
The Max-ba
k Ordering- A se
tion from the unfinished Master Thesis ofMette Hagenborg EskesenDepartment of Mathemati
s & Computer S
ien
eUniversity of Southern Denmark, Odense UniversitySeptember 27, 2001Given an undire
ted multigraph G = (V;E), it is well known, that the edge-
onne
tivity�(G) of G 
an be found using n� 1 max-
ow 
omputations. In this se
tion we will presentan alternative approa
h, in whi
h we 
ompute �(G) using only degree-
omparisons and edge-
ontra
tions. Our main tool is a spe
ial ordering, here 
alled a max-ba
k ordering, of theverti
es of G. All graphs 
onsidered in this se
tion will be undire
ted.Subsequently we will also show how to �nd a sparse 
erti�
ate for the edge-
onne
tivity�(G) of G, i.e. a �(G)-edge-
onne
ted spanning subgraph G� = (V;E�) of G, where E� � Eand jE�j � �(G)jV j, using the same spe
ial ordering.The presentation given below is inspired by a presentation given at SDU, Odense Univer-sity, by Tibor Jord�an in September 1996.We start with a few de�nitions and some properties of the stru
tures they de�ne.Definition 1 (Max-ba
k Ordering) A max-ba
k ordering of a given undire
ted multi-graph G is an ordering v1; v2; : : : ; vn of the verti
es of G, satisfying the inequalityd(Vi; vi+1) � d(Vi; vj);for all indi
es i and j, 1 � i < j � n. The set Vi is de�ned by Vi = fv1; v2; : : : ; vig.An example of a max-ba
k ordering 
an be seen in Figure 1 (a) on page 4.Lemma 1 A max-ba
k ordering of a given undire
ted multigraph G = (V;E) 
an be found inO(jV j log jV j+ jE0j) time, where E0 is the set of edges in the 
orresponding simple graph.Proof of Lemma 1 Let G = (V;E) be an undire
ted multigraph. It follows from the de�-nition above, that we 
an �nd a max-ba
k ordering of G by 
hoosing v1 2 V arbitrarily andthen su

essive 
hoose vi+1 2 V as a vertex maximizing d(Vi; vi+1).We will pursue the above idea, whi
h bears a lot of similarities to the famous Single-Sour
eShortest-Path algorithm by Dijkstra (a des
ription of whi
h 
an be found in [CLR90℄), but�rst we will review our per
eption of G. Dealing with multigraphs is usually not very pra
ti
alwhen our goal is a polynomial time algorithm, so in the following we will 
onsider G, not as amultigraph, but as a simple weighted graph G0 = (V;E0;W ) with edge-weights depi
ting the1



multipli
ity of the edges in G. In this way we 
an represent G0 by an array of jV j adja
en
ylists, where the weight of the edge vu 2 E0, is simply stored with vertex u in v's adja
en
ylist { and vi
e versa.Having Dijkstra's algorithm in mind, we now implement the algorithm suggested above,using a priority queue Q 
ontaining all the verti
es v in V � Vi, keyed by the sum of theweights of the edges between v and Vi in G0. Initially we insert all the verti
es of V in Q, andgive them all key-value 0. In ea
h iterative step we then extra
t the maximum keyed vertex vfrom Q, insert it into Vi and in
rease the key-value of ea
h of v's neighbours u by the weightof the edge vu 2 E0.The 
omplexity of the algorithm is given by the total 
omplexity of the operations on Q.Implementing Q with a Fibona

i heap, we have jV j Insert operations of amortized 
ost O(1),jV j Extra
tMax operations taking O(log jV j) amortized time and at most jE0j In
reaseKeyoperations of amortized 
ost O(1). Hen
e a total 
ost of O(jV j � 1 + jV j � log jV j+ jE0j � 1)as required. 2An ordering ful�lling De�nition 1 is sometimes 
alled a maximum adja
en
y ordering, amaximum 
ardinality ordering or a legal ordering. Here however, we have 
hosen the termmax-ba
k ordering (as it was denoted in Tibor Jord�an's presentation) to illustrate the greedy
hoi
e of vi+1, as being a vertexmaximizing the number of edges ba
k to the set Vi of previously
hosen verti
es.A

ording to Frank, Ibaraki & Nagamo
hi [FIN93℄ max-ba
k orderings (though this termwas not used), where �rst investigated by R. E. Tarjan and M. Yannakakis [TY84℄ in 
onne
-tion with 
hordal graphs.Definition 2 (Continuous ordering) An ordering v1; v2; : : : ; vn of the verti
es of a multi-graph G is said to be 
ontinuous, if every 
onne
ted 
omponent C of G possesses the followingproperties:(i) the verti
es of C have 
onse
utive indi
es in the ordering.(ii) every vertex of C (ex
ept the one with the smallest index) is adja
ent to a vertex witha lower index.In parti
ular we see, that if v1; v2; : : : ; vn is a 
ontinuous ordering of the verti
es of somemultigraph G, then vn and vn�1 belong to the same 
onne
ted 
omponent in G, if and onlyif d(vn) > 0.Lemma 2 Every max-ba
k ordering of a given multigraph G, is 
ontinuous.An illustrative example is given in Figure 1 (b) on page 4.Proof of Lemma 2 Let G be a multigraph and let v1; v2; : : : ; vn be an arbitrary max-ba
kordering of the verti
es of G. We then need to verify, that the ordering possesses property (i)and (ii) stated in De�nition 2.Property (i):Assume by 
ontradi
tion the existen
e of a 
onne
ted 
omponent C in G in whi
h the indi
esof the verti
es do not form an interval and 
hoose (without loss of generality) C to 
ontainthe smallest index among su
h 
omponents. This gives us two indi
es i and h, su
h that1 � i < i+ 1 < h � n, vi 2 C, vi+1 =2 C and vh 2 C.2



Let C 0 denote the 
onne
ted 
omponent of G 
ontaining vi+1. By the 
hoi
e of C and thefa
t that vi 2 C, C 0 
ontains no vertex vl, with 1 � l � i. This implies, that d(Vi; vi+1) = 0.Sin
e vi and vh belong to the same 
onne
ted 
omponent, we have the existen
e of a pathbetween vi and vh. In parti
ular we therefore have the existen
e of a path between Vi and vhgiving us a vertex vj , i + 1 < j � n, su
h that d(Vi; vj) � 1. Hen
e d(Vi; vi+1) < d(Vi; vj),
ontradi
ting the de�nition of a max-ba
k ordering.Property (ii):Assume by 
ontradi
tion the existen
e of a 
onne
ted 
omponent C in G with vertex-setfvk; vk+1; : : : ; vlg, 1 < k + 1 < l � n, where some vertex vi+1, k < i+ 1 < l, do not have anedge to a vertex with a smaller index. Note that i+ 1 6= l, sin
e the vertex vl has to have anba
kwards edge in order for C to be 
onne
ted.By 
hoi
e of vi+1 d(Vi; vi+1) = 0. But sin
e C is 
onne
ted, we must have, thatd(fvk; vk+1; : : : ; vig; fvi+1; vi+2; : : : ; vlg) > 0, giving us a vertex vj 2 fvi+2; vi+3; : : : ; vlg su
hthat 0 < d(fvk; vk+1; : : : ; vig; vj) � d(Vi; vj). But then d(Vi; vi+1) < d(Vi; vj) 
ontradi
tingthe de�nition of a max-ba
k ordering. 2Definition 3 (Max-ba
k forest) Let G = (V;E) be a multigraph. The forest 
orrespond-ing to a given max-ba
k ordering v1; v2; : : : ; vn of G, is de�ned as the simple graph F = (V;E0),where E0 = fvivj j vivj 2 E ^ i < j ^ d(Vi�1; vj) = 0g.It is 
lear from the de�nition, that given a multigraph G = (V;E) and a max-ba
k orderingv1; v2; : : : ; vn of G we 
an easily �nd the 
orresponding max-ba
k forest by a sequen
e ofgreedy 
hoi
es, in whi
h we, for ea
h vertex v 2 V , in
lude the edge in
ident to v, whi
hrea
hes as far ba
kwards in the ordering as possible. In other words, the idea is to go throughthe verti
es of V (in any order) and for ea
h vertex vi, to in
lude in F an edge vivj from E,j < i, minimizing the index j (if more than one edge ful�ll the 
riteria, we only in
lude oneof these edges). If in some step, there is no edge in
ident to v, whi
h rea
hes ba
kwards inthe ordering, no edge is in
luded in F in that step.That the de�ned forest indeed is a forest, 
an be veri�ed by establishing, that F 
ontainsno 
y
les and at most n � 1 edges. The latter, however, follows dire
tly from the above
onstru
tion of F , sin
e we in
lude at most one edge for ea
h of the verti
es v2; : : : ; vn andnone for the vertex v1.To see that F 
ontains no 
y
les, we assume the existen
e of a 
y
le and let v be thevertex with the highest index in that 
y
le. The 
hoi
e of v implies that it has at least twoadja
ent verti
es w and u in F , both with indi
es less than i. However, this 
ontradi
ts the
onstru
tion of F , a

ording to whi
h we only in
lude one of the edges wv and uv.It will be useful to note, that the spanning forest 
onstru
ted above is maximal in G, i.e.the addition of any edge from E=F to F would 
reate a 
y
le. This is easily seen, sin
e (bythe above 
onstru
tion) the number of edges in F is given by the number of verti
es in Gminus the number of 
onne
ted 
omponents in G. This number equals the size of a maximumforest in G, hen
e F is maximum and must therefore also be maximal. An obvious, yet useful,
onsequen
e of this observation is that F gives rise to a spanning tree in ea
h of the 
onne
ted
omponents of G.An example of a max-ba
k forest is given in Figure 1 (
).3
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G :
G :
F :Figure 1: (a) v1; v2; : : : ; v12 is an example of a max-ba
k ordering of the verti
es of theshown graph G. (b) G drawn in a way illustrating that the ordering from (a) is 
ontinuous.(
) The forest F 
orresponding to the max-ba
k ordering in question.Lemma 3 If v1; v2; : : : ; vn is a max-ba
k ordering of a given multigraph G, it is also a max-ba
k ordering of the graph G�E[F ℄, where F denotes the forest 
orresponding to the max-ba
kordering, and E[F ℄ spe
i�es the edge-set of that forest.Proof of Lemma 3 Let G be a multigraph, let v1; v2; : : : ; vn be a max-ba
k ordering of Gand assume by 
ontradi
tion, that v1; v2; : : : ; vn is not a max-ba
k ordering of G�E[F ℄.The assumption gives us the existen
e of two indi
es i and j, 1 < i + 1 < j � n, su
hthat dG�E[F ℄(Vi; vi+1) < dG�E[F ℄(Vi; vj). Consequently dG�E[F ℄(Vi; vj) � 1, implying thatdG(Vi; vj) � 1. Sin
e v1; v2; : : : ; vn is a max-ba
k ordering in G and i + 1 < j, the latterfurthermore gives us that dG(Vi; vi+1) � 1.We 
an 
on
lude that, in G, both vi+1 and vj have at least one vertex in Vi, i.e. theyboth have at least one edge going ba
kwards in the ordering. Hen
e, the de�nition of amax-ba
k ordering and the forest 
orresponding to it gives the inequality dG�E[F ℄(Vi; vi+1) =dG(Vi; vi+1)� 1 � dG(Vi; vj)� 1 = dG�E[F ℄(Vi; vj), 
ontradi
ting our 
hoi
e of i and j. 2Theorem 4 For any max-ba
k ordering v1; v2; : : : ; vn of a given multigraph G, we have that�(vn�1; vn) = d(vn):Proof of Theorem 4 Let G be a multigraph and let v1; v2; : : : ; vn be an arbitrary max-ba
kordering of G. Clearly d(vn) � �(vn�1; vn), sin
e vn 
an be the end-vertex of at most d(vn)edge-disjoint (vn�1; vn)-paths. For the same reason the theorem is trivial, if d(vn) = 0, so wemay assume that d(vn) = k > 0.Use the notation F1 to spe
ify the forest of G 
orresponding to the max-ba
k orderingv1; v2; : : : ; vn and let Fi spe
ify the forest of graph G�[i�1j=1E[Fj ℄, 2 � i � k, 
orresponding4



to the same max-ba
k ordering. Re
all that Lemma 3 ensures the existen
e of ea
h of theforests F1; F2; : : : ; Fk�1 and Fk.Sin
e dG(vn) = k, the de�nition of the forest 
orresponding to a max-ba
k ordering gives,that dFi(vn) = 1, for all 1 � i � k. Hen
e the degree of vn is nonzero in all of the graphsG � [i�1j=1E[Fj ℄, 2 � i � k, so Lemma 2 
ombined with the remark after De�nition 2 implythat vn�1 and vn belong to the same 
onne
ted 
omponent in ea
h of these graph (as well as inG). Therefore vn�1 and vn must belong to the same tree in ea
h of the edge-disjoint forests Fi,1 � i � k, giving k edge-disjoint (vn�1; vn)-paths in G. Consequently �(vn�1; vn) � k = d(vn)and we are done. 2Definition 4 (Gvw) Let G = (V;E) be a multigraph with distin
t verti
es v; w 2 V . We nowlet Gvw denote the multigraph obtained from G, by removing all vw-edges and identifying vwith w, so that the resulting vertex z is in
ident with those edges (other than the vw-edges),that where originally in
ident with either v or w.
identifying v with w minimum 
utzminimum 
utv wG: Gvw :x yxyFigure 2: Example of a graph G in whi
h �(G) < �(Gvw). Noti
e how the 
ut(fx; y; vg; fwg) simply does not exist in GvwTheorem 5 Let G = (V;E) be an undire
ted multigraph on at least 3 verti
es, then�(G) = minf�(Gvw); �G(v; w)gfor all v; w 2 V .Proof of Theorem 5 Let G = (V;E) be an undire
ted multigraph and let v; w 2 V be twoarbitrary verti
es of G. Obviously �(G) � �G(v; w), sin
e �(G) = minx;y2V �G(x; y).Sin
e the operation of identifying v with w eliminates some of the possible 
uts in G (allthe 
uts separating v and w) and does not 
reate new ones, every 
ut in Gvw must be a
ut in G. Thus �(G) � �(Gvw) and we have the inequality �(G) � minf�(Gvw); �G(v; w)g.Figure 2 illustrates, how a (minimum) 
ut in G might not exist in Gvw.Let (S; S) be a minimum 
ut in G. If (S; S) does not separate v and w, then (S; S) is alsoa minimum 
ut in Gvw. Hen
e �(Gvw) = �(G) � �G(v; w). If (S; S) does separate v and win G it is not a valid 
ut in Gvw, and we have, that �G(v; w) = �(G) � �(Gvw). 2Theorem 4 and Theorem 5 
ombined, more or less gives us the desired algorithm for �nding theedge-
onne
tivity of a given multigraph G { without the use of maximum-
ow 
omputations.Indeed we are ready to address the main subje
t of this se
tion.The idea is to repeatedly 
hoose a pair of verti
es v and w, 
ompute the size of a minimum(v; w)-
ut and then repla
e G by the 
ontra
ted graph Gvw. This way we keep tra
k of thesize of all potential minimum 
uts lost in the pro
ess, and after n� 1 iterative steps we have5



a graph 
onsisting of only a single vertex. By Theorem 5 the edge 
onne
tivity of the originalgraph G is now given by the minimum size of all the minimum 
uts found along the way.A 
ru
ial observation is, that the 
hoi
e of v and w is arbitrary in ea
h step. Consequentlywe might as well 
hoose them in a way that makes the size of a minimum (v; w)-
ut as easy aspossible to determine. By Theorem 4 we see, that the aid of a max-ba
k ordering enables usto 
hoose v and w so that �(v; w) is given by d(w). Using this approa
h the edge-
onne
tivityof G is 
learly found as the minimum among all the values dGi(wi), that appeared during thepro
ess (here Gi and wi denotes the graph and the 
hosen vertex w at the i'th iteration). Inaddition, a global minimum 
ut in the original graph G is given by the set of verti
es, thathas been 
ontra
ted into that parti
ular vertex w, that attains the minimum just mentioned.As seen in Figure 3, there is no guarantee that a given max-ba
k ordering will remaina max-ba
k ordering through all steps of the algorithm. Furthermore, verifying whether anordering is in fa
t a max-ba
k ordering, will take just as long as to �nd a new max-ba
kordering. As a 
onsequen
e hereof, the algorithm given below, will 
ompute a new max-ba
kordering in ea
h iterative step.
identifying v with wv1 v2v3v4

G : v1 v2\v3v4"Gv3v4 :
Figure 3: A simple example showing that a max-ba
k ordering of a given graph might notbe valid after the 
ontra
tion of the last two verti
es in the ordering. Clearly the orderingfv1; v2; \v3v4"g is not a max-ba
k ordering of Gv3v4 , sin
e d(v1; v2) < d(v1; \v3v4").ALGORITHM FOR FINDING �(G):INPUT: A multigraph GOUTPUT: k = �(G) and a minimum 
ut (S; S) in Gk :=1S := ;n := jV (G)jwhile n > 1�nd a max-ba
k ordering v1; v2; : : : ; vn of Gif d(vn) < kk := d(vn)S := fv1; v2; : : : ; vn�1gG := Gvn�1vnn := n� 1return(k; S)Figure 4 shows a step-by-step example of the algorithm in use.6
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minimum 
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Figure 4: A step-by-step example of how the algorithm for �nding �(G) works. The graphand the given max-ba
k ordering have been taken from Figure 1. The ordering is 
hara
teris-ti
, sin
e it is valid through all the iterative steps of the algorithm (however the algorithm willreprodu
e it in ea
h iteration). The algorithm �nds, that �(G) = minf2; 3; 4; 4; 1; 3; 2g= 1,and that (fv1; v2; v3g; fv4; v5; : : : ; v8g) is a minimum 
ut in the graph { as indi
ated in Figure(a).Theorem 6 Given an undire
ted multigraph G = (V;E), we 
an �nd the edge-
onne
tivity�(G) of G as well as a minimum 
ut in the graph in time O(jV j2logjV j+ jV jjE0j) time withoutthe use of 
ow-
omputations.E0 denotes the set of edges in the 
orresponding simple graph.Proof of Theorem 6 Let G = (V;E) be a multigraph. That the algorithm given abovea
tually �nds �(G) along with a minimum 
ut (S; S) in G { and does so without the use of
ow-
omputations { should be established by now, so we turn our attention to the 
omplexityof the algorithm.There is no doubt, that the most expensive operations used in the algorithm is to �nd amax-ba
k ordering, so evidently the 
omplexity of the algorithm is dominated by the jV j � 17



times, this operation is 
arried out. By Lemma 1 we therefore 
on
lude that the total time
omplexity of the algorithm is given by O( (jV j � 1) � (jV jlogjV j + jE0j) ) = O(jV j2logjV j+jV jjE0j). 2To the best of our knowledge, one of the fastest known 
ow-algorithms for determiningthe edge-
onne
tivity of a multigraph G = (V;E) is a O( jV jjE0j ) time algorithm pre-sented by Matula in 1987 [AMO93℄. Obviously the algorithm presented here is faster forjE0j 2 
( jV jlogjV j ).As mentioned in the opening, the 
on
ept of a max-ba
k ordering 
an also be used to �nd asparse 
erti�
ate for the edge-
onne
tivity of a given multigraph. To do so, we will need thefollowing lemma.Lemma 7 (Sparse 
erti�
ate) Let G be a k-edge-
onne
ted multigraph. Let F1 be a maxi-mal spanning forest in G and let Fi be a maximal spanning forest in G�[i�1j=1E[Fj ℄, 2 � i � k.The graph H = [ki=1Fi is then k-edge-
onne
ted.Proof of Lemma 7 Let G = (V;E) and Fi, 1 � i � k, be as des
ribed in the theorem.Then let H be the union of the k forests Fi, 1 � i � k, and assume by 
ontradi
tion that His not k-edge-
onne
ted.The assumption gives us the existen
e of a 
ut (S; S), S � V , of size at most k � 1 in H.Sin
e G is k-edge-
onne
ted, the size of (S; S) in G is at least k. Consequently we must havetwo distin
t verti
es v 2 S and w 2 S, su
h that vw 2 E[G℄, vw =2 E[H℄ and �H(v; w) < k.Sin
e vw =2 E[H℄ we have vw 2 G�[i�1j=1E[Fj ℄, 2 � i � k, pla
ing v and w in a 
ommon
onne
ted 
omponent in ea
h of the graphs G and G�[i�1j=1E[Fi℄, 2 � i � k. But then, sin
ethe forests Fi, 1 � i � k, are maximal, v and w must also belong to a 
ommon 
onne
ted
omponent (a tree) in ea
h of the forests. Thus we get k edge-disjoint (v; w)-paths in H,
ontradi
ting the 
hoi
e of v and w. 2A

ording to Lemma 7, it is possible to �nd a sparse 
erti�
ate G� for the k-edge-
onne
tivity of a given multigraph G, by repeatedly �nding an arbitrary maximal forestF in G and then repla
ing G by the graph G � E[F ℄. After k iterative steps, the sparse
erti�
ate G� is given as the union of the k forests found along the way.This algorithm seems simple and straightforward, but, as we shall see below, it 
an bemade even simpler if we 
hoose to 
onsider forests belonging to some max-ba
k ordering ofG, instead of just arbitrary forests.By Lemma 3 it will not be ne
essary to produ
e more than one max-ba
k ordering ofG, sin
e the ordering will remain valid as a max-ba
k ordering throughout the pro
ess. Aninteresting result hereof, is that we might as well 
reate G� in one step, instead of k stepswhere we remove only one forest at a time:Find a max-ba
k ordering fv1; v2; : : : ; vng of G. For ea
h vertex v 2 V , in
lude in G�those k edges (vi; v) 2 E with the smallest index 1 � i < j. If there is fewer than k su
hedges, just take as many as there are.Theorem 8 Let G = (V;E) be a k-edge-
onne
ted multigraph. In time O(jV j log jV j+ jE0j)we 
an �nd a k-edge-
onne
ted spanning subgraph G� = (V;E�), su
h that jE�j � kjV j.E0 denotes the set of edges in the simple graph 
orresponding to G.8



Proof of Theorem 8 Let G = (V;E) be a k-edge-
onne
ted multigraph, and assume thatwe have found a max-ba
k ordering v1; v2; : : : ; vn of the verti
es of G.In order to �nd a sparse 
erti�
ate for the edge-
onne
tivity of G, we will more or lessfollow the algorithmi
 ideas dis
ussed above, but instead of going through the verti
es of V inan arbitrary order, we will 
onstru
t G� by looking at ea
h edgey on
e, and then determinewhether or not it should be a part of E�. Using this approa
h, it is of 
ourse 
ru
ial, thatwe 
hoose the right order in whi
h to examine the edge-set of G and it is here the max-ba
kordering will be of tremendous help.In the text pre
eding the theorem, we saw that for ea
h vertex vi in V , we wish to in
ludethose k edges in
ident to vi, that rea
hes as far ba
k as possible in the max-ba
k ordering.Hen
e we start by examining the edges in
ident to v1, then those edges in
ident to v2 thatare not in
ident to v1, followed by those edges in
ident to v3 that are not in
ident to v1 or v2and so forth.Note that in ea
h step we only examine edges, that rea
hes forward in the max-ba
kordering, and re
all that in G� ea
h vertex must have at most k edges rea
hing ba
kwardsbut an arbitrary number of edges rea
hing forward.An edge vivj , 1 � i < j � n, is to be in
luded in E� if we have not yet in
luded k edgesin
ident to vj . If we have already in
luded k edges in
ident to vj , ea
h of those edges rea
hesa vertex vk, where 1 � k � i, indi
ating that our algorithm must be 
orre
t.Analyzing the algorithm for �nding a max-ba
k ordering (from the proof of Lemma 1),we see that we 
an 
onstru
t the max-ba
k ordering and the spanning subgraph G� = (V;E�)simultaneously, sin
e the algorithm from Lemma 1 examine ea
h of the edges in E0 in theexa
t same order, as we just did in the proof above. Hen
e, by Lemma 1, we 
an �nd G� intime O(jV j log jV j+ jE0j).As for the size of G�, we re
all that G� is 
onstru
ted as the union of k spanning forestin G, or equivalently as the union of at most k ba
kward-edges from ea
h vertex in V . It istherefore obvious that the edge-set E� of G� 
annot have more than k(jV j � 1) edges. 2Using a somewhat similar approa
h, Nagamo
hi and Ibaraki [NI92℄ have presented a linear-time algorithm for �nding a sparse 
erti�
ate for the edge-
onne
tivity �(G) of a given multi-graph G. It is easy to verify that their O(jV j+ jE0j) algorithm produ
es a max-ba
k orderingas well as a sparse 
erti�
ate, so by their result, we 
an a
tually get an O(jV j2+ jV jjE0j) algo-rithm for �nding �(G) as opposed to the O(jV j2logjV j+ jV jjE0j) algorithm from Theorem 6.Referen
es[AMO93℄ R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,and Appli
ations. PRENTICEHALL, New Jersey, 1993.[CLR90℄ T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introdu
tion to Algorithms.M
Graw-Hill Book Company, Massa
husetts, 1990.[FIN93℄ A. Frank, T. Ibaraki, and H. Nagamo
hi. On sparse subgraphs preserving 
onne
-tivity properties. Journal of Graph Theory, 17(3):pp. 275{281, 1993.yHaving the proof of Lemma 1 in mind, it should be obvious how we 
an 
onsider G to be a simpleweighted graph, with edge-weights depi
ting the multipli
ity of the original edges. We do this in order to keepthe algorithm polynomial. 9



[NI92℄ H. Nagamo
hi and T. Ibaraki. A linear-time algirithm for �nding a sparse k-
onne
ted spanning subgraph of a k-
onne
ted graph. Algorithmi
a, 7:pp.583{596,1992.[TY84℄ R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test 
hordality ofgraphs, test a
y
li
ity of hypergraphs, and sele
tively redu
e a
y
li
 hypergraphs.SIAM J. Computing, 13(3):pp.566{579, 1984.
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