
Institut for Matematik og Datalogi
Syddansk Universitet

September 16, 2015
JFB

Introduction to Computer Science
E15 – Study Groups – Week 39

The first questions in this set of exercises are concerned with integers
represented in the two’s complement notation (see textbook pages 58–61).

For concreteness, assume we are working with 8-bit two’s complement
notation, which can represent integers between -128 and 127. See Figure
1.19 in the textbook for two’s complement notation using 3 and 4 bits. All
of the nonnegative values (from 0 up to the largest value) are expressed using
standard binary notation. The negative numbers all have a 1 in the high
order bit. The most negative number has all zeros, except for the high order
bit. The remaining negative numbers are placed in order from smallest (the
most negative number plus 1) to largest (-1) with the binary representation
going from 1 to the largest positive number, if you ignore the sign bit. As
examples, in this notation 00000101 represents the integer 5 and 10000101
represents the integer −(27) + 5 = −128 + 5 = −123.

1. Find the two’s complement representations of the following integers:
0, 7, 27, 127, -128, -121, -101, -1.

2. Argue that in general, a bit sequence b7b6b5b4b3b2b1b0 represents the
integer b7 ·(−(27))+b6 ·26+b5 ·25+b4 ·24+b3 ·23+b2 ·22+b1 ·21+b0 ·20.

3. The algorithm for addition of two numbers in two’s complement is de-
scribed as follows on pages 60–61: Add the two numbers position by
position (including any carries), just as for positive integers in stan-
dard binary notation. If any carry comes out of the leftmost position
(position of b7), just discard it. If the input numbers are both positive
(i.e., both have 0 in their leftmost position), but the result is negative
(i.e., has 1 in its leftmost position), or the input numbers are both neg-
ative, but the result is positive, report an overflow error. Else return
the result.

Argue that this algorithm is correct, i.e., reports an overflow error
when the result cannot be represented in 8-bit two’s complement, and
else returns the correct result.

1



Hint: Start by using the algorithm on various pairs of numbers whose
representation you found in question 1. Then argue what happens in
general in all eight cases of the possible signs of the two inputs and
the single output, while using the expression from question 2.

4. Choose a number which cannot be expressed exactly in the floating
point format we use (see the slides on floating point notation from
September 8 or the notes associated with that lecture), but could be
expressed exactly if there were more bits. How many more bits do you
need?

5. If there is time, work on the following: Recall that any Boolean func-
tion can be computed using only AND, OR and NOT gates, since any
Boolean function (with one output) can be be written in Disjunctive
Normal Form.

• Discuss the ease or difficulty of going from a formula to a circuit,
vs. the ease or difficulty of going from a circuit to a formula.
Create a circuit where the corresponding formula would naturally
be larger than the circuit.

• Show that for any circuit containing AND, OR and NOT gates,
we can create an equivalent circuit (producing the same output
for any set of inputs) which only has AND and NOT gates. Hint:
For each gate in the original circuit, you can replace it by a sub-
circuit containing only AND and NOT gates. Consider the truth
tables.

• Show that for any circuit containing AND, OR and NOT gates,
we can create an equivalent circuit (producing the same output
for any set of inputs) which only has NAND gates. Hint: For
each gate in the original circuit, you can replace it by a subcircuit
containing only NAND gates. Consider the truth tables.

2


