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Stuff covered in week 9

• Lovász’s splitting theorem and augmenting the edge-connectivity of a graph. This is
covered by notes at the end this weekly note.

• Arc-disjoint branchings. This is BJG Section 9.5. (Video lecture)

Classes in Week 10

• Nash-Williams orientation theorem. based on notes on this Note.

• Orientations with degree bounds. BJG Section 8.7 (we will cover pages 446 to 447
top as well as Theorem 8.7.3 and its proof).

• Finding subdigraphs with prescribed in- and out-degrees. BJG Section 3.11.3.

• Gomory-Hu trees. Based on Section 8.6 in Korte and Vygen, Combinatorial Opti-
mization, Springer Verlag 2002.

Problems and applications to discuss on Thursday March 10

We discuss the remaining problems from Note 5 as well as the notes on Matroid connectivity
below.

Notes on Nash-Williams Orientation Theorem

Recall the following consequence of Lovász’s splitting theorem

Theorem 1 Let k ≥ 2 be an integer and let G = (V +s, E) be a graph for which the degree
of s is even, say d(s) = 2p and we have

λ(x, y) ≥ k for every choice of x, y ∈ V (1)

Then we can find a pairing (su1, sv1), . . . (sup, svp), p = d(s)/2 of the edges incident with
s so that the graph H = (V,E ′) that we obtain by deleting s and all its incident edges and
adding the edges u1v1, . . . upvp still satisfies (1).
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A graph G is minimally r-edge-connected if it is r-edge-connected but G − e is no
longer r-edge-connected no matter which edge e we delete. In the exercises we have shown
the following:

Lemma 1 Every minimally r-edge-connected graph G has a vertex of degree r.

Lemma 2 Let D = (V,A) be a p-arc-strong digraph and u1v1, . . . , upvp any collection of p
distinct arcs of D. Let H = (V +w,A′) be the digraph that we obtain from D by deleting the
arcs u1v1, . . . , upvp, adding a new vertex w and the 2p arcs u1w,wv1, . . . , upw, vpw. Then
H is p-arc-strong.

Proof: We show that every set ∅ 6= X 6= V + w has out-degree at least p in H. For each
arc uivi that goes from X to V −X in D, either the arc uis or the arc sivi will go from X
to V −X in H. Thus the out-degree of X is the same in D and H for all X ⊂ V and for
the set V , the out-degree is exactly p in H so H is p-arc-strong. 2

An orientation of a graph G = (V,E) is a digraph D = (V,A) that we can obtain from
G by assigning each edge uv one of the two possible directions u→ v or v → u.

Now we are ready to prove Nash-Williams’ orientation theorem

Theorem 2 (Nash-Williams) Let k ≥ 1 be an integer and G = (V,E) a 2k-edge-
connected graph. Then G has an orientation D = (V,A) which is k-arc-strong

Proof: We prove the claim by induction on n = |V |. If n = 2 we have V = {u, v}
and there are at least 2k edges between u and v so we can just orient k of them from u
to v and the remaining from v to u, which clearly gives a k-arc-strong orientation. Sup-
pose now that the theorem holds for all 2k-edge-connected graphs on at most n−1 vertices.

Delete a set Ẽ of zero or more edges from G so that the resulting graph G′ = (V.E ′)
is minimally 2k-edge-connected. By Lemma 1 there is a vertex s of degree exactly 2k
in H ′. Now apply Theorem 1 to get a 2k-edge-connected graph H ′′ on n − 1 vertices
where we have replaced s and its 2k incident edges by k edges x1y1, x2, y2, . . . , xkyk. By
induction the graph H ′′ has a k-arc-strong orientation D′′. By switching the names of
xi, yi if necessary, we can assume that in D′′ the edges x1y1, . . . , xkyk are all oriented as
x1 → y1, x2 → y2, . . . , xk → yk. Next we let D′ be obtained from D′′ be replacing these
arcs by the 2k arcs x1 → s, s → y1, . . . xk → s, s → yk. By Lemma 2, D′ is k-arc-strong.
Finally we obtain the desired k-arc-strong orientation of G by orienting the edges in Ẽ
arbitrarily. 2

Corollary 1 There exists a polynomial algorithm for finding a k-arc-strong orientation of
a given 2k-edge-connected graph.
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Proof: This follows from the proof above and the following remarks:

• We can test whether G − uv is 2k-edge-connected by checking (via flows) whether
every set containing u but not v has degree at least 2k + 1. Hence we can find Ẽ by
doing this check for each edge in G and deleting the currently considered edge uv if
and only if every set containing u but not v has degree at least 2k + 1. Note that
after deleting some edges a remaining edge may become undeletable, even though it
would have been OK to delete if we only wnated to delete that edge.

• We proved on Weekly note 5, that we have a polynomial algorithm for finding a
pairing (sx1, sy1), . . . (sxk, syk) of the 2k edges incident with s so that the graph
H ′′ that we obtain by deleting s and all its incident edges and adding the edges
x1y1, . . . , xkyk still satisfies (1).

Note that the algorithm will be recursive, since we repeat the steps above until we reach
a graph on just 2 vertices which we orient and then expand the orientation as we go back
in the recursion, while always lifting k arcs from the previous graph back to the vertex s
from which we performed the last splitting and then adding zero or more edges arbitrarily
oriented (they were the ones we called Ẽ).

1 Notes on matroids

Recall that a circuit of a matroid M = (S, I) is a minimal dependent set C ⊆ S, that
is, C 6∈ I but C − x ∈ I for every x ∈ C.

Theorem 3 Let M = (S, I) be a matroid. The set C of circuits of M satisfies the following
properties

(C1) If X, Y ∈ C and X ⊆ Y then X = Y (no proper subset of a circuit is a circuit).

(C2) If X, Y ∈ C, X 6= Y and u ∈ X ∩ Y , then there exist a circuit Z ∈ C such that
Z ⊆ X ∪ Y − u.

(C3) If X, Y ∈ C, X 6= Y , x ∈ X − Y and u ∈ X ∩ Y , then there exist a circuit Z ∈ C
such that Z ⊆ X ∪ Y − u and x ∈ Z.

(C4) If X, Y ∈ C, X ∩ Y 6= ∅, X 6= Y , x ∈ X − Y and y ∈ Y − X, then there exist a
circuit Z ∈ C such that Z ⊆ X ∪ Y and x, y ∈ Z.

Proof: The first claim is immediate from the definition of a circuit.

To Prove (C2) suppose that there is no circuit inside X ∩ Y − u which means that this
is an independent set. Then, using that M satisfies the exchange axiom, starting from
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W = {u} we can add elements from X ∩ Y − u to the current set W until we end with an
independent set W ′ of the same size as X∪Y −u, but this means that either X or Y is fully
contain in W ′, contradicting that M is a subset system (every subset of an independent
set is independent).

Suppose that (C3) does not hold and let X, Y a counterexample such that |X ∪ Y | is
minimum among all counterexamples. Let x ∈ X and u ∈ X ∩ Y be such that there is no
circuit containing x in X ∪ Y − u. By (C2) there exists a circuit Z1 ⊆ X ∪ Y − u. By the
assumption above we have |Z1 ∪ Y | < |X ∪ Y |, since x 6∈ Z1 so Z1, Y is not a counterex-
ample. This means that there exists a circuit Z2 ⊂ Z1 ∪ Y − y containing u, where y is
in Z1 ∩ Y −X (there must be such an element as Z1 cannot be properly contained in X.
Now we have |Z2 ∪ X| < |X ∪ Y | so Z2, X is not a counterexample. Consequently there
exists a circuit Z3 ⊆ X ∪Z2− u with x ∈ Z3, contradicting that X, Y is a counterexample
since Z3 ⊆ X ∪ Y . This proves (C3).

Finally suppose that (C4) does not hold and let X, Y be a counterexample such that |X∪Y |
is minimum among all counterexamples and let x ∈ X − Y, y ∈ Y −X be such that there
is no circuit in X ∪ Y that contains both x and y. Let z ∈ X ∩ Y , then by (C3) there
is are circuits Z1, Z2 ⊂ X ∩ Y − z with y ∈ Z1 and x ∈ Z2. Note that Y − z ⊂ Z1 and
X−z ⊂ Z2 must hold, since otherwise we get a contradiction by considering X,Z1 or Y, Z2.
This implies that Z1 ∩ Z2 6= ∅. However, we have |Z1 ∪ Z2| < |X ∪ Y | (since z 6∈ Z1 ∪ Z2)
so by the minimality of X ∪ Y there exists a circuit Z ⊆ Z1 ∪ Z2 ⊂ X ∪ Y which contains
both x and y, contradicting that X, Y is a counterexample. 2

A matroid M = (S, I) is connected if the following holds for every partition U, S − U
into two non-empty sets: there exists a circuit C ∈ such that C ∩ U and C ∩ S − U are
both non-empty.

Theorem 4 A matroid M = (S, I) is connected if and only if every pair of elements
x, y ∈ S lie in some circuit C ∈ C of M .

Proof: If every pair of elements of S is in a circuit, then clearly M is connected (just take
x ∈ U and y ∈ S − U arbitrary and let C be a circuits containing x, y. Suppose now that
M is connected but there is some pair of elements x, y ∈ S so that they are in no circuit
together. Let X be the union of all circuits containing x. Then X,S −X is a partition of
S with y ∈ S −X. Since M is connected there is a circuit C with intersects both X and
S−X. Let a ∈ C ∩X, b ∈ C ∩S−X and let Ca be a circuit that contains x and a. Then
a ∈ Ca ∩ C, x ∈ Ca − C and b ∈ C − Ca so by (C4) there is a circuit C ′ containing x and
b, contradicting the definition of X. 2
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