
Random Delete Arrays

We are interested in a datatype which stores a collection of elements and supports
the operations Insert, which adds a new element to the collection, and DeleteRandom,
which deletes and returns a random (not an arbitrary) element.

We have the following contraints on the data structure which implements this datatype:

The elements should be stored in an array indexed from zero. We implement DeleteRan-
dom using a random number generator. If random() return a number r from the
interval [0..1), then we choose the element ⌊rn⌋, where n is the number of elements in
the structure at the given time.

Question a: Assume that we know an upper bound on how large the size of the
collection can become. Write pseudo-code which implements both operations in O(1),
assuming that random() runs in O(1). 2

Now we no longer have an upper bound on the size of the collection.

Question b: We want to limit space usage to O(n). To do that, we sometimes allocate
a new array of a different size, move all elements into the new array, and deallocate
the old array (release the space to the operating system). We let s denote the size of
the array (which is always at least n).

• if n = s and Insert is called, a new array of size 2s is created.

• if n = s

4
and DeleteRandom is called, a new array of size s

2
is created.

Show that both operations have running times amortized O(1) and that space usage is
O(n). The potential function Θ(n, s) = 2 · | s

2
− n| (or some variant hereof) might be

useful. 2

Question c: Explain how both operations can be implemented to run in worst-case
O(1) while space usage is still O(n). 2

1


