Out-trees and out-branchings
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An out-tree in a digraph D = (V/, A) is a connected subdigraph
T.F of D in which every vertex of V/(T;"), except one vertex s
(called the root) has exactly one arc entering. This is equivalent

to saying that s can reach every other vertex of V(T.) by a
directed path using only arcs of T

An out-branching in a digraph D = (V, A) is a spanning out-tree,
that is, every vertex of V is in the tree. We use the notation B
for an out-branching rooted at the vertex s.

The following classical result due to Edmonds and the algorithmic
proof due to Lovasz, which we will give implies that one can check
the existence of k arc-disjoint out-branchings in polynomial time.



Theorem 10 (Edmonds’ branching theorem)

[Edmonds, 1973] A directed multigraph D = (V, A) with a special
vertex z has k arc-disjoint spanning out-branchings rooted at z if
and only if

d=(X) > k forall X C V — z. (4)

By Menger's theorem, (4) is equivalent to the existence of k
arc-disjoint-paths from z to every other vertex of D.
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Proof: (Lovdsz) The necessity is clear, so we concentrate on
sufficiency. The idea is to grow an out-tree F from z in such a way
that the following condition is satisfied:

dB_A(F)(U)Zk—l forall UC V —z. (5)

If we can keep on growing F until it becomes spanning while
always preserving (5), then the theorem follows by induction on k.
To show that we can do this, it suffices to prove that we can add
one more arc at a time to F until it is spanning.
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Let us call a set X C V — z problematic if dBfA(F)(X) =k—1
It follows from the submodularity of d, (recall Corollary 8)

that, if X, Y are problematic and X N Y # (), then so are
XNY,XUY as we have

(k=1)+(k=1) = dp_z5(X)+dp_ap(Y)
dp_apy(XUY)+dp_ 4, (XNY)

>
> (k—1)+(k—1)

Here the last in-equality follows from the fact that we have grown
F so that (5) holds.

Observe also that, if X is problematic, then X N V(F) # 0,
because X has in-degree at least k in D.



If all problematic sets are contained in V(F), then let T = V.
Otherwise let T be a minimal (with respect to inclusion)
problematic set which is not contained in V/(F).

Figure: The situation when a problematic set exists



We claim that there exists an arc uv in D such that u € V(F)N'T
and v € T — V(F). Indeed if this was not the case then every arc
that enters T — V/(F) also enters T and we would have

dp(T—=V(F)) =dp

boar)(T=V(F) < dy_yry(T) < k=1, (6)

D—A(F)

contradicting the assumption of the theorem. Hence there is an arc
uv from V(F)N'T to T — V(F).
Suppose the arc uv enters a problematic set Z. Then we have

(k=1)+(k=1) = dp 4 5(2)+dp_ k) (T)
dp_a;y(ZUT)+dp

(k—=1)+(k—1)

A(F)(Zm T)

Thus Z N T is problematic and size it is smaller that T (it does
not contain u), we obtain a contradiction to the minimality of T.
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Implications of Edmonds’ Branching Theorem

Corollary 11 (Even 1979)

Let D = (V,A) be a k-arc-strong directed multigraph and let x, y be
arbitrary distinct vertices of V. Then for every 0 < r < k there exist
paths Py, Py, ..., Px in D which are arc-disjoint and such that the first r
paths are (x, y)-paths and the last k — r paths are (y, x)-paths.

Figure: Proof of Corollary 11



Weakly-k-linked digraphs

A directed multigraph D = (V, A) is weakly-k-linked if it has a
collection of arc-disjoint paths Py, ..., Pk such that P; is an

(xi, yi)-path for every choice of (not necessarily distinct vertices
X1y X0y« oo s Xky Y1ye -5 Yk € V.

Note that if D is weakly-k-linked then it is k-arc-strong since we
cantake xy = ... = xx =x and y; = ... = yx = y for arbitrarily
chosen x, y, showing that Ap(x,y) > k and hence, by Menger's
theorem, D is k-arc-strong.

Shiloach observed that Edmonds'branching theorem implies that
the other direction also holds:

Theorem 12 (Shiloach 1979)

A directed multigraph D is weakly k-linked if and only if \(D) > k.
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Figure: Proof of Theorem 12



Edge-disjoint spanning trees
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Recall Robbins'theorem >l

Theorem 13 (Robbins, 1939)

A graph G has a strongly connected orientattion if and only if G is
connected and has no cut-edge (that is, \(G) > 2.

Nash-Williams generalized this to the following.

Theorem 14 (Nash-Williams, 1960)

A graph G has a k-arc-strong orientation if and only if \(G) > 2k.



Theorem 15 (Nash-Williams 1961, Tutte 1961)
Every graph G with A\(G) > 2k has k edge-disjoint spanning trees.

Proof: :
e Let G = (V, E) satisfy that A\(G) > 2k.
e By Nash-Williams' theorem, G has an orientation D = (V/, A)
with A\(D) > k
@ Let z be an arbitrary vertex of D.

@ As d~(X) > k for every proper subset X of V we also have
d=(X) > k forevery X C V — z.

@ By Edmonds’ branching theorem D has k arc-disjoint
out-branchings BZI, el B:k.

@ Back in G each of these correspond to a spanning tree.
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