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Stuff covered in week 6

I gave an overview of Sections 3.1-3.5 in BJG. After this and watching the videos on flows,
you should be ready to work with flows. I covered matching in bipartite graphs and showed
how to find a maximum matching via flows. I then used the max flow min cut theorem to
prove the theorems of Hall and Konig.

Lecture February 14, 2022:

e [ will give a proof of Menger’s Theorem based on flows and well as a proof using
submodularity. See BJG 7.3.

e More on Matroids (circuits, rank function, dual matroid). PS 12.4 and SCH 10.1-10.2
and the notes below.

e Weighted bipartite matching. SCH 3.5 matching in a graph which is not bipartite.
Exercises February 17. 2022:

NB! There is a chance that this class will be replaced by a video lecture on
max-back orderings. If that happens, we will discuss the exercises in week 8.

e SCH application 1.4.
e SCH application 1.7.

e Suppose you are given a connected undirected graph G' = (V| E) with costs on the
edges and your task is to give an algorithm which finds a minimum cost set of £/ C E
edges whose removal disconnects the graph (that is G — E’ is not connected). Explain
how to do this in polynomial time (hint: use flows).

e SCH exercise 3.2. Hint for (i): you may either consider a maximal matching, apply
Hall’s theorem or use the integrality theorem for flows (as I did at the lecture in

Week 6).

e Give an example of a graph G with v(G) < 7(G). Argue that for every graph G we
have 7(G) < 2v(G). Suggest a polynomial algorithm for finding a vertex cover of
size at most 27(G) in a given graph G.



e Prove that if a graph is 2-connected (that is, there are at least two internally disjoint
(s,t)-paths for every choice of distinct vertices s,t € V(G)), then for every vertex s
and edge uv of G there is a cycle C' which contains s and the edge uwv.

e Show that a graph G has a strongly connected orientation (we replace each edge uv
by one of the arcs u — v,v — u) if and only if G is 2-edge-connected. Also describe
an algorithm to find such an orientation or a bad cut.

e SCH Exercise 4.1.
e SCH application 4.1 be ready to discuss this in the class.
e Suppose you have a 8 by 8 chess board and dominos of size 1 by 2.

(a) Show that you can cover the chess board by non-overlapping dominos.

(b) Now suppose that we delete two diagonally opposite cornes of the chess board
((1,1) and (8,8)). Show that the new chessboard cannot be covered by non-
overlapping dominos. Hint: make a suitable bipartite graph and consider match-
ings in this.

Notes on matroids

Recall that a base of a matroid M = (S, F) is a maximal independent set of F.

Theorem 0.1 (Base axioms) The set B bases of a matroid M = (S,F) with F # ()
satisfy the following axioms:

(B1) B#0

(B2) |Bi1| = |Bs| for all By, By € B.

(B3) If By, By € B and x € By then there exists y € By such that By —x +y € B.
Proof: It is clear that the bases of M satisfy (B1) and (B2) and (B3) is a special case of

the exchange axiom (consider B; — x and Bs). o

The base axioms also define the set of all matroids of a set.

Proposition 0.2 Let S be a set and let B C 2% be a collection of subsets of S which
satisfies (B1)-(B3). Define Fg = {X C S|3B € B: X C B}. Then Mg = (S, Fg) is a

matorid.



Proof: Clearly Mg is s subset system so we just need to show that the exchange axiom
holds for Fp. Let X, Y € Fp with |Y| = |X|+1 and let By, By be elements of B such that
X C By and Y C By. Applying (B3) repeatedly we can delete the elements of By — X one
by one while adding a new element from By — Bx each time. Since |[Bx —X| = |By —Y|+1
at some point in this process we have a base B’ containing X such that the only element
of By — B that we can add to By —w, w ¢ X, is an element y € Y — X. Now By —w-+y
contains X +y so X +y € Fg, showing that Y — X contains an element y such that X 4y
is independent. o

Definition 0.3 (dual matroid) Let M = (S,F) be a matroid with base set B and rank
r(S) < |S|. Define F* = {X|3B € B: XN B = 0}. Then M* = (S, F*) is a matroid
called the dual matroid of M.

Proof: Let B* be the set of bases of F*. We show that B* satisfies the base axioms and
then it follows from Proposition 0.2 that M* is a matroid. By definition of /¥, all maximal
independent subsets of S have the same size and since r(S) < |S| we have B* # () so it
only remains to prove that (B3) holds. Let By, By € B* and let x € B} — B} be arbitrary.
Note that (S — Bf) N (S — Bj) + z is a subset of S — B} and hence is independent in
F. Apply the exchange axiom (in M) to the independent sets (S — Bf) N (S — B}) + «
and S — By until we have a new base Z of M. This will satisfy Z = (S — Bf) + = — =
where z € (S — B}) N By C Bj so we have shown that we can find z € Bj such that
Bf —x+ze B o

Finding a negative cycle in a digraph

Theorem 0.4 Let D = (V, A) be a digraph with a special vertex s and let w : A — R
be a weightfunction. Let D, be the successor digraph that we maintain while running the
Bellmann-Ford algorithm. Then D, will contain a cycle no later than iteration n of the
algorithm if and only if D contains a negative cycle reachable from s.

Proof: If D has a negative cycle C' reachable from s, then it can be seen that D, will
contain a cycle no later than iteration k£ where k is the number of arcs on a shortest path
from s to C' plus the number of arcs in C. This is not a complete argument so you should
try to make it more precise.

We prove the other direction below. Assume D, is acyclic until iteration 7 and that a cycle
C appears in iteration i. Consider the moment C' appears and let C' = vyvs ... vv; Where
we have just added viv; to A(D;).

Note that at any time during the algorithm (and no matter whether D has a negative cycle
or not) we always have d(y) > d(x) + w(z,y) for every arc zy € A(D,). This is because
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d(x) may have changed again but d(y) has not.

Using that the arc viv; was just added we obtain

dvi) > d(vg) + w(vg,vq)
>

d(kal) + U)(kal, "Uk) + U)(Uk, ’Ul)

v -

d(vr) +w(C),

implying that w(C') < 0.



