Institut for Matematik og Datalogi May 6, 2022
Syddansk Universitet JBJ

DMS867 — Spring 2022— Weekly Note 13

Stuff covered in week 18

e [introduced tree-width and tree-decompositions of graphs. These constitute a very
important tool to obtain efficient algorithms for classes of graphs with low tree-width.
This is based on Chapter 10 in the book:” Invitation to fixed paramerter algorithms”
by R. Niedermeier, Oxford 2006. This is available from the home page. We covered
(parts of) Sections 10.1, 10.2 and 10.4. Only the things discussed on my slides are
pensum.

e [also showed how to relate the game of cops and robbers to tree-width of graphs.
There is no litterature for this, except my lecture notes.

e [showed how to use dynamic programming via a tree-decomposition ({X;|i € 1},7T)
of a graph G to find a minimum vertex cover of G in time O(2“w|I|), where w is
the size of the largest bag in the tree-decomposition. Another example of the use of
tree-decompositions is given in the notes below.

Plan for Week 19 (last teaching)

e [will lecture on the color-coding method which allows one to check for a cycle of
length logn in a graph on n vertices in polynomial time. This is based on the paper
by Alon et all that you can access via the top link under supplementary notes.

e We will talk about the exam.

Finding the chromatic number of a graph G by dynamic
programming based on a tree-decomposition of G:

e [gave an argument that for every graph G we have x(G) < tw(G)+ 1, where x(G) is
the chromatic number of G and tw(G) is the tree-width of G, that is, —1 where £ is
the maximum bag size of some tree decomposition of G. The proof uses that we have
X(G) = tw(G) +1 for chordal graphs: Given a tree-decomposition ({X; :i € I},) of
G we add new edges E’ to GG so that in the resulting graph G’ each of the subgraphs
G'[X;], i € I are cliques. Clearly x(G) < x(G’) and the claim now follows from the
fact that G’ is a chordal graph whose maximal cliques are exactly those induced by
the X;’s.

e Here is a sketch of a dynamic programming algorithm for finding x(G) when we are
given a tree-decomposition ({X; : 7 € I},T) of G: Let w denote the size of a largest
bag (X;) and consider all possible colourings of the X;’s by colours 1,2, ..., w (there
are |X;|¥ of these). For each such colouring C; : X; — {1,2,...,w} we initialize
m(C;) as oo if C; is not a legal colouring (some edge in G[X;] received the same
colour in both ends) and otherwise m(C;) is f(C;) which is the number of different
colours used. Furthermore, we also keep a bit-vector v(C;) which codes which of the
w colours are used in the colouring C; (so 5(C;) equals the number of 1’s in (C;)).

After this initialization we are ready to start updating the value v(C;) and hence
B(C;) and m(C;) using dynamic programming guided by the tree T: When we update
the info for X; from the info for a child X; we first indentify the set Z = X; N X, and
then, for all of the |Z|* different colourings of |Z| in turn: if C' is such a colouring
then for every proper colouring C; of X; which agrees (that is, uses exactly the same
colours on Z as C') we update as follows: For every colouring C; of X; which agrees
with C' and which is a legal colouring of X; consider the number of 1’s in the OR-sum
of the bitvectors v(C;) and v(C;) and make the new v(C;) := v(C;) OR v(C}/), where
j' is chosen such that the total number of used colours (bits that are 1) in C; and C}s
is minimum.

We preform this updating for all children of X; and continue around the tree in an
in-order traversal of T. It can be shown that this will result in the root bag X,
containing a colouring C,(X,) whoose value m(C,) = x(G).

Note that the process above considers the “same” colouring MANY times because a
lot of the colourings in the X;’s are identical up to a renumbering of the colours.

