168 8. Network Flows

Lemma 8.23(c) says that the number of RELABEL operations is O (n?). Since
each RELABEL operation takes O(n) time, and scanning the neighbours of a vertex
v in the DISCHARGE procedure between two relabelings of v takes O(n) time
again, we have an overall running time of O(n°) plus O(1) times the number
of nonsaturating pushes. (Note that each PUSH operation can be done in constant

time.)
Since there are at most O(n®) nonsaturating pushes by Lemma 8.26, the the-
orem is proved. a

8.6 Gomory-Hu Trees

Any algorithm for the Maximum FLow PROBLEM also implies a solution to the
following problem:

MiNniMuM CaraciTy CUT PROBLEM
Instance: A network (G, u,s,t)

Task: An s-t-cut in G with minimum capacity.

Proposition 8.28. The MiNniMuM Caracity CUT PROBLEM can be solved in the
same running time as the MAXIMUM FLow PROBLEM, in particular in O(n*) time.

Proof: For a network (G, u, s, t) we compute a maximum s-f-flow f and define
X to be the set of all vertices reachable from s in G;. X can be computed with
the GRAPH SCANNING ALGORITHM in linear time (Proposition 2.17). By Lemma
8.3 and Theorem 8.5, 85 (X) constitutes a minimum capacity s-z-cut. a

In this section we consider the problem of finding a minimum capacity s-¢-cut
for each pair of vertices s, 7 in an undirected graph G with capacities u : E(G) —
R,.

This problem can be reduced to the above one: For all pairs 5,7 € V(G) we
solve the MiniMuM Capacity Cut ProBLEM for (G', ', s, t), where (G, u’) arises
from (G, u) by replacing each undirected edge {v, w} by two oppositely directed
edges (v, w) and (w, v) with u'((v, w)) = u'((w, v)) = u({v, w}). In this way we
obtain a minimum s-¢-cut for all s, ¢ after (;) flow computations.

This section is devoted to the elegant method of Gomory and Hu [1961}, which
requires only n — 1 flow computations. We shall see some applications in Sections
12.3 and 20.2.

Definition 8.29. Let G be an undirected graph and u : E(G) — R, a capac-
ity function. For two vertices s,t € V(G) we denote by ), their local edge-
connectivity, i.e. the minimum capacity of a cut separating s and t.

The edge-connectivity of a graph is obviously the minimum local edge-
connectivity with respect to unit capacities.



8.6 Gomory-Hu Trees 169

Lemma 8.30. For all vertices i, j, k € V(G) we have Ay > min(};j, Ajx).

Proof: Letd(A)beacutwithi € A, ke V(G)\Aandu(§(A)) =xr;.Ifje A
then §(A) separates j and k, so u(8(A)) > Aj. If j € V(G)\ A then 6(A) separates
i and j, so u(6(A)) > A;;. We conclude that A,y = u(6(A)) > min(A;;, Ay). 0O

Indeed, this condition is not only necessary but also sufficient for numbers
(Aij)1<i j<n With A;; = Aj; to be local edge-connectivities of some graph (Exercise
20).

Definition 8.31. Let G be an undirected graph and u : E(G) — R, a capacity
Sfunction. 4 tree T is called a Gomory-Hu tree for (G, u) if V(T) = V(G) and

Ay = min u(8g(C,)) foralls,t € V(G),
ceE(P,)

where Py, is the (unique) s-t-path in T and, for e € E(T), C, and V(G) \ C, are
the connected components of T — e (i.e. 3(C,) is the fundamental cut of e with
respect to T ).

We shall see that every graph possesses a Gomory-Hu tree. This implies that
for any undirected graph G there is a list of n — 1 cuts such that for each pair
s,t € V(G) a minimum s-f-cut belongs to the list.

In general, a Gomory-Hu tree cannot be chosen as a subgraph of G. For
example, consider G = K33 and u = 1. Here A;;, = 3 for all s,t € V(G). It is
easy to see that the Gomory-Hu trees for (G, u) are exactly the stars with five
edges.

The main idea of the algorithm for constructing a Gomory-Hu tree is as follows.
First we choose any s,¢ € V(G) and find some minimum s-z-cut, say §(A). Let
B := V(G) \ A. Then we contract A (resp. B) to a single vertex, choose any
s',t" € B (resp. ', € A) and look for a minimum s’-¢’-cut in the contracted
graph G’. We continue this process, always choosing a pair s’, ¢’ of vertices not
separated by any cut obtained so far. At each step, we contract — for each cut
E(A’, B') obtained so far — A" or B’, depending on which part does not contain
s and 1"

Eventually each pair of vertices is separated. We have obtained a total of n — 1
cuts. The crucial observation is that a minimum s’-t'-cut in the contracted graph
G’ is also a minimum s’-t'-cut in G. This is the subject of the following lemma.
Note that when contracting a set A of vertices in (G, u), the capacity of each edge
in G’ is the capacity of the corresponding edge in G.

Lemma 8.32. Let G be an undirected graph and u : E(G) — R, a capacity
function. Let s,t € V(G), and let §(A) be a minimum s-t-cut in (G, u). Let now
s’ € V(G) \ A, and let (G',u') arise from (G, u) by contracting A to a single
vertex. Then for any minimum s'-t'-cut §(K U {A}) in (G',u’), 5(K U A) is a
minimum s'-t'-cut in (G, u).



170 8. Network Flows

Fig. 8.3.

Proof: Lets,t, A,s',t', G, u’ be as above. W.l.o.g. s € A. It suffices to prove
that there is a minimum s’-t'-cut §(A’) in (G, u) such that A C A’. So let §(C)
be any minimum s’-¢’-cut in (G, u). W.lo.g. s € C.

Since u is submodular (cf. Lemma 2.1(a)), we have u(§(A)) + u(3(C)) >
u@(ANC)+u@B(AUC)). But s(ANC) is an s-t-cut, so u(6(ANC)) > Ay =
u(8(A)). Therefore u(6(A U C)) < u(8(C)) = iy proving that (AU C) is a
minimum s’-z’-cut. (See Figure 8.3.) O

Now we describe the algorithm which constructs a Gomory-Hu tree. Note that
the vertices of the intermediate trees T will be vertex sets of the original graph;
indeed they form a partition of V(G). At the beginning, the only vertex of T is
V(G). In each iteration, a vertex of T containing at least two vertices of G is
chosen and split into two.

GoMorY-HU ALGORITHM
Input: An undirected graph G and a capacity function u : E(G) — R;.

Output: A Gomory-Hu tree T for (G, u).
@® Set V(T) :={V(G)} and E(T) := 0.
@  Choose some X € V(T) with |X| > 2. If no such X exists then go to (®).
® Choose s,t € X with s #1¢.
For each connected component C of T — X do: Let S¢ := Uycy(c) Y-
Let (G', u') arise from (G, u) by contracting S¢ to a single vertex v¢ for

each connected component, C of 7 — X.
(So V(G") = X U {uc : C is a connected component of T — X}.)




8.6 Gomory-Hu Trees 171

Find a minimum s-f-cut §(A’) in (G, u’). Let B := V(G') \ A’.

Set A == ( U SC) U(A'NX) and B := ( U sc) U (B’ N X).
veeAN\X vceB\X
Set V(T) := (V(T)\{X}) U{ANX, BN X).
For each edge ¢ = {X, Y} € E(T) incident to the vertex X do:
IfY CAthensete :={ANX,Y}elsesete :={BNX, Y}
Set E(T) := (E(T) \ {e}) U {e'} and w(e) := w(e).
Set E(T) := E(T)U{{AN X, BN X}} and
w({ANX, BNX} :=u'(8g(A)).
Go to 2.

Replace all {x} € V(T) by x and all {{x}, {y}} € E(T) by {x, y}. Stop.

Fig. 8.4.



172 8. Network Flows

Figure 8.4 illustrates the modification of T in (). To prove the correctness of
this algorithm, we first show the following lemma:

Lemma 8.33. Fach time at the end of @ we have

(@ AUB=V(G)
(b) E(A, B) is a minimum s-t-cut in (G, u).

Proof: The elements of V(T) are always nonempty subsets of V(G), indeed
V(T) constitutes a partition of V(G). From this, (a) follows easily.

We now prove (b). The claim is trivial for the first iteration (since here G’ =
G). We show that the property is preserved in each iteration.

Let Cy, ..., C; be the connected components of 7 — X. Let us contract them
one by one; for i = 0,...,k let (G;,u;) arise from (G, u) by contracting each
of Sc,, ..., Sc, to a single vertex. So (Gy, uy) is the graph which is denoted by

(G, v') in Q) of the algorithm.
Claim: For any minimum s-z-cut §(A;) in (G;, u;), §(A;_;) 1S a minimum
s-t-cut in (G;_1, u;_1), where

- (Ai\{ve, DU S, ifue € A;
=17 4 ifve ¢ A -

Applying this claim successively for k, k — 1, ..., 1 implies (b).

To prove the claim, let §(A;) be a minimum s-¢-cut in (G, u;). By our as-
sumption that (b) is true for the previous iterations, 8(S¢,) is a minimum s;-#;-cut
in (G, u) for some appropriate s;,#; € V(G). Furthermore, s, € V(G) \ S¢,. So
applying Lemma 8.32 completes the proof. ]

Lemma 8.34. At any stage of the algorithm (until ©) is reached) for all e € E(T)

w(e) = ul|dg UZ

ZeC,

where C, and V(T) \ C, are the connected components of T — e. Moreover for all
e ={P, Q} € E(T) there are vertices p € P and q € Q with A,, = w(e).

Proof: Both statements are trivial at the beginning of the algorithm when T
contains no edges; we show that they are never violated. So let X be vertex of
T chosen in ) in some iteration of the algorithm. Let 5,7, A", B’, A, B be as
determined in 3) and @ next. W.l.o.g. assume s € A"

Edges of T not incident to X are not affected by (5. For the new edge {A N
X, BN X}, w(e) is clearly set correctly, and we have A, = w(e), s € AN X,
te BNX.

So let us consider an edge ¢ = {X, Y} that is replaced by ¢’ in 5). We assume
w.log Y C A, s0¢ = {ANX,Y} Assuming that the assertions were true for e
we claim that they remain true for ¢’. This is trivial for the first assertion, because
w(e) = w(e’) and u (86 (Uzec, Z)) does not change.



8.6 Gomory-Hu Trees 173

To show the second statement, we assume that there are p € X,q € Y with
Apg = w(e). If p € ANX then we are done. So henceforth assume that p € BNX
(see Figure 8.5).

L]
' p
BNX

Fig. 8.5.

We claim that A,;, = A,,. Since 1,, = w(e) = w(¢’) and s € AN X, this will
conclude the proof.
By Lemma 8.30,
Asg Z minfAg, Ay, Apg}-

Since by Lemma 8.33(b) E(A, B) is a minimum s-z-cut, and since s,q € A, we
may conclude from Lemma 8.32 that A, does not change if we contract B. Since
t, p € B, this means that adding an edge {¢, p} with arbitrary high capacity does
not change A,,. Hence

Asg = minfhg, Ayl

Now observe that Ay, > A, because the minimum s-t-cut E(A, B) also separates
p and g. So we have
Asg = Apg.

To prove equality, observe that w(e) is the capacity of a cut separating X and
Y, and thus s and ¢. Hence

This completes the proof. m]

Theorem 8.35. (Gomory and Hu [1961]) The GoMory-HU ALGORITHM works
correctly. Every undirected graph possesses a Gomory-Hu tree, and such a tree is
found in O(n*) time.



174 8. Network Flows

Proof: The complexity of the algorithm is clearly determined by n — I times
the complexity of finding a minimum s-¢-cut, since everything else can be imple-
mented in O (n?) time. Using the GOLDBERG-TARJAN ALGORITHM (Theorem 8.27)
we obtain the O(n*) bound.

We prove that the output 7 of the algorithm is a Gomory-Hu tree for (G, u).
It should be clear that T is a tree with V(T) = V(G). Now let s,t € V(G). Let
P;; be the (unique) s-z-path in T and, for e € E(T), let C, and V(G) \ C, be the
connected components of 7 — e.

Since §(C,) is an s-t-cut for each e € E(P,,),

Ay < min u(3(C,)).
ecE(P,;)

On the other hand, a repeated application of Lemma 8.30 yields

Ast = min Apy-
{v,wleE(Py)
Hence applying Lemma 8.34 to the situation before execution of (6 (where each
vertex X of T is a singleton) yields

Ay = min u(5(C.)),
ecE(Py)

so equality holds. a

A similar algorithm for the same task (which might be easier to implement)
was suggested by Gusfield [1990].

8.7 The Minimum Cut in an Undirected Graph

If we are only interested in a minimum capacity cut in an undirected graph G
with capacities u : E(G) — R,, there is a simpler method using n — 1 flow
computations: just compute the minimum s-¢-cut for some fixed vertex s and each
t € V(G) \ {s}. However, there are more efficient algorithms.

Hao and Orlin [1994] found an O(nm log %)-algorithm for determining the
minimum capacity cut. They use a modified version of the GOLDBERG-TARIAN
ALGORITHM.

If we just want to compute the edge-connectivity of the graph (i.e. unit capac-
ities), the currently fastest algorithm is due to Gabow [1995] with running time
O(m+ A\?nlog %), where A(G) is the edge-connectivity (observe that m > An).
Gabow’s algorithm uses matroid intersection techniques. We remark that the MAx-
iMUM FLow PROBLEM in undirected graphs with unit capacities can also be solved
faster than in general (Karger and Levine [1998]).

Nagamochi and Ibaraki [1992] found a completely different algorithm to de-
termine the minimum capacity cut in an undirected graph. Their algorithm does
not use max-flow computations at all. In this section we present this algorithm
in a simplified form due to Stoer and Wagner [1997] and independently to Frank
[1994]. We start with an easy definition.



