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Edge Coloring

An edge coloring of the Petersen graph using 4 colors.
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Minimum Edge Coloring

Classical edge coloring:
» Color the edges of a graph using as few colors as possible.
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Minimum Edge Coloring

Classical edge coloring:

» Color the edges of a graph using as few colors as possible.

Vizing's Theorem

Let G be a simple graph of maximum degree A(G). The minimum
number of colors needed to color all edges of G is either A(G) or
A(G) + 1.
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Dual Edge Coloring

There is a dual version known as Edge-k-Coloring:

Jesper W. Mikkelsen 4/34



Dual Edge Coloring

There is a dual version known as Edge-k-Coloring:

» A fixed number, &, of colors is available.

» The goal is to color as many edges as possible.

Jesper W. Mikkelsen

4/34



Dual Edge Coloring

There is a dual version known as Edge-k-Coloring:

» A fixed number, &, of colors is available.

» The goal is to color as many edges as possible.

We label the &k colors 1,2,... k.

Jesper W. Mikkelsen

4/34



Dual Edge Coloring

There is a dual version known as Edge-k-Coloring:
» A fixed number, k, of colors is available.
» The goal is to color as many edges as possible.

We label the &k colors 1,2,... k.
For k = 1, this is the maximum matching problem.
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Online Edge Coloring

Online Edge-k-Coloring

» Edges arrive one by one.

» Must immediately color a newly arrived edge with one of the k
colors or reject the edge.

» The decision is irrevocable.
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Example for k = 2
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Online Edge Coloring

Competitive analysis [Sleator, Tarjan '85], [Karlin et al. '88]

An algorithm A is c-competitive if
A(c) > c¢-OPT(o) —b

for all sequence of edges o.
For a randomized algorithm, replace A(o) with E[A(0)].
The competitive ratio C' = sup{c : A is c-competitive}.

Jesper W. Mikkelsen 7/34



Online Edge Coloring

Competitive analysis [Sleator, Tarjan '85], [Karlin et al. '88]

An algorithm A is c-competitive if
A(c) > c¢-OPT(o) —b

for all sequence of edges o.

For a randomized algorithm, replace A(o) with E[A(0)].

The competitive ratio C' = sup{c : A is c-competitive}.
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Previous results

(Favrholdt, Nielsen '03)

» Negative results:

No deterministic algorithm has a competitive ratio better than %

4

No randomized algorithm has a competitive ratio better than =.
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Previous results

(Favrholdt, Nielsen '03)

» Negative results:

No deterministic algorithm has a competitive ratio better than %

No randomized algorithm has a competitive ratio better than %.

» Positive results:

The competitive ratio of a fair algorithm is at least 2v/3 — 3 ~ 0.46
An algorithm is fair if it never rejects an edge unless forced to do so.
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What?

> In order to obtain a more fine-grained analysis, we study
Edge-k-Coloring on some basic graph classes:

» For paths, we give an optimal (randomized) algorithm.

> For trees, we show that a natural algorithm called First-Fit is
optimal among deterministic algorithms.

> For trees and “tree-like” graphs, we show that any fair
algorithm for online Edge-k-Coloring performs well if & (the
number of colors) is sufficiently large.
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Why?

Why paths and trees?
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Why paths and trees?

» Natural building blocks for studying more complicated graph
classes.
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Why?

Why paths and trees?

» Natural building blocks for studying more complicated graph
classes.

» All previous (negative) results for Edge-k-Coloring holds when
the input graph is a bipartite graph.
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Algorithms

Recall that the competitive ratio of a fair algorithm is at least
2v/3 — 3 ~ 0.46 and at most 1 (Favrholdt, Nielsen '03).
The following fair and deterministic algorithms have been studied:

» First-Fit uses the lowest available color when coloring an edge.
It can be viewed as the natural greedy strategy.
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Algorithms

Recall that the competitive ratio of a fair algorithm is at least
2v/3 — 3 ~ 0.46 and at most 1 (Favrholdt, Nielsen '03).
The following fair and deterministic algorithms have been studied:

» First-Fit uses the lowest available color when coloring an edge.
It can be viewed as the natural greedy strategy.

» Next-Fit remembers the last used color ¢j55;. When coloring an
edge, it uses the first available color in the ordered sequence
<C|ast +1,...,k1,..., CIast)-

Next-Fit is shown to have a competitive ratio of exactly 2v/3 — 3.
The competitive ratio of First-Fit is shown to be at most 0.48.
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Relationship to vertex coloring

» Edge coloring a graph G is equivalent to vertex coloring the
line graph of G.

» This also holds in an online setting.

» In particular, online Edge-k-Coloring on paths is exactly the
same as online dual vertex coloring on paths.

O O

o—0 0o
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Edge-2-Coloring on Paths

» Next-Fit has a competitive ratio of % on paths.
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Edge-2-Coloring on Paths

» Next-Fit has a competitive ratio of % on paths.

» First-Fit has a competitive ratio of% on paths.
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Edge-2-Coloring on Paths

» Next-Fit has a competitive ratio of % on paths.

» First-Fit has a competitive ratio of% on paths.

1 2 1 2 1
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No deterministic algorithm can do better than %
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Edge-2-Coloring on Paths

» Can a randomized algorithm do better than % ?

Jesper W. Mikkelsen 14/34



Edge-2-Coloring on Paths

» Can a randomized algorithm do better than % ?

> Yes! There is a randomized algorithm with a competitive ratio
of .
5
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Rand,

Let % < p < 1. Define Rand,, as follows:

» For isolated edges, use the color 1 with probability p and the
color 2 with probability 1 — p. Non-isolated edges are colored
if possible.
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Rand,

Let % < p < 1. Define Rand,, as follows:

> For isolated edges, use the color 1 with probability p and the
color 2 with probability 1 — p. Non-isolated edges are colored
if possible.

» Two types of rejections:

p 7 p

o——0---0——0

Dashed edge is colored with probability p? + (1 — p)2.
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Rand,

Let % < p < 1. Define Rand,, as follows:

» For isolated edges, use the color 1 with probability p and the
color 2 with probability 1 — p. Non-isolated edges are colored
if possible.

» Two types of rejections:

p 7 (1-p) p

Dashed edge is colored with probability p(1 — p) 4+ (1 — p)p.
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Rand,

Choose the parameter p so that we balance the two situations:
p= % ~ 0.72 gives a competitive ratio of %.
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Randomization

» Can a randomized algorithm do better than % ?
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Randomization

» Can a randomized algorithm do better than % ?

» No. We prove this using Yao's minimax principle.
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Edge-k-Coloring on Trees

» Suppose that the input graph is a tree.
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Edge-k-Coloring on Trees

» Suppose that the input graph is a tree.
» For k > 2, we show that:

» The competitive ratio of any fair algorithm is at least 2Y£=2

2vVk—1"
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Edge-k-Coloring on Trees

» Suppose that the input graph is a tree.
» For k > 2, we show that:

» The competitive ratio of any fair algorithm is at Ieast 2vk=2
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» The competitive ratio of First-Fit is exactly £-1
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Edge-k-Coloring on Trees

» Suppose that the input graph is a tree.
» For k > 2, we show that:

» The competitive ratio of any fair algorithm is at Ieast 2vk=2

2vVk—1"

» The competitive ratio of First-Fit is exactly £-1
» First-Fit is optimal among deterministic or fair algorithms.
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First-Fit vs Next-Fit on Trees
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Charging technique for proving positive results

Three types of edges for a deterministic algorithm A:
» Double colored: Colored by both A and OPT.
» Single colored: Colored only by A.
» Rejected: Colored only by OPT.
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Three types of edges for a deterministic algorithm A:
» Double colored: Colored by both A and OPT.
» Single colored: Colored only by A.
» Rejected: Colored only by OPT.

We want to prove that A is C'-competitive. Suppose that A earns a
dollar whenever it colors an edge. We need to show that A can buy
all of the edges colored by OPT, paying at least C for each.
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Charging technique for proving positive results

Three types of edges for a deterministic algorithm A:

» Double colored: Colored by both A and OPT.

» Single colored: Colored only by A.

» Rejected: Colored only by OPT.
We want to prove that A is C'-competitive. Suppose that A earns a
dollar whenever it colors an edge. We need to show that A can buy
all of the edges colored by OPT, paying at least C for each.
Double colored edges will pay for themselves and therefore have a

surplus of 1 — C.
Single colored edges will have a surplus of 1.
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Fair Algorithm on Trees

Any fair algorithm F has a competitive ratio of at least C = 73%:?
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Fair Algorithm on Trees

Any fair algorithm F has a competitive ratio of at least C = %
» Double colored edges have a surplus of 1 — C' = 2\/%_1.

» Single colored edges have a surplus of 1.

> Rejected edges need to receive a value of at least C' from the
colored edges.
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Any fair algorithm F has a competitive ratio of at least C = %
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» Single colored edges have a surplus of 1.
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Fair Algorithm on Trees

Strategy for redistributing the surplus:
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a

remaining surplus
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Fair Algorithm on Trees

What if a rejected edge e has only a few colored child edges?
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Fair Algorithm on Trees

What if a rejected edge e has only a few colored child edges?

Worst-case: Roughly vk colored child edges.
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First-Fit on Trees

First-Fit has a competitive ratio of at least % on trees. Use the

same strategy as before with the following addition:
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First-Fit on Trees

First-Fit has a competitive ratio of at least % on trees. Use the
same strategy as before with the following addition:
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First-Fit on Trees

Example: k =5, only double colored.
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First-Fit on Trees

Example: k =5, only double colored.
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First-Fit on Trees

Example: k =5, only double colored.
m(v) = §.

v transfers 5 to (w,v) and 2 to e@ag}h of (v,z) and (v,y).
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First-Fit on Trees

First-Fit has a competitive ratio of at least % on trees.
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First-Fit on Trees

First-Fit has a competitive ratio of at least % on trees.

Step 1 Consider in turn all edges e = (v, u) € E¢. Let ¢ be the
color assigned to e by First-Fit and let ¢/ = (w, v) be the
parent edge of e.
Step 1.1 If ¢ € E4 and €’ has been colored with a color ¢/ > ¢,
then e transfers a value of 1 to w.
Step 1.2 Any surplus remaining at e |s transferred to v.

For each vertex v, let m(v) denote the value transferred to
v in step 1.
Step 2 Consider in turn all vertices v € V.

Step 2.1 If v has a parent edge €’ and ¢’ € E,, then v transfers
a value of min {m(v), 51} to ¢'.

Step 2.2 Any value remaining at v is distributed equally among
the child edges of v belonging to F,.
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Negative result for Edge-k-Coloring of Trees

First-Fit has a competitive ratio of at most %

1 2 1
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Negative result for Edge-k-Coloring of Trees

First-Fit has a competitive ratio of at most %

AYAAY

Jesper W. Mikkelsen 27/34



Negative result for Edge-k-Coloring of Trees
First-Fit has a competitive ratio of at most %
1 2 1
;k;;k;;k;;k;
First-Fit colors N(k —2) + N = N(k — 1) and OPT colors Nk
edges.
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Negative result for Edge-k-Coloring of Trees

First-Fit has a competitive ratio of at most %
1 2 1
d\k/bd\k/b;k;;k;
First-Fit colors N(k —2) + N = N(k — 1) and OPT colors Nk

edges.
A similar construction shows that no fair or deterministic algorithm

can do better than %
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Negative result for Edge-k-Coloring of Trees

First-Fit has a competitive ratio of at most %

First-Fit colors N(k —2) + N = N(k — 1) and OPT colors Nk
edges.

A similar construction shows that no fair or deterministic algorithm
can do better than %

Furthermore, one can show that the competitive ratio of Next-Fit is

2vk—2 :
no better than SV 1 when k is a square number.
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Randomization on Trees

» First-Fit is optimal on trees among fair or deterministic
algorithms with a competitive ratio of k—;l

» Can a randomized algorithm do better than k—gl ?
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Randomization on Trees

» First-Fit is optimal on trees among fair or deterministic

algorithms with a competitive ratio of k—;l

» Can a randomized algorithm do better than k—;l ?

» Maybe, but not better than Til
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If it looks like a tree...

» There exists several measures of how “tree-like” a graph is.
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the edges of GG can be oriented to form a digraph where each
vertex has outdegree at most t.
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v

There exists several measures of how “tree-like” a graph is.

v

Treewidth, arboricity, degeneracy, pseudoarboricity etc.

The pseudoarboricity (PA) of G is the minimum ¢ such that
the edges of GG can be oriented to form a digraph where each
vertex has outdegree at most t.
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Trees have PA = 1. Planar graphs have PA at most 3.
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If it looks like a tree...

» There exists several measures of how “tree-like” a graph is.
» Treewidth, arboricity, degeneracy, pseudoarboricity etc.

» The pseudoarboricity (PA) of G is the minimum ¢ such that
the edges of GG can be oriented to form a digraph where each
vertex has outdegree at most t.

> Trees have PA = 1. Planar graphs have PA at most 3.

» Graphs of bounded degree, treewidth, degeneracy or genus has
bounded PA.
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Parameterized Competitive Ratio

» We parameterize the competitive ratio by the PA of the input
graph.
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Parameterized Competitive Ratio

» We parameterize the competitive ratio by the PA of the input
graph.

Theorem
Suppose that the input graph is k-colorable and has PA at most ¢.
Ift < %k, then the competitive ratio of any fair algorithm is at least

2\/k/t —2

2kt —1
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Parameterized Competitive Ratio

» We parameterize the competitive ratio by the PA of the input
graph.

Theorem
Suppose that the input graph is k-colorable and has PA at most ¢.
Ift < %k, then the competitive ratio of any fair algorithm is at least

2\/k/t —2

2kt —1

The competitive ratio on k-colorable graph is also known as the
competitive ratio on accommodating sequences [Boyar, Larsen,
Nielsen '98].
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Parameterized Competitive Ratio
A lower bound for any fair algorithm on planar graphs (PA < 3).
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Conclusion

» Rand,, is optimal on paths and better than any deterministic
algorithm.
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» First-Fit is optimal among deterministic algorithms on paths
and trees.
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Conclusion

» Rand,, is optimal on paths and better than any deterministic
algorithm.

» First-Fit is optimal among deterministic algorithms on paths
and trees.

» On tree-like graphs, any fair algorithm for online
Edge-k-Coloring performs well if it has a sufficiently large
number of colors.
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Open Problems

» Find the optimal online algorithm for Edge-k-Coloring in
general and on other graph classes.
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Open Problems

» Find the optimal online algorithm for Edge-k-Coloring in
general and on other graph classes.

Is it possible to achieve a competitive ratio better than 2v/3 — 3 for
Edge-k-Coloring?

Does First-Fit have a competitive ratio better than 2v/3 — 3 for
Edge-k-Coloring?On bipartite graphs?
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THANK YOU
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