

File access

Files

- Sequential Access Random Access Files
- Sequential Access
- Merge
- MergeSort
- Analysis

- 2 standard methods for accessing data:
 - sequential access
 - random access: access via index or ID (key) for data element

Files

Sequential Access

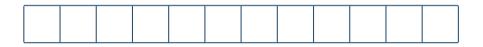
Random Access

Files

Sequential Access

Merge

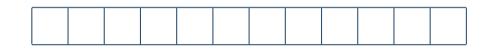
MergeSort


Analysis

(API = Application Programming Interface: collection of methods).

_	= I	
-	•	00
		LC3

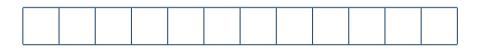
Sequential Access Random Access Files Sequential Access Merge MergeSort Analysis



 \uparrow

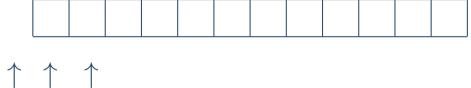
Files

Sequential Access Random Access Files Sequential Access Merge MergeSort Analysis



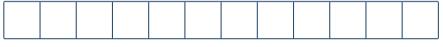
 \uparrow \uparrow

Files


Sequential Access Random Access Files Sequential Access Merge MergeSort Analysis

Files

Sequential Access Random Access Files Sequential Access Merge MergeSort Analysis



 $\uparrow \uparrow \uparrow \uparrow$

Files


Sequential Access Random Access Files Sequential Access Merge MergeSort Analysis

Files

Sequential Access Random Access Files Sequential Access Merge MergeSort Analysis

Files

Sequential Access Random Access Files Sequential Access Merge MergeSort Analysis

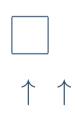
Files

Sequential Access Random Access Files Sequential Access Merge MergeSort Analysis

Files

Sequential Access Random Access Files Sequential Access Merge MergeSort Analysis

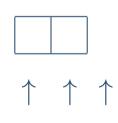
Writing: Operations: writeNext(), open(), close()


\uparrow

Files

Sequential Access Random Access Files Sequential Access Merge MergeSort Analysis

Writing: Operations: writeNext(), open(), close()



Files

Sequential Access Random Access Files Sequential Access Merge MergeSort Analysis

Writing: Operations: writeNext(), open(), close()

Random access API

Files
Sequential Access
Random Access
Files
Sequential Access
Merge
MergeSort
Analysis

```
random access: access via ID (key) for data element
Operations:
   findElm(ID)
   insertElm(ID,elementData)
   deleteElm(ID)
   open()
   close()
```

Examples:

- dictionaries in Python
- \blacksquare arrays in Java with ID = index in array

Questions

Files Sequential Access

Random Access

Files

Sequential Access Merge

 ${\sf MergeSort}$

Analysis

- 1. What can be done using only Sequential access?
- 2. How can one implement Random access?

Importance

Files Sequential Access Random Access Files

Sequential Access

Merge

 ${\sf MergeSort}$

Analysis

Most data sources can be accessed by Sequential access. Some can only be accessed sequentially.

- hard disk
- CD, DVD

tape

- streaming (over the Internet)
- data generated on-the-fly, by another program
- data in an array

Sequential algorithms

Files Sequential Access Random Access Files Sequential Access Merge MergeSort

MergeSo Analysis What can be done using only Sequential access?

Sequential algorithms

Files Sequential Access Random Access Files

Sequential Access

Merge

MergeSort

Analysis

What can be done using only Sequential access?

- Sequential search?
- Insertion Sort?
- Find maximum entry?
- Selection Sort?
- Find sum and average?

Find sum and average

Files Sequential Access Random Access Files Sequential Access Merge MergeSort Analysis

procedure SumAverage(A) open(A) $(s, n) \leftarrow$ SumAve(A, 0, 0) close(A) return(s, s/n)

```
procedure SumAve(A, s, n)

if (isEndOfFile(A)) then

return(s, n)

else

SumAve(A, s+readNext(A), n + 1)
```


Find sum and average

Files
Sequential Access
Random Access
Files
Sequential Access
Merge
MergeSort
Analysis

Invariants: s is sum of first n entries of A. Next entry of A is the n + 1st.

Therefore, SumAverage computes the correct result.

Fundamental operation: readNext — done length(A) times, once in each recursive call, except nth.

Find sum and average

Files Sequential Access Random Access Files Sequential Access Merge MergeSort

Analysis

```
procedure SumAverage(A)
open(A)
(s, n) \leftarrow SumAve(A, 0, 0)
close(A)
if (n > 0) return(s, s/n)
else report empty file
```

```
procedure SumAve(A, s, n)

if (isEndOfFile(A)) then

return(s, n)

else

SumAve(A, s+readNext(A), n + 1)
```


Sequential algorithms

Files Sequential Access Random Access Files

Sequential Access

Merge

MergeSort

Analysis

What can be done using only Sequential access?

- Sequential search?
- Insertion Sort?
- Find maximum entry?
- Selection Sort?
- Find sum and average?
- Merging 2 sorted lists into 1?
- Mergesort?

Merging 2 lists

Files

Sequential Access Random Access

Files

Sequential Access

Merge

MergeSort

 ${\small {\sf Analysis}}$

Input: 2 lists, A and B are both sorted. Output: 1 sorted list, C, containing the entries of A and B.

Merging 2 lists

Files

- Sequential Access
- Random Access

Files

Sequential Access

Merge

MergeSort Analysis Input: 2 lists, A and B are both sorted.Output: 1 sorted list, C, containing the entries of A and B.Merge Step:

- Compare current records of A and B.
- $\blacksquare Put smallest in C.$
- Advance to next record in A or B, whichever had that smallest entry.

Merging 2 lists

Files

Sequential Access Random Access

Files

Sequential Access

Merge

MergeSort Analysis procedure MergeFiles(A, B, C): open(A); open(B); open(C); fA,fB,fC \leftarrow false; if (isEndOfFile(A) and isEndOfFile(B)) then Stop with C empty if (not isEndOfFile(A)) then currentA \leftarrow readNext(A); fA \leftarrow true; if (not isEndOfFile(B)) then currentB \leftarrow readNext(B); fB \leftarrow true; while (fA and fB) do if (currentA \leq currentB) then writeNext(currentA,C) if (not isEndOfList(A)) then currentA \leftarrow readNext(A) else $fA \leftarrow false$ else writeNext(currentB,C) if (not isEndOfList(B)) then currentB \leftarrow readNext(B) else fB \leftarrow false Starting with the current record in the input file which is not at EOF copy the remaining records to Cclose(A); close(B); close(C)

Merging 2 arrays

Files Sequential Access Random Access Files Sequential Access

Merge

MergeSort Analysis procedure MergeArrays(A, B, C): $i, j, k \leftarrow 1$ if (length(A) = 0 and length(B) = 0) then Stop with C empty if (length(A)>0) then currentA $\leftarrow A[1]$ if (length(B)>0) then currentB $\leftarrow B[1]$ while $(\text{length}(A) \ge i \text{ and } \text{length}(B) \ge j)$ do { Merge Step() } if (currentA \leq currentB) then $c[k] \leftarrow \mathsf{currentA}; k \leftarrow k+1; i \leftarrow i+1;$ if $(\text{length}(A) \geq i)$ then currentA $\leftarrow A[i]$ else $c[k] \leftarrow \mathsf{currentB}; k \leftarrow k+1; j \leftarrow j+1;$ if $(\text{length}(B) \ge j)$ then current $B \leftarrow B[j]$) Starting with the current record in the array which is not finished, copy the remaining records to C

Merge Sort

if

Files Sequential Access Random Access Files Sequential Access Merge MergeSort

Analysis

procedure MergeSort(A, f, l): { Input: Array A with first index f and last index l } { Output: Sorted array, A, with same entries as input A }

$$(f < l)$$
 then
 $m \leftarrow (f + l) \text{ div } 2$
MergeSort(A, f, m)
MergeSort($A, m + 1, l$)
MergeArrays($A[f..m], A[m + 1..l], C$)
Copy C to A

MergeSort(A, 1, length(A));

Files Sequential Access Random Access Files Sequential Access Merge MergeSort

Analysis

Let T(n) be the maximum number of comparisons MergeSort uses if length(A)= n.

Let $M(m_A, m_B)$ be the maximum number of comparisons MergeArrays uses if length(A)= m_A and length(B)= m_B . $T(n) \leq T(\lceil \frac{n}{2} \rceil) + T(\lfloor \frac{n}{2} \rfloor) + M(\lceil \frac{n}{2} \rceil, \lfloor \frac{n}{2} \rfloor)$

Need to calculate $M(m_A, m_B)$.

Files Sequential Access Random Access Files Sequential Access Merge MergeSort Analysis As an aside, what is the minimum number of comparisons done by MergeArrays, given m_A and m_B ?

A. $\min(m_A, m_B) - 1$

- B. $\min(m_A, m_B)$
- C. $\max(m_A, m_B) 1$
- D. $\max(m_A, m_B)$
- E. $m_A + m_B 1$

Vote at m.socrative.com. Room number 415439.

Files
Sequential Access
Random Access
Files
Sequential Access
Merge
MergeSort
Analysis

What is $M(m_A, m_B)$?

A. $m_A + m_B - 1$

B. $m_A + m_B$

C. $m_A + m_B + 1$

D. $m_A \cdot m_B$

 $\mathsf{E.} \ m_A \cdot m_B + 1$

Vote at m.socrative.com. Room number 415439.

Files Sequential Access Random Access Files Sequential Access Merge MergeSort Analysis

$$T(n) \leq T\left(\left\lceil \frac{n}{2} \right\rceil\right) + T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + M\left(\left\lceil \frac{n}{2} \right\rceil, \left\lfloor \frac{n}{2} \right\rfloor\right)$$
$$\leq T\left(\left\lceil \frac{n}{2} \right\rceil\right) + T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + \left(\left\lceil \frac{n}{2} \right\rceil + \left\lfloor \frac{n}{2} \right\rfloor - 1\right)$$
$$\leq T\left(\left\lceil \frac{n}{2} \right\rceil\right) + T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n - 1$$

 $T(n) \in \Theta(n \log n).$