The Max-back Ordering

- A section from the unfinished Master Thesis of
Mette Hagenborg Eskesen

Department of Mathematics & Computer Science
University of Southern Denmark, Odense University

September 27, 2001

Given an undirected multigraph G = (V, E), it is well known, that the edge-connectivity
A(G) of G can be found using n — 1 max-flow computations. In this section we will present
an alternative approach, in which we compute A(G) using only degree-comparisons and edge-
contractions. Our main tool is a special ordering, here called a maz-back ordering, of the
vertices of GG. All graphs considered in this section will be undirected.

Subsequently we will also show how to find a sparse certificate for the edge-connectivity
AG) of G, i.e. a A(G)-edge-connected spanning subgraph G* = (V, E*) of G, where E* C E
and |E*| < A(G)|V|, using the same special ordering.

The presentation given below is inspired by a presentation given at SDU, Odense Univer-
sity, by Tibor Jordan in September 1996.

We start with a few definitions and some properties of the structures they define.

Definition 1 (Max-back Ordering) A max-back ordering of a given undirected multi-
graph G is an ordering vi,va,...,v, of the vertices of G, satisfying the inequality

d(‘/ﬂ 7)H-l) > d(‘/’/’ Uj)a

for all indices i and j, 1 <i < j <n. The set V; is defined by V; = {vi,v9,...,v;}.
An example of a max-back ordering can be seen in Figure 1 (a) on page 4.

Lemma 1 A maz-back ordering of a given undirected multigraph G = (V, E) can be found in
O(|V]log|V| + |E'|) time, where E' is the set of edges in the corresponding simple graph.

Proof of Lemma 1 Let G = (V, E) be an undirected multigraph. It follows from the defi-
nition above, that we can find a max-back ordering of G by choosing v; € V arbitrarily and
then successive choose v;11 € V as a vertex maximizing d(V;,v;41).

We will pursue the above idea, which bears a lot of similarities to the famous Single-Source
Shortest-Path algorithm by Dijkstra (a description of which can be found in [CLR90]), but
first we will review our perception of G. Dealing with multigraphs is usually not very practical
when our goal is a polynomial time algorithm, so in the following we will consider G, not as a
multigraph, but as a simple weighted graph G' = (V, E', W) with edge-weights depicting the

multiplicity of the edges in G. In this way we can represent G’ by an array of |V| adjacency
lists, where the weight of the edge vu € FE', is simply stored with vertex u in v’s adjacency
list and vice versa.

Having Dijkstra’s algorithm in mind, we now implement the algorithm suggested above,
using a priority queue @ containing all the vertices v in V' — V;, keyed by the sum of the
weights of the edges between v and V; in G'. Initially we insert all the vertices of V in @), and
give them all key-value 0. In each iterative step we then extract the maximum keyed vertex v
from @, insert it into V; and increase the key-value of each of v’s neighbours u by the weight
of the edge vu € F'.

The complexity of the algorithm is given by the total complexity of the operations on Q.
Implementing () with a Fibonacci heap, we have |V| Insert operations of amortized cost O(1),
\V| EztractMaz operations taking O(log|V|) amortized time and at most |E’'| IncreaseKey
operations of amortized cost O(1). Hence a total cost of O(|V| x 1+ |V| xlog |[V|+ |E'| x 1)
as required. O

An ordering fulfilling Definition 1 is sometimes called a mazimum adjacency ordering, a
mazimum cardinality ordering or a legal ordering. Here however, we have chosen the term
maz-back ordering (as it was denoted in Tibor Jordan’s presentation) to illustrate the greedy
choice of v;11, as being a vertex mazimizing the number of edges back to the set V; of previously
chosen vertices.

According to Frank, Ibaraki & Nagamochi [FIN93] max-back orderings (though this term
was not used), where first investigated by R. E. Tarjan and M. Yannakakis [TY84] in connec-
tion with chordal graphs.

Definition 2 (Continuous ordering) An ordering vi,vs, ..., v, of the vertices of a multi-
graph G is said to be continuous, if every connected component C of G possesses the following
properties:

(i) the vertices of C' have consecutive indices in the ordering.
(ii) every vertex of C (except the one with the smallest index) is adjacent to a vertex with
a lower index.

In particular we see, that if vy, vs,...,v, is a continuous ordering of the vertices of some
multigraph G, then v, and v, 1 belong to the same connected component in G, if and only
if d(vy,) > 0.

Lemma 2 Fvery maz-back ordering of a given multigraph G, is continuous.
An illustrative example is given in Figure 1 (b) on page 4.

Proof of Lemma 2 Let G be a multigraph and let vy, vs,...,v, be an arbitrary max-back
ordering of the vertices of G. We then need to verify, that the ordering possesses property (i)
and (ii) stated in Definition 2.
Property (i):

Assume by contradiction the existence of a connected component C' in G in which the indices
of the vertices do not form an interval and choose (without loss of generality) C to contain
the smallest index among such components. This gives us two indices 7 and h, such that
1<i<i+1l<h<n, v;eC, viz1 ¢ C and v, € C.

Let C' denote the connected component of G' containing v;11. By the choice of C' and the
fact that v; € C, C' contains no vertex v, with 1 <1 < 4. This implies, that d(V;,v; 1) = 0.

Since v; and vy belong to the same connected component, we have the existence of a path
between v; and vy. In particular we therefore have the existence of a path between V; and vy,
giving us a vertex v;, i+ 1 < j < mn, such that d(V;,v;) > 1. Hence d(V;,viy1) < d(V;,v;),
contradicting the definition of a max-back ordering.

Property (ii):
Assume by contradiction the existence of a connected component C in G with vertex-set
{vks Vg4, .-y}, 1 <k+1 <1 <n, where some vertex v;11, k <i+1 <1, do not have an
edge to a vertex with a smaller index. Note that ¢ + 1 # [, since the vertex v; has to have an
backwards edge in order for C' to be connected.

By choice of v;y1 d(Vi,v;11) = 0. But since C is connected, we must have, that
d({vk, vk+1,-- - v}, {vigr, viga, ..., 0 }) > 0, giving us a vertex v; € {vj42,vi43,...,v} such
that 0 < d({vg,vg41,...,0i},v5) < d(Vi,v;). But then d(Vj,vip1) < d(Vi,v;) contradicting
the definition of a max-back ordering. O

Definition 3 (Max-back forest) Let G = (V, E) be a multigraph. The forest correspond-
ing to a given max-back ordering vy, ve, ..., v, of G, is defined as the simple graph F = (V, E'),
where E' = {vjv; | viv; € E N i <j N d(Vii,v;) = 0}.

It is clear from the definition, that given a multigraph G = (V| F) and a max-back ordering
v1, V2, ...,y of G we can easily find the corresponding max-back forest by a sequence of
greedy choices, in which we, for each vertex v € V, include the edge incident to v, which
reaches as far backwards in the ordering as possible. In other words, the idea is to go through
the vertices of V' (in any order) and for each vertex v;, to include in F' an edge v;v; from E,
j < i, minimizing the index j (if more than one edge fulfill the criteria, we only include one
of these edges). If in some step, there is no edge incident to v, which reaches backwards in
the ordering, no edge is included in F' in that step.

That the defined forest indeed is a forest, can be verified by establishing, that F' contains
no cycles and at most n — 1 edges. The latter, however, follows directly from the above
construction of F', since we include at most one edge for each of the vertices vo,...,v, and
none for the vertex vy.

To see that F' contains no cycles, we assume the existence of a cycle and let v be the
vertex with the highest index in that cycle. The choice of v implies that it has at least two
adjacent vertices w and u in F', both with indices less than 7. However, this contradicts the
construction of F', according to which we only include one of the edges wv and uv.

It will be useful to note, that the spanning forest constructed above is maximal in G, i.e.
the addition of any edge from E/F to F would create a cycle. This is easily seen, since (by
the above construction) the number of edges in F' is given by the number of vertices in G
minus the number of connected components in G. This number equals the size of a maximum
forest in G, hence F' is maximum and must therefore also be maximal. An obvious, yet useful,
consequence of this observation is that F' gives rise to a spanning tree in each of the connected
components of G.

An example of a max-back forest is given in Figure 1 (c).

U1 V2 V4 Vg V12 V10

V3 (3 (%A Vs Vg V11

G e e T, e, T,

() V9 V3 (] (%) Vg (%4 (O8] Vg V10 V11 V12

F e e e T e e

() V9 V3 V4 (%) Vg (%4 O8] Vg V10 V11 V12

Figure 1: (a) vy, v9,..., v12 is an example of a max-back ordering of the vertices of the

shown graph G. (b) G drawn in a way illustrating that the ordering from (a) is continuous.
(c) The forest F' corresponding to the max-back ordering in question.

Lemma 3 If v1,v9,...,v, is a maz-back ordering of a given multigraph G, it is also a maz-
back ordering of the graph G — E[F], where F' denotes the forest corresponding to the maz-back
ordering, and E[F| specifies the edge-set of that forest.

Proof of Lemma 3 Let G be a multigraph, let vy, vs,...,v, be a max-back ordering of G
and assume by contradiction, that v, ve, ..., v, is not a max-back ordering of G — E[F].

The assumption gives us the existence of two indices 7 and j, 1 < i+ 1 < j < n, such
that dg_pr(Vi,vis1) < dg_gr(Vi,vj). Consequently dg_pgir(Vi,v;) > 1, implying that
dg(Vi,vj) > 1. Since vy,v9,...,v, is a max-back ordering in G and ¢ + 1 < j, the latter
furthermore gives us that dg(Vi,vi41) > 1.

We can conclude that, in G, both v;;1 and v; have at least one vertex in V;, i.e. they
both have at least one edge going backwards in the ordering. Hence, the definition of a
max-back ordering and the forest corresponding to it gives the inequality dg_pg(r)(Vi, vit1) =
da(Vi,viy1) — 1> da(Vi,v5) — 1 = dg_gr)(Vi, vj), contradicting our choice of 4 and j. O

Theorem 4 For any maz-back ordering vi,vs, ..., v, of a given multigraph G, we have that
AMvp—1,v,) = d(vy).

Proof of Theorem 4 Let G be a multigraph and let vy, vs, ..., v, be an arbitrary max-back
ordering of G. Clearly d(v,) > A(v,_1,v,), since v,, can be the end-vertex of at most d(v,,)
edge-disjoint (v,_1,vy,)-paths. For the same reason the theorem is trivial, if d(v,) = 0, so we
may assume that d(v,) =k > 0.

Use the notation F; to specify the forest of G corresponding to the max-back ordering
v1, V2, ...,vy and let F; specify the forest of graph G — U;-;ll E[F}], 2 <i <k, corresponding

4

to the same max-back ordering. Recall that Lemma 3 ensures the existence of each of the
forests F s FQ, - ,Fk,1 and Fk.

Since dg (v,) = k, the definition of the forest corresponding to a max-back ordering gives,
that dr, (v,) = 1, for all 1 <4 < k. Hence the degree of v, is nonzero in all of the graphs
G — U;;ll E[F;], 2 <i <k, so Lemma 2 combined with the remark after Definition 2 imply
that v,, 1 and v,, belong to the same connected component in each of these graph (as well as in
G). Therefore v, 1 and v, must belong to the same tree in each of the edge-disjoint forests F;,
1 <1i <k, giving k edge-disjoint (v, _1,v,)-paths in G. Consequently A(v,_1,v,) > k = d(v,)
and we are done. O

Definition 4 (G"") Let G = (V, F) be a multigraph with distinct vertices v,w € V.. We now
let G denote the multigraph obtained from G, by removing all vw-edges and identifying v
with w, so that the resulting vertex z is incident with those edges (other than the vw-edges),
that where originally incident with either v or w.

(. (nw .
' minimum cut : minimum cut

identifying v with w
R ——

Y Y

Figure 2: Example of a graph G in which A(G) < AG""). Notice how the cut
({z,y,v},{w}) simply does not exist in G**

Theorem 5 Let G = (V, E) be an undirected multigraph on at least 3 vertices, then
AMG) = min{A(G""), A\g(v,w)}

for allv,w e V.

Proof of Theorem 5 Let G = (V, E) be an undirected multigraph and let v,w € V be two
arbitrary vertices of G. Obviously A(G) < Ag(v,w), since A(G) = ming yevAa(z,y).

Since the operation of identifying v with w eliminates some of the possible cuts in G (all
the cuts separating v and w) and does not create new ones, every cut in G'* must be a
cut in G. Thus A(G) < A(G") and we have the inequality A(G) < min{\(G""), Ag(v,w)}.
Figure 2 illustrates, how a (minimum) cut in G might not exist in G"*.

Let (S, S) be a minimum cut in G. If (S, S) does not separate v and w, then (S, S) is also
a minimum cut in G*. Hence A\(G"") = A\(G) < Ag(v,w). If (S, S) does separate v and w
in G it is not a valid cut in G**, and we have, that Ag(v,w) = A(G) < AM(G"Y). O

Theorem 4 and Theorem 5 combined, more or less gives us the desired algorithm for finding the
edge-connectivity of a given multigraph G — without the use of maximum-flow computations.
Indeed we are ready to address the main subject of this section.

The idea is to repeatedly choose a pair of vertices v and w, compute the size of a minimum
(v, w)-cut and then replace G by the contracted graph G"". This way we keep track of the
size of all potential minimum cuts lost in the process, and after n — 1 iterative steps we have

a graph consisting of only a single vertex. By Theorem 5 the edge connectivity of the original
graph G is now given by the minimum size of all the minimum cuts found along the way.

A crucial observation is, that the choice of v and w is arbitrary in each step. Consequently
we might as well choose them in a way that makes the size of a minimum (v, w)-cut as easy as
possible to determine. By Theorem 4 we see, that the aid of a max-back ordering enables us
to choose v and w so that A(v,w) is given by d(w). Using this approach the edge-connectivity
of G is clearly found as the minimum among all the values dg, (w;), that appeared during the
process (here G; and w; denotes the graph and the chosen vertex w at the i’th iteration). In
addition, a global minimum cut in the original graph G is given by the set of vertices, that
has been contracted into that particular vertex w, that attains the minimum just mentioned.

As seen in Figure 3, there is no guarantee that a given max-back ordering will remain
a max-back ordering through all steps of the algorithm. Furthermore, verifying whether an
ordering is in fact a max-back ordering, will take just as long as to find a new max-back
ordering. As a consequence hereof, the algorithm given below, will compute a new max-back
ordering in each iterative step.

G . (%) G1)3 Vg : (%)

V3 identifying v with w
ﬁ

" o “vg04”
V4

Figure 3: A simple example showing that a max-back ordering of a given graph might not
be valid after the contraction of the last two vertices in the ordering. Clearly the ordering
{v1,v2, “v3v4” } is not a max-back ordering of G¥3%4, since d(v1,v2) < d(v1, “v3v4”).

ALGORITHM FOR FINDING \(G):

INPUT: A multigraph G
OUTPUT: k = A\(G) and a minimum cut (S, S) in G

k:= o0
S:=10
n = |V(G)|
while n > 1
find a max-back ordering vy, vs,...,v, of G
if d(vg) < k
k:=d(vy)
S = {'U],’UQ,...,’Un,]}
G := GUn-1n
n:=n-—1

return(k, S)

Figure 4 shows a step-by-step example of the algorithm in use.

(a) ! minimum cut

(c)
. d(v7) =3
()
d(vr,) =4
. V2
(8) /
d(vs) =3 >r717(112) =2

(%

U3

Figure 4: A step-by-step example of how the algorithm for finding A(G) works. The graph
and the given max-back ordering have been taken from Figure 1. The ordering is characteris-
tic, since it is valid through all the iterative steps of the algorithm (however the algorithm will
reproduce it in each iteration). The algorithm finds, that M(G) = min{2,3,4,4,1,3,2} =1,
and that ({vy,vs,v3}, {vs4,v5,...,vs}) is a minimum cut in the graph as indicated in Figure

(a).

Theorem 6 Given an undirected multigraph G = (V, F), we can find the edge-connectivity
MG) of G as well as a minimum, cut in the graph in time O(|V |*log|V|+|V||E'|) time without
the use of flow-computations.

E' denotes the set of edges in the corresponding simple graph.

Proof of Theorem 6 Let G = (V, E) be a multigraph. That the algorithm given above
actually finds A(G) along with a minimum cut (S, S) in G — and does so without the use of
flow-computations should be established by now, so we turn our attention to the complexity
of the algorithm.

There is no doubt, that the most expensive operations used in the algorithm is to find a
max-back ordering, so evidently the complexity of the algorithm is dominated by the |V| —1

times, this operation is carried out. By Lemma 1 we therefore conclude that the total time
complexity of the algorithm is given by O((|V| — 1) x (|[V|log|V| + |E'|)) = O(|V|*log|V| +
VIIE'). O

To the best of our knowledge, one of the fastest known flow-algorithms for determining
the edge-connectivity of a multigraph G = (V,E) is a O(|V||E’'|) time algorithm pre-
sented by Matula in 1987 [AMO93]. Obviously the algorithm presented here is faster for
[E' € Q([V]log|V]).

As mentioned in the opening, the concept of a max-back ordering can also be used to find a
sparse certificate for the edge-connectivity of a given multigraph. To do so, we will need the
following lemma.

Lemma 7 (Sparse certificate) Let G be a k-edge-connected multigraph. Let Fy be a mazxi-
mal spanning forest in G and let F; be a mazimal spanning forest in G—U;;]]E[Fj}, 2<i<k.
The graph H = Uf:1Fi 15 then k-edge-connected.

Proof of Lemma 7 Let G = (V,E) and F;, 1 < i < k, be as described in the theorem.
Then let H be the union of the k forests F;, 1 < ¢ < k, and assume by contradiction that H
is not k-edge-connected.

The assumption gives us the existence of a cut (S,S), S C V, of size at most k — 1 in H.
Since G is k-edge-connected, the size of (S, S) in G is at least k. Consequently we must have
two distinct vertices v € S and w € S, such that vw € E[G], vw ¢ E[H] and Ay (v, w) < k.

Since vw ¢ E[H] we have vw € G — U;;%E[Ej], 2 <1 <k, placing v and w in a common
connected component in each of the graphs G and G — U;-;IIE[Fi], 2 <4 < k. But then, since
the forests F;, 1 < i < k, are maximal, v and w must also belong to a common connected
component (a tree) in each of the forests. Thus we get k edge-disjoint (v, w)-paths in H,
contradicting the choice of v and w. O

According to Lemma 7, it is possible to find a sparse certificate G* for the k-edge-
connectivity of a given multigraph G, by repeatedly finding an arbitrary maximal forest
F in G and then replacing G by the graph G — E[F]. After k iterative steps, the sparse
certificate G* is given as the union of the k forests found along the way.

This algorithm seems simple and straightforward, but, as we shall see below, it can be
made even simpler if we choose to consider forests belonging to some max-back ordering of
G, instead of just arbitrary forests.

By Lemma 3 it will not be necessary to produce more than one max-back ordering of
G, since the ordering will remain valid as a max-back ordering throughout the process. An
interesting result hereof, is that we might as well create G* in one step, instead of k steps
where we remove only one forest at a time:

Find a max-back ordering {vi,vs,...,v,} of G. For each vertex v € V| include in G*
those k edges (v;,v) € FE with the smallest index 1 < i < j. If there is fewer than k such
edges, just take as many as there are.

Theorem 8 Let G = (V, E) be a k-edge-connected multigraph. In time O(|V|log|V| + |E'|)
we can find a k-edge-connected spanning subgraph G* = (V, E*), such that |[E*| < k|V|.
E' denotes the set of edges in the simple graph corresponding to G.

Proof of Theorem 8 Let G = (V, F) be a k-edge-connected multigraph, and assume that
we have found a max-back ordering vy, ve, ..., v, of the vertices of G.

In order to find a sparse certificate for the edge-connectivity of G, we will more or less
follow the algorithmic ideas discussed above, but instead of going through the vertices of V' in
an arbitrary order, we will construct G* by looking at each edge’ once, and then determine
whether or not it should be a part of E*. Using this approach, it is of course crucial, that
we choose the right order in which to examine the edge-set of G and it is here the max-back
ordering will be of tremendous help.

In the text preceding the theorem, we saw that for each vertex v; in V, we wish to include
those k edges incident to v;, that reaches as far back as possible in the max-back ordering.
Hence we start by examining the edges incident to vy, then those edges incident to vy that
are not incident to v, followed by those edges incident to v3 that are not incident to v or vy
and so forth.

Note that in each step we only examine edges, that reaches forward in the max-back
ordering, and recall that in G* each vertex must have at most k edges reaching backwards
but an arbitrary number of edges reaching forward.

An edge vjvj, 1 < i < j < n, is to be included in E* if we have not yet included %k edges
incident to v;. If we have already included £ edges incident to v;, each of those edges reaches
a vertex vy, where 1 < k < ¢, indicating that our algorithm must be correct.

Analyzing the algorithm for finding a max-back ordering (from the proof of Lemma 1),
we see that we can construct the max-back ordering and the spanning subgraph G* = (V, E*)
simultaneously, since the algorithm from Lemma 1 examine each of the edges in E’ in the
exact same order, as we just did in the proof above. Hence, by Lemma 1, we can find G* in
time O(|V|log|V| + |E'|).

As for the size of G*, we recall that G* is constructed as the union of k£ spanning forest
in G, or equivalently as the union of at most k& backward-edges from each vertex in V. It is
therefore obvious that the edge-set E* of G* cannot have more than k(]V] — 1) edges. O

Using a somewhat similar approach, Nagamochi and Ibaraki [NI92] have presented a linear-
time algorithm for finding a sparse certificate for the edge-connectivity A(G) of a given multi-
graph G. Tt is easy to verify that their O(|V|+ |E'|) algorithm produces a max-back ordering
as well as a sparse certificate, so by their result, we can actually get an O(|V|?+|V||E’|) algo-
rithm for finding A(G) as opposed to the O(|V|?log|V| + |V||E'|) algorithm from Theorem 6.

References

[AMO93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,
and Applications. PRENTICEHALL, New Jersey, 1993.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
McGraw-Hill Book Company, Massachusetts, 1990.

[FIN93] A. Frank, T. Ibaraki, and H. Nagamochi. On sparse subgraphs preserving connec-
tivity properties. Journal of Graph Theory, 17(3):pp. 275 281, 1993.

THaving the proof of Lemma 1 in mind, it should be obvious how we can consider G to be a simple
weighted graph, with edge-weights depicting the multiplicity of the original edges. We do this in order to keep
the algorithm polynomial.

[N192]

[TY84]

H. Nagamochi and T. Ibaraki. A linear-time algirithm for finding a sparse k-
connected spanning subgraph of a k-connected graph. Algorithmica, 7:pp.583-596,
1992.

R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM J. Computing, 13(3):pp.566 579, 1984.

10

