
Institut for Matematik & Datalogi 5. oktober 2005
Syddansk Universitet JBJ

DM63 Meta-heuristics — Ugeseddel 5

Lecture on October 6, 2005

I lecture on genetic algorithms. Notes pages 29-35 and 134-162 (last part will
only be covered partly at the lecture).

Plan for October 13, 2005

I will lecture on the noising method and guided local search.

Exercises:

1. Implement a raw genetic algorithm for the graph partitioning problem
together with procedures for calculating each of the following

(a) An initial population of size K. This could consist of simply K ran-
dom solutions (partitions) or it could contain some good solutions
found using one of the heuristics you have worked with such as De-
cent, SA, TS etc.

(b) An algorithm for evaluating the current population. This must inclu-
de a method for calculating the fitness of a solution.

(c) An algorithm for selecting a basis population based on fitness values
(If you choose to use the ranking method (page 169 in Reeves) the fit-
ness corresponds to using this ranking as the probability distribution
based on which you select individuals for the basis population). This
selection procedure for the next popolation must satisfy the rule that
a selected solution is transfered directly to the next generation with
probability pd and is crossed with another selected individual with
probability 1 − pd after which the resulting solutions are transfered
to the next generation .

(d) A method for crossing two individuals.

(e) A method for mutating an individual.

(f) A method for graphically displaying the objective function of in-
termediate solutions (as you did for SA and TS, use Gnu plot for
instance).

2. Experiment on various input graphs in order to investigate the following

(a) How much does the initial population affect the quality of the solu-
tion? Try e.g. to start with K almost identical solutions. Try also to
start with K good solutions found by other heuristics. Does this lead
to better solutions than starting from K random solutions?

(b) Try to determine the number of populations the algorithm needs
to investigate before the stopping criterion is reached. Is there any
visible convergence?

(c) Try to find a good relation between the size K of the population and
the quality of the best solution after a fixed (large ??) number of
iterations.

(d) Experiment with various cross over strategies including those which
we discussed at the lectures.

(e) Try to allow unbalanced partitions (using a penalty factor). Does this
lead to better solutions?

(f) Experiment with various methods for making mutations. Should one
mutate a lot or only seldomly?

(g) Try varying pd and observe the effect of this. What is the best value
for pd and is the a safe range where the algorithm behaves nicely?



Various schemes for performing a cross over: To supplement your own
ideas for cross over operators you can try the following. Here we assume that
solutions are represented by a bit vector where s[i] = 1] means that i is in the
set X and s[i] = 0 means that i is in the set Y (when we denote the partition
X, Y ). Furthermore we assume that s′′ is returned as the result of the crossing.

1. Choose a random position i. For j := 1 to i let s′′[j] := s[j]. For j > i we
assign s′′[j] the value of s[j] and increase j to j + 1 until we either have
j > n or we have n/2 ones or zeroes in s′′. In the last case we fill up with
zeroes and ones respectively.

2. Choose random i, j such that 1 ≤ i ≤ j ≤ n. If the number of ones in s[i..j]
equals the number of ones in s′[i..j] then let s′′ := s[1..i−1]s′[i..j]s[j+1..n].
Otherwise try a new pair i, j. After r (a parameter) unsuccessful attempts
we let s′′ := s.

3. The variant of 2. where at each failed attempt try to increase j until there
are equally many ones in s[i..j] and s′[i.j] and then perform the swap.

2


