.

The probability that two distinct elements from

{1,2,..., n} are assigned the same color is there-

fore strictly less than 1 and the obtained family is

indeed k-perfect.

The algorithms obtained using random orientations

can also be derandomized. Instead of choosing a

random permutation m : V ~ {1,..., IVI}, choose

a random coloring c : V + {1,....k} and remove

all edges (u, v) c E such that c(v) # c(u) + 1.

An edge (u, v) G -E such that c(v) = c(u) + 1 will

be directed from u to v. The obtained graph ~

is again acyclic. Each simple path of length k in

G now has a probability of 2k–k of becoming a

directed path in ~. Note the difference between

the color-coding method and this version of the

random orientations method. Here we require the

first vertex on the path to be colored by 1, the

second by 2 and so forth. In the color-coding

method we just require the vertices on the path

to be colored by the distinct colors, in some order.

A list of colorings in which each sequence VI,..., vk

of k vertices from V is colored consecutively by

1,2 ,..., k by at least one coloring of the list is easily

obtained by using sequences of (k log k). n random

variables that are almost k log k- wise independent.

The size of the list will be k“(k) log V. Such a list

is used for derandomization purposes in Section 5.

5 Finding cycles in minor-closed

families of graphs

An undirected graph G = (V, E)

(see Bollob& [B0178], p. 222) if

is d-degenerate

there exists an

acyclic orientation of it in which dOUt(v) s d for

every v E V. The smallest d for which G is d-

degenerate is called the degeneracy or the max-

min degree of G and is denoted by d(G). It can

be easily seen (see again [B0178]) that d(G) is the

maximum over the minimum degrees of all the

subgraphs of G. Clearly, if G is d-degenerate then

[El s d. IVI. The following simple lemma, whose

proof is omitted, is part of the folklore (see, e.g.,

[MB83]).

Lemma 5.1 Let G = (V, E) be a connected urzdi-

rected graph G = (V, E). An acyclic orientation

of G such that for every v e V we have dOut(v) <

d(G) can be found in O(E) time.

Let G be an undirected graph. A graph H is a

minor of G if it can be obtained from G by the

removal and the contraction of edges. A family C

of graphs is said to be minor-closed if a minor of a

graph of the family is also a member of the family.

It is known (see [B0186], p. 7) that ‘if C is a non-

trivial minor-closed family of graphs, i.e., a minor-

closed family which is not the family of all graphs,

then all graphs in C are of bounded degeneracy.

In other words, there exists a constant d = dc

such that every G E C satisfies d(Gj) ~ d. As an

example, consider the family of planar graphs. It

is minor-closed and the degeneracy of every planar

graph is at most 5 (as each planar graph has a

vertex whose degree is at most 5).
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Theorem 5.2 Let C be a non-trivial minor-closed

family of graphs and let k >3 be a jixed integer.

Then, there exists a randomized algorithm that

given a graph G = (V, E) from C, finds a 6’k (a

simple cycle of size k) in G, if one exists, in O(V)

expected time.

Proof : Let G = (V, E) be a graph from C

that contains a ck. Choose a random coloring

C:v+ {l,..., k] of the vertices of G. A ck

in G is said to be well-colored if the vertices on

it are consecutively colored by 1,2, ..., k. With a

probability of 2/kk-1, the Ck present in G will be

well- colored.

We describe a randomized algorithm, whose run-

ning time is O(k.V), that given a graph G = (V, E)

from a minor-closed family of degeneracy d = O(1)

and given a coloring c : V + {1,....k}, has a prob-

ability y of at least 1/(2d)k of finding a well-colored

ck in G, if one exists. By combining this algorithm

with the initial random coloring phase, we obtain

an O(k. V) time algorithm that finds a ek in G, if

one exists, with a probability of at least ~2~)#k~_l.

This may be a very small probability but it de-

pends only on k and d and not on the size of the

graph. By rerunning the algorithm, with an inde-

pendent set of choices, in case of failure, we obtain

an 0((2dk)k.V) expected time algorithm for finding

a ck in graphs that contain one.

We assume that all the edges of G connect vertices

that are colored by consecutive colors (modulo k).

Edges violating this property can be removed as

this will not remove any well-colored ek from G.

The randomized algorithm for finding a well-

colored ek in G starts by orienting G so that

the out-degree of every vertex is at most d. The

edges that leave a vertex v G V are assigned the

indices 1, . . . . dOut(v ) < d in an arbitrary manner.

This takes only O(V) time. The well-colored ek

assumed to exist in G contains an edge between

a vertex ‘Vk– 1 colored by k – 1 and a vertex Vk

colored by k. The algorithm guesses, by flipping

fair coins, the orientation and the index of this

edge. There are two possible orientations and d

possible indices. If the guess is that the edge is

directed from V&l to vk and the guessed index

is i, then all edges that leave vertices colored by

k – 1 but whose index is not i are removed from the

graph. If the opposite direction is guessed, then the

same is done with edges that leave vertices colored

by k. The resulting graph, which we denote by G’,

still contains a well-colored ek with a probability y

of at least l/2d.

The subgraph of G’ induced by vertices colored by

k – 1 and k is a forest of rooted stars. We contract

each such star into a single vertex and assign each

such new vertex the color k – 1. We obtain a new

graph G“ and a new coloring c“. It is easy to see

that G“ contains a well-colored C&l if and only if

G’ contains a well-colored Ck. To verify this, recall

that each edge of G1, and therefore also each edge

of G“, connects consecutively colored vertices. As

G“ is a minor of G and as C is minor-closed, G“ is

also a member of C.

We now apply the algorithm recursively and look

for a well-colored C&~ in G“. This takes O((k –

1).V) time and yields a well-colored C&l with a

probability of at least l/(2d)k-l. If a well-colored

C&l is found in G“, a well-colored ek in G is easily

reconstructed. The overall time spent is O(k. V)

and the probability of finding a well-colored ek is

at least l/(2d)k.

To complete the picture, we have to specify the way

in which the recursion bottoms. The contractions

used in the various stages of the algorithm gen-

erat e self-loops, which are immediately removed.

Parallel edges, however, may only occur when con-

tractions are applied to a graph colored by three

colors and a two-colored graph is obtained. A well-

colored C2 in such a graph is just a pair of parallel

edges and such a pair, if one exists, can be easily

found in O(V) time.

Alternatively, we can stop the recursion when k = 3

and use an existing O (Ed(G)) time algorithm (see

[CN85]) for finding triangles (Ca’s) in a general

graph G = (V, E). Note that any triangle in a

three-colored graph is well-colored and that O(E.

d(G)) is O(V) in our case. ❑

The algorithm just described can again be deran-

domized.

Theorem 5.3 Let C be a non-trivial minor-closed

family of gmphs and let k >3 be a jixed integer.

There exists a deterministic algorithm that decides

whether a given graph G = (V, E) from C contains

a ck, and finds one, if one exists, in O(V log V)

worst-case time.
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Proof : We derandomize the algorithm given

in the proof of Theorem 5.2. Instead of using

random colorings, we exhaust a list of k“tk) log V

colorings that has the property that every sequence

VI, ..., vk of k vertices from V is consecutively

colored by 1,2, . . . . k in at least one coloring of the

list. Such a list was also used for derandomizing the

algorithms obtained using the random orientations

met hod. Instead of guessing the direction and

index of each edge in the well-colored ck, we

exhaust, for each coloring, all the (2d)k possible

choices. If G contains a C~ then at least one ck

will be found in this way. •1

Theorems 5.2 and 5.3 deal with undirected graphs.

With only minor modifications they can be used

however to find directed cycles in directed graphs

whose undirected versions belong to any nontrivial

minor-closed family C.

Without using the color-coding method we can

obtain the following result whose proof is omitted

from this extended abstract,

Theorem 5.4 Let G = (V, E) be (directed) graph.

A (directed) C’5 in G, if one exists, can be found in

0( E.(d(G))2) worst-case time.

As a corollary, we get that if C is a non-trivial

minor-closed family of graphs and G = (V, E) is

a member of C, then a C5 in a G, if one exists, can

be found in O(V) time.

6 Finding bounded tree-width

subgraphs

A slight modification of the method used in

Section 3 to find paths can be used to find any fixed

(directed) forest. (A directed forest is a directed

graph whose undirected version is a forest.)

Theorem 6.1 Let F be a (directed) forest on k

vertices. Let G = (V, E) be a (directed) graph. A

subgraph of G isomorphic to F, if one exists, can

be found in 2°fkJ. E expected time in the directed

case, and in 2°(k).V expected time in the undirected

case.

Proof: We start, as usual, by choosing a random

coloringc: V- {l,. ... k} of the graph G, which is

assumed to contain a copy of F. With a probability

of at least e ‘k, the copy of F in G will become

colorful, i.e., each vertex in it will get a different

color. Assume this is the case. Suppose that F

is composed of 1 (directed) trees 2’1, ..., Te with

kl,..., ke vertices each. Let I’i, for 1 ~ i ~ 1 be

the (directed) forest composed of T1, , ,., Ti. We

find, for each 1 s i s 1, the color sets that appear

on colorful copies of Ti in G. It is then easy to find,

in 2°(kJ time, the color sets that appear on colorful

copies Fi, for 1 ~ i <1. Note that copies of Ti and

Tj, for i #j, with disjoint color sets are necessarily

disjoint. If the collection corresponding to F = Fe

is not empty, then G contains a colorful copy of

F. Such a copy is found if with every color set

found we keep at least one copy of a corresponding

subgraph colored by it.

Let T = Ti be a (directed) tree on m = ki vertices,

where 1 ~ i ~ t, and let r be an arbitrary vertex in

T. In 2°(m)oE time, we find, for each vertex v G V,

all color sets that appear on colorful copies of T in

Gin which v plays the role of r. If T contains only

a single vertex, this is easily done. C)therwise, let

e~ = (r, r’) be a (directed) edge in T. The removal

of e~ from T breaks T into two (directed) subtrees

T) and T’f. We recursively find, for each vertex

v E V, the color sets that appear on colorful copies

of T’ in which v plays the role of r, and the color

sets that appear on colorful copies of T“ in which

v plays the role of r’. For every (directed) edge

e = (u, v) 6 E, if C’ is a color set th;at appears in

u’s collection (corresponding to T’), if C“ is a color

set that appears in v’s collection (corresponding to

T“), and if C’il C” = 0, then C’UC” is added to the

collection of u (corresponding to 2’). It is easy to

see that the complexity of this recursive algorithm

is 20(~). E, as required.

To obtain the better bound in the undirected case,

we use the fact a graph G = (V, E) with at least

k. IV] edges contains, as a subgraph, any forest on

k vertices. ❑

The algorithms in the last theorem can obviously

be derandomized using the techniques described in

Section 4.

The bmic idem used in the above proof can be

used to obtain an algorithm that looks not only for

trees and forests but for any graph with a bounded

tree-width, a notion introduced by Robertson and
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Seymour [RS86a].

Definition 6.2 A tree-decomposition of a graph

G = (V, E) is a pair (X, T) where T = (I, F) is a

tree and X = {X; : i E I} is a family of subsets

of V such that (i) Ui~IXi = V; (ii) for every edge

(u, v) E E, there ezists an i c I such that u, v c Xi;

and (iii) if i, j, k c I and j is on the path from i to

k in T, then Xi II Xk C Xj. The tree-width of the

tree-decomposition (X, T) is maxi~z IX; I – 1. The

tree-width of a graph G is the minimum tree-width

over all possible tree-decompositions of G. Gmphs

with tree-width at most t are also called partial t-

trees.

Due to space limitations, we omit the proof of the

following result.

Theorem 6.3 Let H be a (directed) graph on k

vertices with tree- width t. Let G = (V, E) be a

(directed) graph. A subgraph of G isomorphic to H,

if one exists, can be found in 2°tkJ .Vt+l expected

time and in 2°(kJs Vt+l log V worst-case time.

A result similar to the above result, but with a

worse dependence on k, was obtained by Plehn and

Voigt [PV90]. If a real weight function /3 : E -+ R

is defined on the edges of G, then the algorithm

of Plehn and Voigt, as well as our deterministic

algorithm, can be adapted to find the copy of H in

G with the minimal/maximal total weight.

As mentioned in the introduction, Robertson and

Seymour [RS86b] had shown that if C is a minor

closed family of graphs that excludes at least one

planar graph H, then there exists a (huge) constant

CH such that every graph in C has tree-width at

most cH. As a simple corollary we get that if

G = (V, E) and H = (VH, EH) such that \VH[ =

O(log V) and H is, say, K4-free (i.e., has no 1[4

minor), then we can decide in polynomial time

whether G cent ains a subgraph isomorphic to H.

7 Concluding remarks

The color-coding method is both simple and pow-

erful. Better solutions to the basic problems of

finding simple paths and cycles in graphs are ob-

t ained using it. It also yields the most general sub-

case of the subgraph isomorphism problem that has

yet been shown to be tractable. The algorithms

obtained using the color-coding met hod are easily

parallelized (we do not have enough space to elab-

orate on this point). The color-coding method is

also a good example for demonstrating the use of

derandomization techniques.
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