Random Delete Arrays

We are interested in a datatype which stores a collection of elements and supports
the operations Insert, which adds a new element to the collection, and DeleteRandom,
which deletes and returns arandom (not an arbitrary) element.

We have the following contraints on the data structure which implements this datatype:

The elements should be stored in an array indexed from zero. Weimplement DeleteRan
dom using a random number generator. If r andom() return a number r from the
interval [0..1), then we choose the element |7 |, where n isthe number of elementsin
the structure at the given time.

Question a: Assume that we know an upper bound on how large the size of the
collection can become. Write pseudo-code which implements both operationsin O(1),
assuming that r andon() runsin O(1). O

Now we no longer have an upper bound on the size of the collection.

Question b: We want to limit space usageto O(n). To do that, we sometimes allocate
anew array of adifferent size, move all elements into the new array, and deallocate
the old array (release the space to the operating system). We let s denote the size of
the array (which isalways at least n).

e if n=sandInsertiscaled, anew array of size 2s is created.

e if n = { and DeleteRandomis called, anew array of size ; is created.

Show that both operations have running times amortized O(1) and that space usageis
O(n). The potential function ©(n, s) = 2 - |5 — n| (or some variant hereof) might be
useful. 0

Question c¢: Explain how both operations can be implemented to run in worst-case
O(1) while space usageis still O(n). O

