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Abstract

We provethat given an undirected graph G on n vertices
and an integer k, onecan computein polynomial timein
nagraph G with at most 5k?+k vertices and an integer
k' such that G has a feedback vertex set of size at most
kiffG has afeadback vertex set of sizeat most k. T his
result improves a previous O(k!!) kernd of Burrage et
al. [6], and a more recent cubic kernd of Bodlaender [3].
T his problem was communicated by Fedlows in [5].

1 Introduction

One€fficient way of dealing with NP-hard problemsisto
identify a parameter which contains its computational
hardness. For instance, instead of asking for a minimum
vertex cover in a graph - a classical NP-hard optimiza-
tion question - one can ask for an algorithm which would
decide, in O(f (k).n9) time for some fixed d, if a graph
of size n has a vertex cover of size at most k. If such an
algorithm exists, the problem is called fixed-parameter
tractable, or FPT for short. An extensive litteratureis
devoted to FPT, the reader is invited to read for in-
stance [10], [17] or [11].

Kerndization is a natural way of proving that a
problem is FPT. Formally, a kerndization algorithm
receives as input an instance G, k of the parameterized
problem, and outputs, in polynomial time in the size of
the instance, an instance G', k such that

« k =k
* thesize of G only depends on k,

* theinstances G,k and G, k are both true or both
false.

The reduced instance G,k isa kernel of G, k. The
existence of a kerndization algorithm clearly implies the
existence of an FPT algorithm since one can kerndize
the instance, and then solve the reduced instance G , k
using any (valid) algorithm, hence giving an O(f (k) +
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n9) algorithm. A dassical result asserts that being FPT
is indeed equivalent to having kerndization. However,
the proof of this result does not imply that thesize of the
reduced instance G is small with respect tok. A much
more constrained condition than simply being FPT is
then to be ableto reduceto an instance with polynomial
sizein k. And indeed, in the parameterized problems
zoology, an important distinction is done between three
classes: W([1}hard, FPT, and polynomial kerndization.

Maybe of more interest than a new refinement in
the hardness hierarchy is the fact that kerndization
deals with reduction rules. Indeed, no branching is
allowed in the process, since we start with an instance
G,k and output another instance G ,k. Hence, the
involved reduction rules can serve as a preprocessing
stage in any attempt to solve the problem. In other
words, kerndization can be seen as the preliminar non-
branching computation of the instance, and thus is a
very generic tool. Beingthen ableto reducetheinstance
to linear or quadratic sizein k with reasonable constants
is a very good first step towards the solution.

One of the long standing questions in polynomial
kernelization was the FEEDBACK VERTEX SET problem
whose input is a graph G and an integer k and whose
output is trueif one can remove at most k vertices to G
to form a forest, and false otherwise. In a more formal
way, a feadback vertex set of a graph G = (V,E) is a
subset S € V such that G\ S is acyclic, or equivalently
is a forest. Note that our graphs may have loops and
multiple edges. However, since edges with multiplicity
more than two are irrelevant for our purpose, we will
implicitely assume that all multiple edges are double
edges. In practice, if any edge with multiplicity more
than two appears in our graph operations, we will
make use of a tacit reduction rule which reduces its
multiplicity to two.

The FEEDBACK VERTEX SET problem was first
shown to be FPT by Downey and Fellows [9]. Some
faster FPT algorithms were provided in [2], [10], [1],
[18] [15], [19], [14], [8] Razgon [20] gave an exact
algorithm in O(1.8899") time, improved by Fomin et



al. [12] to O(1.7548"). The polynomial kernelization
of FEEDBACK VERTEX SET was solved by Burrage et
al. [6] in O(n!!), and improved to O(n3) by Bodlaen-
der [3]. This latter result used and generalized the re-
duction rules of the O(n'!) kerndization to obtain a
cubic kernd after an intricate argument.

We provide in this paper a quadratic kernel for
FEEDBACK VERTEX SET which reducestheinput graph
G toagraph G with sizeat most 5k2+k. Our reduction
rules are very much inspired from ther proofs apart
from a new reduction rule (Rule5). The noticeable fact
concerning this new rule is that it is heavily based on
combinatorial optimization results. Namdy, we make
use of the very classical Hall’s matching theorem, but
also of a less known min/max result of Gallai [13]
concerning disioint A-paths in a graph (which is in
fact equivalent to the maximum matching problem in
general graphs). The fact that a factor of k could be
saved (from cubic kernd to quadratic kernd) possibly
follows from the fact that we switched from reduction
rules based on counting arguments to reduction rules
based on min/ max duality.

For the sake of readability, we first avoid some
technicalities to obtain a kernd of size 8?2 + k, and
then show in the last part how to reduce this bound to
5k? + k. A kerndization in 4k? +k, to the cost of a new
reduction rule is then briefly sketched.

2 Matching based tools

Our kernalization of FEEDBACK VERTEX SET makes
use of two results both admitting a proof based on max-
imum matching in graphs (nonbipartite and bipartite).
Given a vertex x of G, an x-flower of order k is a set of
k cycles pairwise intersecting exactly on x. Given a s&t
of vertices A, an A-path is a path with length at least
one, having itsendverticesin A, and itsinternal vertices
outside of A.

Theorem?2.1. (Gallai [13]) Let A be a subset of ver-
tices of a graph G. If the maximum number of vertex
disjoint A-paths is strictly less than k + 1, there exists
a set of vertices X € V of size at most 2k intersecting
every A-path.

T his result follows from a stronger min/ max state-
ment, also presented in the original paper of Gallai. For
a short proof and a generalization to digraphs, one can
read Kriesdl [16]. Schrijver [21] showed how Gallai's re-
sult can be expressed into a maximum matching prob-
lem in nonbipartite graphs. Hence, both conclusions of
Theorem 2.1, the s&t of k + 1 disjoint A-paths or the
set X are computable in polynomial time in [V|. A
straightforward consequence of this result is:

Corollary 2.1. Let x be a vertex of a graph G which
is not a loop. If there is no x-flower of order k + 1,
there exists a set of vertices X < V '\ x of size at most
2k intersecting every cycle containing x.

Proof. If x isonly incident to simple edges, there are no
k+1disjoint N (x)-paths in the graph G\ x, whereN (x)
denotes the neighborhood of x. Thus T heorem 2.1 gives
our conclusion. If x is joined to | vertices by double
edges, we first select in X these | vertices, and then
intersect every other cycle containing x with 2(k — I)
vertices.

The following result is a straightforward conse-
guence of Hall’s theorem. We will ned it to apply our
key reduction rule. HereN (Z) denotes the set of neigh-
bors of the vertices in Z.

Theorem?2.2. Let G be a hipartite graph on hipartition
(X,Y). There exists a polynomial algorithm which
computes a subset Z of X such that [N (Z)| < 2|Z]| if
such a subset Z exists.

Proof. We construct an auxiliary graph H obtained
from G by splitting every vertex x of X into two twins
x1 and x» with the same neighborhood in Y as x. We
denote by X; and X, these two copies of X. Hall's
T heorem gives:

 ether there exists a matching in H which covers
X1 U X3, in which case every subset Z of X has a
set of neighborsin Y with size at least 2|Z|.

* or there exists a subset of vertices Z; u Z>, where
Z, € X, and Z, € X,, which negththOd in
Y has size strictly less than |Z; u Z3|. Let Z be
the subset of vertices x of X such that x; €Z; or
X2 €EZ>. Notethat thesize of Z is at least half of
the size of Z; U Z,. Moreover, the neighborhood
N(Z) of Z in Y is exactly the neighborhood of
Z1UZ;. Hence IN(Z)] < 2|Z].

Since a maximum matching, and dually a contract-
ing set, can be computed in polynomial time, the subset
Z can be calculated when it exists.

We now make iterative use of Theorem 2.2 in our
next proof.

Theorem?2.3. L&t G be a nonempty hipartite graph on
bipartition (X,Y) with |Y| = 2|X | and such that every
vertex of Y has at least one neighbor in X . Then there
exists nonempty subsets X € X and Y <Y such that
the set of neighbors of Y in G is exactly X ', and such
that every subset Z < X has at least 2|Z| neighbors in
Y . In addition, such a pair of subsets X ,Y can be
computed in polynomial time in the size of G.



Proof. We apply T heorem 2.2 to the graph G. If there
isnosubset Z, wejust st X :=X andY :=Y. If
a subset Z exists, we simply ddete in G the vertices
Z from X, and the vertices N(Z) from Y. By our
hypothesis, we have that Z & X since|[N(X)|=|Y| =
2|X|. Moreover, we still have [Y \ N(Z)| = 2|X \ Z]|,
and by construction, every vatex of Y \ N (Z) haveits
(nonempty) neighborhood contained in X \ Z. Thus
G\ (Z UN (Z)) satisfies the hypothesis of T heorem 2.3.
Hencewe can iterate our procedure which will terminate
on some subsets X ', Y with the required properties.

3 The reduction rules

Let us list some basic reduction rules for the kernd-
ization of the FEEDBACK VERTEX SET problem. We
assume here that the input is a couple G, k. The first
rule, Rule 0, simply says that if we can certify that the
size of a minimum feedback vertex set of G is morethan
k, we reduce G, k to some trivial false instance G,k ,
for example G is the loop and k = 0.

« Rule 1 If there is a loop on some vertex x, we
reducetoG :=G\xandk :=k—1

* Rule 2 Ifthereisa vertex x with degree O or 1, we
reducetoG :=G\ x and k :=k.

* Rule 3 If a vetex x is incident to exactly two
edges xy and xz (possibly with y = z), we reduce
toG :=(G\x)uyzandk :=k.

* Rule 4 If there exists an x-flower of order k + 1,
wereducetoG =G\ xandk :=k—-1

Note that these reduction rules described so far are
safe, i.e G has a feedback vertex set of size at most k
iff G has a feedback vertex set of size at most k. We
now introduce our key-rule

Rule 5 If thereis a set of vertices X, a vertex x €
V\ X and a set of connected components Cof G\ (X ux)
(not necessarily all the connected components) such
that:

* There is exactly one edge between x and every
C eC

* Every C €Cinduces a tree

* Forevery subset Z < X, thenumber of components
of C having some neighbor in Z is at least 2|Z|.

T hen one can formagraph G by joining x to every
vertex of X by double edges, and removing the edges
between x and the components of C. Wethen reduceto
G and k :=k.

Theorem3.1. Rule5 is safe

Proof. We more strongly show that the size of a mini-
mum feedback vertex set in G is equal to the size of a
minimum feedback vertex set in G.

Let S be a feedback vertex set of G'. Since the
double edges incident to x forcethat x €S or X €S/,
we observe that S’ is also a feedback vertex set of G.
Indeed, assume for contradiction that C is a cycle of
G\S. Then C contains x since we only modified edges
incident to x when reducing G to G . This means that
S does not contain x, thus it contains X . Hence every
edge between x and some component of Cisa bridgein
G\ S, and consequently cannot belong to C. Finally
every edgeof C belongsto G \ S, contradicting thefact
that S is a feedback vertex set for G .

Now we assume that S is a feedback vertex set of
G, and show that there exists a feedbadk vertex set S
of G with sizeat most |S|. If S contains x, it is indeed
a feadback vertex set of G sinceG and G only differ on
edges incident to x. So we now assume that S does not
contain x. Let usdenoteby Y theset X\ S. Let usalso
denoteby Z theset of vertices of S which beongto some
component of C. Thecrudial fact isthat S = (SuY )\ Z
is a feedback vertex set of G, sinceevery C inCis a
component of G\ S'. Wejust have toshow that thesize
of S isat most thesize of S. Assume for contradiction
that |Z| < |Y|. Observethat every vertex y of Y has a
neighbor in at most one component C in C which does
not intersect Z, otherwisethe vertices x, y together with
two components C,C € C disjoint from Z and joined
to y would contain a cycle This means that the total
number of C in C which havea neighbor in Y is at most
[Y |+ ]Z] < 2]Y|, contradicting the definition of X .

Observe that any application of a reduction rule
strictly decreases the value n +s, where n is the number
of vertices of the graph G and s isits number of simple
edges. T husthe total number of reduction rules onecan
apply starting from a graph G is linear in the size of G.
T herefore, to get a kernd, we just have to prove that if
G is large enough, one can efficiently find a reduction
ruleto apply. This is the aim of the next section.

4 Applying the rules

We now show how to construct a polynomial kernd for
the graph G.

Theorem4.1. If G is a graph on n vertices with n >
8k? + k, one an find a reduction rule to apply to G in
polynomial time in n.

Proof. The application of rules 1 up to 3 is routine,
and hence we can assume that G is a loopless graph,



with minimum degree 3, and such that theonly multiple
edges are double edges. Observe now that if there exists
a feedback vertex set S of G with at most k vertices, the
number of edges between S and V \ S is at least 8k2.
Indeed, V' \ S spans a forest and hence induces at most
[V\ S| =1 edges. Moreover every vertex of V \ S has
degree at least 3, so the total number of edges leaving
V\Sisatleast 3[V\S|—2(|V\S|-1) > 8k2.

Hence, there must be a vertex of S with degree at
least 8k2/|S| = 8k. In particular, if G has maximum
degreeless than 8k, wesimply givea negativeanswer by
applying Rule 0. T herefore, we now assume that there
exists a vertex x with degree at least 8k. If there exists
an x-flower of order k + 1, we apply Rule 4. Otherwise,
we apply Theorem 2.1 in order to find a set of vertices
X € V\ x with [X| = 2k such that there is no cycle
containing x in G\ X.

We denote by Ctheset of components of G\ (X ux).
Note that the total degree of x inside X is at most 3k
since the worst case is when x is linked to k vertices of
X by double edges (no more than k since there is no x-
flower of order k + 1) and to the other by simple edges.
Hence x is incident to at least 5k edges which are not
incident to X . Since X medts all the cycles containing
x, each component of Cis joined to x with at most one
edge. Hence at least 5k components of C are joined
to x. At most k of these components contain a cycle,
otherwise we would reduce G by Rule 0. Consequently,
thereexistsaset Y of at least 4k components of C which
induces trees and are joined to x with a single edge

We now form a bipartite simple graph B on vertex
set X,Y wherevC isanedgeofB,forvEeX andC €Y,
if and only if there exists an edge between v and C in
G. Since every component C inY spans a treg, G has
minimum degree three and C is only linked to x by an
edge, there are edges leaving C which are not incident
to x, and thus areincident to X . T his means that every
dement of Y is joined to a vertex of X. Moreover we
have |Y | = 2|X |, hence we can apply Theorem 2.3, to
find nonempty subsets X < X and Y <Y such that
the set of neighbors of Y™ in B is exactly X ', and such
that every subset Z < X' has at least 2|Z| neighbors in
Y . Observe now that:

« every dement C of Y is a component of the graph
G\ (X ux),

* every element C of Y islinked to x with a single
edge,

 every dement C of Y spans a tree

* every subset Z of X' is linked to at least 2|Z|
dements of Y'

Consequently, we can apply Rule5to G, X ', x.

5 Beyond 8kZ +k

In order to get a better bound than 8k2, onecan usethe
full generality of Gallai’s result which gives a certificate
to the maximum order of an x-flower:

Theorem5.1. Let G bea gaph and x be a vertex of G
which is not a loop. T he maxi mungorder of an x-flower
is equal to the minimum of [X |+~ ¢ BESC H where
X is a subset of vertices, Cis the set of all components
of G\ (X ux), and e(x, C) is the number of edges between
x and C.

Again this min/ max result is polynomially com-
putable Using Theorem 5.1 instead of Theorem 2.1
in the proof of Theorem 4.1 gives a better bound of
5k2 + k. We sketch the proof of this, based on the lines
of the proof of Theorem 4.1.

T here exists a vertex x with minimum degree 5k for
which there is no x-flower of order k + 1. Let X bea
subset certifying the maximality of the order of an x-
flower, as in Theorem 5.1. Let C be the components of
C which are linked to x with more than one edge We
denote by e the total number of edges between x and
the components of C. Notethat |X |+e/3isat most k,
the worst case being when x is linked with exactly three
edges to each component of C. Hence 4k = 4|X | + €.

Furthermore, there are at most k components of
C\ C which contain a cycle In all, the number c of
components of C which are trees and are linked to x
with exactly one edgeis at least 5k —2|X | —e —k since
each vertex of X can be linked to x with two edges. We
then havec = 4k —2|X | —e, thus c = 2|X |. Finally, we
satisfy the hypothesis of Theorem 2.3, and we conclude
as in Theorem 4.1.

As a conclusion of this paper, weremark that in the
previous analysis, the k components containing a cycle
we discarded and the 2|X | edges we assumed between
x and X can be counted together to obtain a better
bound than 5k? + k. Indeed, one can add ancther rule
asserting that if x bedong to a p-flower F, and there are
gdisjoint cyclesin G\ F, thenif p+gq=k + 1, wecan
reduce G since x is certainly in a feedback vertex set.
Using this new rule, we can obtain a kerndization of
FEEDBACK VERTEX SET of size 4k? +k.

6 Conclusion

The challenge is now to go beow O(k?). In the case of
planar graphs, a linear kernd was proposed in [4]. A
natural question would be to ask for the existence of a
polynomial kernel for the directed feedback vertex set,
since this problem was recently proved to be FPT in [7].
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