
Department of Mathematics and Computer Science
University of Southern Denmark, Odense

September 19, 2014
KSL

Part 1 of the exam project in
DM803 – Advanced Data Structures

Kim Skak Larsen
Fall 2014

Introduction

In this note, we describe one part of the exam project that must be solved in con-
nection with the course DM803 – Advanced Data Structures, Fall 2014. It is im-
portant to read through the entire project description before starting the work on
the project; also the sections on requirements and how to turn in your solution.

Deadline

The deadline for this part of the project is

Friday, October 24, 2014 at 12:00 (noon).

Tracks

For the project in this course, you can choose between two tracks, i.e., you choose
one of them and focus only on that track. The tracks are named as follows:

• The programming track

• The proof track.

Below, we described the content of the two tracks with regards to this part of the
project.

1



The Programming Track

The aim is to implement scapegoat trees and skip lists, investigate properties of
these separately and compare them. Note that in the general rules below, we state
some implementation requirements in addition to the ones given in this section.

Both data structures must be implemented as outlined in the articles describing
them, and in such a way that the same time and space complexity bounds hold, and
both must support at least the operations search, insert, and delete.

After implementing them, you should investigate their properties. Your philoso-
phy should be that you want to investigate and understand, and then you want to
communicate the results as clearly as possible to someone else afterwards. Thus,
in particular, you should include graphs showing the connections for all your find-
ings; not just tables with measurements. Below are some requirements and ideas,
but you can supplement with additional questions.

Instead of measuring time, you must count comparisons, i.e., in the following when
we refer to the time complexity of operations, we mean the number of times two
keys are compared.1 As a starting point, investigate the issues below when searches
are uniformly random. An easy way to handle this would be the following: Decide
on an n, insert the keys 1 through n in uniformly random order, and then search a
number of times, choosing the key to search for every time uniformly at random
from {1, . . . , n}. You can of course also investigate other distributions or worst-
case ordering if you wish, e.g., what happens if you insert the numbers 1 through
n in sorted order?

Investigate the following:

• Average search complexity.

For both structures, illustrate this using a graph where you display the search
complexity as a function of n. Can you demonstrate that the search time
logarithmic? Can you find out what the constant is in front of the logarithm,
assuming that we use base 2?

For skip lists, try to investigate the connection between the choice of p and
the constant in front of the logarithm. You can do this for a fixed, large
enough n. Does it behave as predicted theoretically?

1These data structures are extremely fast, which means that it is basically impossible to get mean-
ingful results by simply timing operations. If trying to time extremely fast operations, actions of the
underlying operating system disturb the results so much that results become meaningless. To work
around this, one can decide to work with a very large n, so that running times get slowed down.
However, n has to be so large that data storage effects, such as cache misses at different levels, start
ruining the measurements instead.

2



• Variation in search complexity.

For a large number of searches, record for each i how many of these searches
had time complexity i, and illustrate by graphing the percentage of searches
of complexity i as a function of i. If this does not give a good illustration,
consider accumulating, i.e., at i, give the percentage of searches of complex-
ity i or smaller.

• For scapegoat trees, investigate frequency and size (number of nodes in-
volved) of restructurings, and the relationship between the two.

Compare and discuss your findings and supplement with you own ideas, if any.

For the report, other than the investigations described above, you need only dis-
cuss possible important choices in your implementation. There is no reason to go
through code that is simply implemented as outlined in the papers.

Remember to read the general rules, where there are also explicit requirements to
programs and reports.

The Proof Track

In this track, you must solve the three independent problems described below.

The Complexity of Disjoint Sets

Read [1, Chapter 2] and compare with the proof of complexity for Disjoint Sets
covered in the course. Make a brief list, explaining the structure (the major steps)
in the proof from the course. Then explain which steps are the same as in [1,
Chapter 2], and explain in greater detail how the differences lead to the better
result in [1, Chapter 2]. You are not supposed to write a lot or repeat calculations
from the literature.

Global Rebuilding

For randomized state space exploration, it could be useful to have a data structure
supporting the two operations insert and deleteRandom. To implement the
latter efficiently, we decide to store our data consecutively in an array indexed from
zero, i.e., if there are n elements, the last element has index n − 1. First, assume
that n will never be larger than some fixed s, which we then choose to be the size
of the array. Then we can implement the operations as follows:

3



def insert(e):
A[n] = e
n = n+1

def deleteRandom():
i = brandom() * nc
e = A[i]
n = n-1
A[i] = A[n]
return e

Here, random is assumed to return a value in the range [0, 1) uniformly at random.

Now, we no longer assume a known upper bound on n. We need to change the data
structure, and we want space usage to be O(n). Let s denote the current size of the
array. We decide that when n = s, and we want to insert a new element, we move
all current elements to a new array of size 2s. Similarly, if n = s

4 and we want to
delete an element, we move all current elements to a new array of size s

2 .

Define a potential function, Φ, and show that both operations are amortized con-
stant time.

Now, we want the operations to be worst-case constant time, and still limit the
space use to worst-case O(n).

The idea to obtain this is to spend constant extra time every time we carry out one
of the two operations, and use this extra time for gradually moving the elements to
a new array (either twice or half as large as the current, depending on how n has
been changing). When the new array has been finished, we switch to using that and
throw away (deallocate) the old one.

Make the details of this algorithmic idea precise, using pseudo-code as above, and
prove the worst-case space and time results.

Properties of Red-Black Trees

You are supposed to know red-black trees; in particular that

• nodes are either red or black,

• any path from the root to a leaf has the same number of black nodes, and

• no red node has a red parent.

Red-black trees can be presented in different variants. Below, we describe the one
that we will use now, and it may be a little different from the one you were taught.

For an insertion, we add a new leaf in the appropriate place and color it red. If the
parent is also red, we apply the operations in Figure 1 until the problem is fixed.

4



For a deletion, we want to physically delete a node that has at most one child. We
obtain this as follows: If the key we want to delete is in a node u that has a left
child, then we find the predecessor node v, overwrite the key in u by the key in
v, and then proceed to delete the node v (which cannot have a right child). In this
way, the node we are actually deleting has at most one child. Thus, we can cut out
this node by letting its parent refer to its child.

If the node we cut out is red, then we are done. Otherwise, we mark the parent
node by “–”. One can think of the node being double-black, so that there are still
the same number of black nodes on every path. Using the operations from Figure 2
repeatedly, we remove the mark.

First, assume that we only perform insertions.

Divide the rebalancing operations into ones that solve the problem of two consecu-
tive red nodes and ones that may not immediately solve the problem. For the latter,
figure out the exact conditions under which the problem is not solved, i.e., what are
the colors of children, parent, siblings, etc. to the nodes in the configurations.

Let CI denote a configuration in the tree where a black node has two red children,
and let #CI denote the number of such configurations in tree. Now, argue that if
we define a potential function ΦI(T ) = #CI , then rebalancing after an insertion is
amortized constant.

Now, assume that we only perform deletions. Repeat the process above, but now
let CD denote configurations, where a black node has two black children, and let
ΦD(T ) = #CD. Argue, using this potential function, that rebalancing after dele-
tion is amortized constant.

Why do these two results not imply that if we have mixed insertions and deletions,
then rebalancing after and update is amortized constant?

Come up with a potential for the mixed case and prove that rebalancing after an
update is amortized constant.

General Requirements and Rules

Here we list general requirements, procedures for turning in, and exam rules.

Exam Rules

This is an exam project, and cooperation is not permitted. It will be considered
cheating and will be treated as such. You have a duty to keep your notes private

5



Figure 1: Rebalancing operations after an insertion.

6



Figure 2: Rebalancing operations after a deletion.

7



and protect your files against reading and copying by others. Both parties involved
in a possible plagiarism can be held responsible.

There will be given what we judge to be more than sufficient time for solving the
project. Still, we strongly encourage you to plan your work such that you will
finish some days before the deadline.

Solutions that are turned in after the deadline will not be accepted. Downtime on
the system or the printers will not automatically result in an extension; not even if it
is the last hours before the deadline. Neither will own or children’s illness without
a statement from your physician, etc.

The solution

Depending on which track you choose, the solution may consist of just a report or
may consist of a program, test material, and a report.

The Report

The front page of your report must include your full name, the first 6 digits of your
CPR number, and student e-mail address (the prefix to nn@student.sdu.dk).

There are not supposed to be any of the following, but if there are possible omis-
sions, known errors, etc. they should be described in the report. It is often a good
idea to do this in a separate section instead of mixing it in with the rest of the report.

The report should in the best possible manner account for the entire solution, i.e., if
your solution includes programs, the report must contain a description of the most
important and relevant decisions that have been made in the process of developing
the solution and reasons must be given where this is appropriate. You must also
explain how possible programs have been tested. Test examples or references to
test examples and test runs can and should be included in the report to the extent
that this is helpful to understand your solution and to be convinced that it is working
correctly.

Programs

When you have to implement algorithms, you must implement them in such a way
that you obtain the asymptotic complexities claimed in the course material. If you
happen to find a library, a package, or similar that implements the algorithms that
you are supposed to implement, then you are of course not allowed to use them.

8



You should make the implementation yourself from scratch using the basic features
of the programming language you are working with. The safest approach is not to
use libraries and avoid non-trivial built-in features.

Files and directories should be named and organized logically. Programs must be
well-structured with appropriately chosen names and indentation and tested suffi-
ciently.

Programs that are turned in must compile and run on IMADA’s machines.

The preapproved programming languages you can choose from are the following:

• C or C++

• Java

• Python

If you have other preferences, you could likely obtain permission to use an alter-
native. Contact the lecturer.

You are very welcome to develop your programs at home, but it is your responsibil-
ity. This includes technical problems at home, lack of access to relevant software,
moving data to IMADA via e-mail, USB keys, etc. and converting to the correct
format, e.g., between Windows and Linux.

You must turn in a file manual.txt. Here you must explain how to compile
and run your code on IMADA’s computers. Be careful not to hardwire references
to your home directory etc. into the code such that it will not be possible for us
to compile or run your program directly. Your goal should be to make it as easy
as possible for us to run your program on additional tests to the ones you have
provided. You have to make everything really clear, e.g., which directory one
should be in, the order in which commands should be carried out, etc. You are
advised to make things as simple as possible. The safest is usually to have all
source files and executables in one directory. Of course, your report and test files
can be in subdirectories.

Turning In

You must turn in on paper and electronically. The details are given below. All
material that is turned in both on paper and electronically must be identical.

9



On Paper

You must turn in your report on paper at IMADA’s secretaries’ office in your lec-
turer’s letter box. The office may be closed for very short periods of time. If, for
some unexpected reason, the office must be closed for longer periods of time close
to the deadline, an announcement will be made outside the office, giving instruc-
tions as to where you turn in.

Electronically

Electronically, you must turn in everything, i.e., the report in pdf-format, named
report.pdf, and, if you have chosen the programming track, all relevant pro-
grams, test files, and manual.txt.

You upload your files using ”SDU Assignment” in Blackboard (which will give
you a receipt). You should avoid Danish (and other non-ascii) characters (such as
æ, ø, and å) in your directory and file names (Blackboard does not handle this well).
To be safe, also avoid spaces and all special characters not normally occurring in
file names.

You may upload your files individually or collect your files into one (archive) file
(recommended) before uploading. If you choose to do the latter, you may use zip,
bzip2, or tar (with or without gzip).

References

[1] Robert Endre Tarjan. Data Structures and Network Algorithms, volume 44
of CBMS-NSF regional conference series in applied mathematics. SIAM,
Philadelphia, 1983.

10


