
Institut for Matematik og Datalogi
Syddansk Universitet

Assignment 3 — Introduction to Computer Science
2015

This is your third assignment in DM534/DM558. The assignment is due
at 8:15 on Thursday, November 5. You may write this either in Danish
or English. It must be made in LATEX. Write your full name, your section
number (D1, D2, or D3), and your “instruktor”s name (Kristine Vitting
Klinkby Knudsen, Mathias W. Svendsen, or Jesper With Mikkelsen) clearly
on the first page of your assignment (on the top, if it’s not a cover page). You
should turn it in as a PDF file via Blackboard through your DM534/DM558
course. The assignment hand-in is in the menu for the course and is called
“SDU Assignment”. Choose the correct one for your section number, D1, D2
or D3. Keep the receipt it gives you proving that you turned your assignment
in on time. Blackboard will not allow you to turn in an assignment late.

Cheating on this assignment is viewed as cheating on an exam. You are
allowed to talk about course material with your fellow students, but working
together on this assignment is cheating. If you have questions about the
assignment, come to Joan Boyar or your “instruktor” for DM534/DM558.

Please note that you must have this assignment approved in order to
pass DM534/DM558. If it is not turned in on time, or if you do not get it
approved, it will count as one of your two retries in the course, and you must
have it approved on your single allowed retry for this assignment. Note that
you have only two retries in total for the assignments in DM534.

Assignment 3

Do either the first problem or the second more challening problem. Write
your solutions in LATEX. Do not include the statements of the problems or
other information not asked for in the problems, but make your answers
clear and precise.

1. Consider a course with a large number of students and a project which
is graded with results which are non-negative integer scores (but with
varying maximum scores from year to year, so do not consider the
maximum possible as known). In the professor’s records for this course,

1



he/she wants to record for each student whether or not that student
got the highest (or tied for the highest) score on the project. The
professor creates an additional list for this with Boolean values True

and False, where True in location i means that ith student got the
highest score and False means that the score was not highest. Suppose
the scores are in a list called score and the additional list is called
highest. Let score[i] denote the ith entry of score and highest[j]
denote the jth entry of highest.

(a) Consider the following algorithm for solving the professor’s prob-
lem:

procedure Rate(score, highest):
{ Input: The list score contains non-negative integers }
{ Output: Boolean list, highest, with True meaning that the

corresponding value in the list score was highest }

N := 1
while (N ≤ length(score))
begin

highest[N ] := True

j := 1
while (j ≤ length(score) and score[j] ≤ score[N ])

j := j + 1
if j ≤ length(score)

then highest[N ] := False

N := N + 1
end

Use as the fundamental operation the comparison of entries in
score.

i. Give a list of length 4 where this algorithm performs 7 fun-
damental operations.

ii. In general (for arbitrary list length), on which lists does this
algorithm perform the least number of fundamental opera-
tions?

iii. Suppose that score has n entries. Express the best case
running time (the minimum number of fundamental opera-
tions as a function of n) of this algorithm using Θ notation.
Explain your answer.

2



iv. Give a list of length 4 where this algorithm performs 16 fun-
damental operations.

v. In general (for arbitrary list length), on which lists does this
algorithm perform the greatest number of fundamental op-
erations?

vi. Suppose that score has n entries. Express the worst case
running time of this algorithm (the maximum number of
fundamental operations as a function of n) using Θ nota-
tion. Explain your answer. Your explanation should include
both why the algorithm cannot take more time than this and
why it in some cases takes this much time.

(b) Someone interested in the running time of algorithms would not
have written the above algorithm. It is not Θ(n) and it is possible
to solve this problem in Θ(n).

i. Write an algorithm to solve this problem in Θ(n). Use the
same notation as above.

ii. Analyze your algorithm (explain why it does Θ(n) fundamen-
tal operations in the worst case).

(c) Include your LATEX code for this assignment at the end.

2. Suppose you have a list Customers and a function where which tells
where the customer is from by calling where(Customers[i]) for cus-
tomer i. Suppose further that there are only three possibilities, Odense,
Fyn, and Other, where Fyn means on Fyn, but not in Odense Kom-
mune, and Other means not on Fyn. Suppose the owner would like a
partially sorted list of these customers with all customers from Odense
first, all other customers from Fyn next, and the remaining customers
last. Suppose the number of customers is n, and let the fundamental
operation being calls to the function where.

(a) Write a Θ(n) algorithm to solve this problem. Do not use an
extra list; just move entries around in the original list. Argue
that the algorithm is Θ(n).

Hint: Consider the partition procedure in QuickSort. This idea
works if there are only two locations: Keep a left index and a right
index into the list, and a loop invariant saying that all entries to
the left of the left index are of type 1 and all entries to the right
of the right index are of type 2. Extend this idea to three types.

(b) Include your LATEX code for this assignment at the end.

3


