Institut for Matematik og Datalogi March 3, 2022
Syddansk Universitet JBJ

DMS867 — Fall 2022 — Weekly Note 6

Stuff covered in week 9

e Lovasz’s splitting theorem and augmenting the edge-connectivity of a graph. This is
covered by notes at the end this weekly note.

e Arc-disjoint branchings. This is BJG Section 9.5. (Video lecture)

Classes in Week 10

Nash-Williams orientation theorem. based on notes on this Note.

Orientations with degree bounds. BJG Section 8.7 (we will cover pages 446 to 447
top as well as Theorem 8.7.3 and its proof).

Finding subdigraphs with prescribed in- and out-degrees. BJG Section 3.11.3.

Gomory-Hu trees. Based on Section 8.6 in Korte and Vygen, Combinatorial Opti-
mization, Springer Verlag 2002.

Problems and applications to discuss on Thursday March 10

We discuss the remaining problems from Note 5 as well as the notes on Matroid connectivity
below.

Notes on Nash-Williams Orientation Theorem

Recall the following consequence of Lovasz’s splitting theorem

Theorem 1 Let k > 2 be an integer and let G = (V +s, E) be a graph for which the degree
of s is even, say d(s) = 2p and we have

Az,y) >k for every choice of x,y € V (1)

Then we can find a pairing (suy, svy), ... (Suy, sv,), p = d(s)/2 of the edges incident with
s so that the graph H = (V, E') that we obtain by deleting s and all its incident edges and
adding the edges ujvy, . .. u,v, still satisfies (1).
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A graph G is minimally r-edge-connected if it is r-edge-connected but G — e is no
longer r-edge-connected no matter which edge e we delete. In the exercises we have shown
the following:

Lemma 1 FEvery minimally r-edge-connected graph G has a vertex of degree r.

Lemma 2 Let D = (V, A) be a p-arc-strong digraph and ujvy, . .., u,v, any collection of p
distinct arcs of D. Let H = (V 4w, A") be the digraph that we obtain from D by deleting the
arcs uivy, ..., Upty, adding a new vertex w and the 2p arcs uyw,wuvy, ..., u,w,v,w. Then
H s p-arc-strong.

Proof: We show that every set () # X =# V 4 w has out-degree at least p in H. For each
arc u;v; that goes from X to V — X in D, either the arc u;s or the arc s;v; will go from X
to V — X in H. Thus the out-degree of X is the same in D and H for all X C V and for
the set V', the out-degree is exactly p in H so H is p-arc-strong. O

An orientation of a graph G = (V, E) is a digraph D = (V, A) that we can obtain from
G by assigning each edge uv one of the two possible directions v — v or v — .

Now we are ready to prove Nash-Williams’ orientation theorem

Theorem 2 (Nash-Williams) Let k > 1 be an integer and G = (V, E) a 2k-edge-
connected graph. Then G has an orientation D = (V, A) which is k-arc-strong

Proof: We prove the claim by induction on n = |V|. If n = 2 we have V = {u,v}
and there are at least 2k edges between u and v so we can just orient k£ of them from u
to v and the remaining from v to w, which clearly gives a k-arc-strong orientation. Sup-
pose now that the theorem holds for all 2k-edge-connected graphs on at most n—1 vertices.

Delete a set E of zero or more edges from G so that the resulting graph G/ = (V.E')
is minimally 2k-edge-connected. By Lemma 1 there is a vertex s of degree exactly 2k
in H'. Now apply Theorem 1 to get a 2k-edge-connected graph H” on n — 1 vertices
where we have replaced s and its 2k incident edges by k edges z1y1, X2, Y2, ..., Tryr. By
induction the graph H” has a k-arc-strong orientation D”. By switching the names of
x;,y; if necessary, we can assume that in D” the edges xiy1,..., 2y, are all oriented as
T1 — Y1, T2 — Yo, ..., Tk — Yr. Next we let D’ be obtained from D” be replacing these
arcs by the 2k arcs ©7 — s,8 = y1,... 2 — S, 8 — Y. By Lemma 2, D’ is k-arc-strong.
Finally we obtain the desired k-arc-strong orientation of G by orienting the edges in £
arbitrarily. O

Corollary 1 There exists a polynomial algorithm for finding a k-arc-strong orientation of
a given 2k-edge-connected graph.



Proof: This follows from the proof above and the following remarks:

e We can test whether G — uv is 2k-edge-connected by checking (via flows) whether
every set containing u but not v has degree at least 2k + 1. Hence we can find E by
doing this check for each edge in G and deleting the currently considered edge uv if
and only if every set containing u but not v has degree at least 2k + 1. Note that
after deleting some edges a remaining edge may become undeletable, even though it
would have been OK to delete if we only wnated to delete that edge.

e We proved on Weekly note 5, that we have a polynomial algorithm for finding a
pairing (sxi, sy1), ... (sxy, syx) of the 2k edges incident with s so that the graph
H” that we obtain by deleting s and all its incident edges and adding the edges
T1Y1, - - -, TpYx still satisfies (1).

Note that the algorithm will be recursive, since we repeat the steps above until we reach
a graph on just 2 vertices which we orient and then expand the orientation as we go back
in the recursion, while always lifting £ arcs from the previous graph back to the vertex s
from which we performed the last splitting and then adding zero or more edges arbitrarily
oriented (they were the ones we called E).

1 Notes on matroids

Recall that a circuit of a matroid M = (S,Z) is a minimal dependent set C' C S, that
is, C €7 but C —x € T for every z € C.

Theorem 3 Let M = (S,Z) be a matroid. The setC of circuits of M satisfies the following
properties

(C1) If X,)Y € C and X CY then X =Y (no proper subset of a circuit is a circuit).

(C2) If XY € C, X #Y and u € X NY, then there exist a circuit Z € C such that
ZCXUY —u.

(C3) If X)Y €C, X 42Y, 2€ X —-Y andu € X NY, then there exist a circuit Z € C
such that Z C X UY —u and z € Z.

(C4) If X,)Y €C, XNY 40, X £#Y, 2 € X —Y andy € Y — X, then there exist a
circuit Z € C such that Z C X UY and x,y € Z.

Proof: The first claim is immediate from the definition of a circuit.

To Prove (C2) suppose that there is no circuit inside X N'Y — w which means that this
is an independent set. Then, using that M satisfies the exchange axiom, starting from
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W = {u} we can add elements from X NY — u to the current set W until we end with an
independent set W’ of the same size as X UY —u, but this means that either X or Y is fully
contain in W’ contradicting that M is a subset system (every subset of an independent
set is independent).

Suppose that (C3) does not hold and let X,Y a counterexample such that | X U Y| is
minimum among all counterexamples. Let x € X and ©w € X NY be such that there is no
circuit containing x in X UY — u. By (C2) there exists a circuit Z; C X UY — u. By the
assumption above we have |Z; UY| < |[X UY], since z € Z; so Z1,Y is not a counterex-
ample. This means that there exists a circuit Zo C Z; UY — y containing u, where y is
in Z;NY — X (there must be such an element as Z; cannot be properly contained in X.
Now we have |Zo U X| < | X UY| so Z,, X is not a counterexample. Consequently there
exists a circuit Z3 C X U Zy; —u with x € Z3, contradicting that X, Y is a counterexample
since Z3 C X UY. This proves (C3).

Finally suppose that (C4) does not hold and let X, Y be a counterexample such that | XUY'|
is minimum among all counterexamples and let x € X — Y,y € Y — X be such that there
is no circuit in X UY that contains both x and y. Let 2z € X NY, then by (C3) there
is are circuits Z1,Z, C X NY — 2z with y € Z; and ©x € Z5. Note that Y — 2 C Z; and
X —2z C Zy must hold, since otherwise we get a contradiction by considering X, Z; or Y, Zs.
This implies that Z; N Zy # (). However, we have |Z; U Zy| < | X UY| (since z € Z1 U Zy)
so by the minimality of X UY there exists a circuit Z C Z; U Z, C X UY which contains
both x and y, contradicting that X, Y is a counterexample. O

A matroid M = (S,Z) is connected if the following holds for every partition U, S — U
into two non-empty sets: there exists a circuit C' € such that CNU and C NS — U are
both non-empty.

Theorem 4 A matroid M = (S,Z) is connected if and only if every pair of elements
x,y € S lie in some circuit C € C of M.

Proof: If every pair of elements of S is in a circuit, then clearly M is connected (just take
r € U and y € S — U arbitrary and let C' be a circuits containing z,y. Suppose now that
M is connected but there is some pair of elements z,y € S so that they are in no circuit
together. Let X be the union of all circuits containing . Then X, S — X is a partition of
S with y € S — X. Since M is connected there is a circuit C' with intersects both X and
S—X.LetaeCNX,beCNS—X and let C, be a circuit that contains x and a. Then
aeC,NC,xzeC,—Candbe C —C,soby (C4) there is a circuit C’ containing = and
b, contradicting the definition of X. O



