Tight Bounds on the Competitive Ratio
on Accommodating Sequences
for the Seat Reservation Problem

Eric Bach * Joan Boyar T Leah Epstein *
Lene M. Favrholdt Tao Jiang Kim S. Larsen
Guo-Hui Lin ¥ Rob van Stee |

Abstract

The unit price seat reservation problem is investigated. The seat
reservation problem is the problem of assigning seat numbers on-line
to requests for reservations in a train traveling through £ stations. We
are considering the version where all tickets have the same price and
where requests are treated fairly, i.e., a request which can be fulfilled
must be granted.

For fair deterministic algorithms, we provide an asymptotically
matching upper bound to the existing lower bound which states that all
fair algorithms for this problem are i-competitive on accommodating

2
sequences, when there are at least three seats.

*Computer Sciences Department, University of Wisconsin — Madison, 1210 West Day-
ton Street, Madison, WI 53706-1685, U.S.A. Email: bach@cs.wisc.edu.

TDepartment of Mathematics and Computer Science, University of Southern Denmark,
Main Campus: Odense University, Campusvej 55, DK-5230 Odense M, Denmark. Email:
{joan,lenem kslarsen}@imada.sdu.dk.

tSchool of Computer and Media Sciences, The Interdisciplinary Center, P.O.B. 167,
46150 Herzliya, Israel. Email: epstein.leah@idc.ac.il.

$Department of Computer Science, University of California, Riverside. On leave from
Department of Computing and Software, McMaster University, Hamilton, Ontario L8S
4L7, Canada. Email: jiang@cs.ucr.edu.

YDepartment of Computer Science, University of Waterloo, Waterloo, Ontario N2L
3G1, Canada and Department of Computing and Software, McMaster University, Canada.
Email: ghlin@wh.math.uwaterloo.ca.

Il Centre for Mathematics and Computer Science (CWI), P.O.B. 94079, 1090 GB Ams-
terdam, The Netherlands. Email: Rob.van.Stee@cwi.nl.

Additionally, we give an asymptotic upper bound of % for fair ran-
domized algorithms against oblivious adversaries.

We also examine concrete on-line algorithms, First-Fit and Ran-
dom, for the special case of two seats. Tight analyses of their perfor-
mance are given.

1 Introduction

In many train transportation systems, passengers are required to buy seat
reservations with their train tickets. The ticketing system must assign a
passenger a single seat when that passenger purchases a ticket, without
knowing what future requests there will be for seats. Therefore, the seat
reservation problem is an on-line problem, and a competitive analysis is
appropriate.

Assume that a train with n seats travels from a start station to an end
station, stopping at k > 2 stations, including the first and the last. The
seats are numbered from 1 to n. The start station is station 1 and the end
station is station k. Reservations can be made for any trip from a station
s to a station t as long as 1 < s < t < k. Each passenger is given a single
seat number when the ticket is purchased, which can be any time before
departure. The algorithms (ticket agents) may not refuse a passenger if it
is possible to accommodate him when he attempts to make his reservation.
That is, if there is any seat which is empty for the entire duration of that
passenger’s trip, the passenger must be assigned a seat. An algorithm of
this kind is fair.

The algorithms attempt to maximize income, i.e., the sum of the prices of
the tickets sold. Naturally, the performance of an on-line algorithm will
depend on the pricing policies for the train tickets. In [6], two pricing
policies are considered: one in which all tickets have the same price, the
unit price problem; and one in which the price of a ticket is proportional to
the distance traveled, the proportional price problem. This paper focuses on
fair algorithms for the unit price problem.

The seat reservation problem is closely related to the problem of optical
routing with a number of wavelengths [1, 5, 9, 14], call control [2], interval
graph coloring [12] and interval scheduling [13]. The off-line version of the
seat reservation problem can be used to solve the following problems [8]:
minimizing spill in local register allocation, job scheduling with start and
end times, and routing of two point nets in VLSI design. Another application

of the on-line version of the problem could be to assign vacation bungalows
(mentioned in [15]).

The performance of an on-line algorithm A is usually analyzed using the
competitive ratio defined in the following way.

Let A(I) denote how much an on-line algorithm 4 earns with the request
sequence I, and let OPT(I) denote how much is earned by an optimal off-line
algorithm when given the sequence I. If A is randomized, E[A(])] denotes
the expected value of A(T).

Definition 1.1 A deterministic on-line algorithm A is c-competitive if, for
any sequence I of requests, A(I) > ¢- OPT(I) — b, where b is a constant
which does not depend on the input sequence I. The competitive ratio for
A is the supremum over all such c. O

When measuring the performance of a randomized on-line algorithm there is
a choice of adversaries. Throughout the paper we use an oblivious adversary.
An oblivious adversary knows the exact definition of the on-line algorithm,
but it constructs the whole input sequence before giving it. That is, the
adversary does not know how the algorithm chooses to serve each request,
but it knows the probabilities of the possible actions of the on-line algorithm.

Definition 1.2 A randomized on-line algorithm A is c-competitive against
an oblivious adversary if, for any sequence I of requests, E[A(])] > ¢
OPT(I) — b, where b is a constant which does not depend on the input
sequence I. The competitive ratio for A is the supremum over all such ¢. O

Since we are trying to maximize income rather than minimize cost, a lower
bound is obtained by proving a bound on the worst case behavior of an
algorithm, and an upper bound is obtained by giving an adversary argument.
Notice that the fairness criterion defined above is a part of the problem
specification. Thus, even though the optimal off-line algorithm knows the
whole sequence of requests in advance, it must process the requests in the
same order as the on-line algorithm, and do so fairly.

In this paper, we investigate the competitive ratio in the special case where
there are enough seats to accommodate all requests, i.e. an optimal off-line
algorithm will not reject any of the requests. This restriction on the input
sequences is used to reflect the assumption that the decision as to how many
cars the train should have is based on expected ticket demand.

Definition 1.3 A sequence of requests that can be fully accommodated by
an optimal off-line algorithm is called an accommodating sequence. O

In earlier papers [6, 7], the competitive ratio on accommodating sequences
was called the accommodating ratio. The change is made here for consis-
tency with common practice in the field.

1.1 Previous Results

We have the following known results:

Theorem 1.1 [6] On accommodating sequences, any fair (deterministic
or randomized) on-line algorithm for the unit price problem is at least %—
competitive. O

Theorem 1.2 [6] Even on accommodating sequences, any fair (determin-

istic or randomized) on-line algorithm for the unit price problem (k > 6) is

8k—8(k mod 3)—9 .
at most T0R—10(k mod 3)_15—compet1t1ve. O

Thus, even on accommodating sequences, no fair randomized on-line algo-
rithm has a competitive ratio much better than %.

The results in [6] for the proportional price problem show that its compet-
itive ratio, even on accommodating sequences, is @(%) For the unit price
problem, the competitive ratio is also @(%) These very discouraging results
explain the focus on the competitive ratio on accommodating sequences for

the unit price problem in this paper.

1.2 Owur Contributions

In Section 3, we lower the asymptotic upper bound on the competitive ratio
on accommodating sequences for fair deterministic algorithms from % to
% when k is large compared to n, and n > 3. This matches the lower
bound from Theorem 1.1. For fair randomized algorithms against oblivious
adversaries, we show an upper bound of g for large k. A concrete on-line
algorithm, First-Fit, is examined with regards to the unit price problem for
the special case n = 2. Here, we show that First-Fit is %—competitive on
accommodating sequences, and we show that this is asymptotically optimal.

In Section 4, we examine a concrete randomized on-line algorithm, Random.

We prove an asymptotic upper bound of % for n > 3, and for the special

case of n = 2, we find asymptotically matching upper and lower bounds of
3

1
Our results are summarized in Table 1. For the sake of clarity, some of the
values given there are not quite as tight as those proven in the paper. The
lower bounds of 3 and the upper bound on First-Fit for n > 3 are from [6].

n =2 n>3
T 3E—6 T I 3n—3
Any det. alg. | 5< ¢ < s 2 < c < ?+ 2k 16018
First-Fit % <c < 53k:168 2 < c < 2 + 2kzi6
1 Th—15 1 7E—15
Any rand. alg. 2 < ¢ < 9 |3 < c < o2
Random IS c<3t+mal3S ¢ <

Table 1: Simplified upper and lower bounds.

Some of the results in this paper were presented in [4].

2 Coloring Interval Graphs

Since we are only considering the unit price problem, the seat reservation
problem is similar to the problem of coloring an interval graph on-line. This
is easy to see. The route the train travels from station 1 through station k
is the section of the real line considered. The part of the route a passenger
travels is an open interval, and the seat the passenger is assigned is the color
the interval is given.

Note that in the case where there are enough seats to accommodate all
requests, the restriction that the optimal off-line algorithm be fair is in
fact no restriction. Thus, the optimal fair off-line algorithm is polynomial
time [10] since it is simply a matter of coloring an interval graph with the
minimum number of colors. Recall that interval graphs are perfect [11],
so the size of the largest clique is exactly the number of colors needed.
Thus, when there is no pair of stations (s,s + 1) such that the number of
people who want to be on the train between stations s and s + 1 is greater
than n, the optimal fair off-line algorithm will be able to accommodate all
requests. The contrapositive is clearly also true; if there is a pair of stations
such that the number of people who want to be on the train between those
stations is greater than n, the optimal fair off-line algorithm will be unable
to accommodate all requests. We will refer to the number of people who

want to be on the train between two stations as the density between those
stations.

3 Deterministic Algorithms

In this section, we investigate the competitive ratios of deterministic fair
algorithms for the unit price seat reservation problem. We consider the
cases n = 2 and n > 3 separately. Trivially, for n = 1, any fair on-line
algorithm is 1-competitive on accommodating sequences.

3.1 A General Upper Bound for n > 3

The upper bound on the competitive ratio on accommodating sequences is
lowered to match the lower bound, for k£ large compared to n.

Theorem 3.1 The competitive ratio on accommodating sequences for the
fair unit price seat reservation problem with 3 seats is at most % + 1%5’
where k> 7 and k =1 (mod 6).

Proof The adversary gives a request sequence I in three phases. In Phase
1, the adversary gives intervals of length four with a spacing of two, except
that the first interval only has length three, and the last has length one.
The intervals are: [1,4],[6,10],[12,16],...,[k — 1,k]. These intervals are
numbered 1 in Fig. 1.

In Phases 2 and 3, the adversary gives additional requests, determined by
processing the already given requests from left to right, based on how the
on-line algorithm A has placed the Phase 1 intervals. This processing is
completed before the intervals are actually given. All Phase 2 intervals are
given before all Phase 3 intervals. Within a phase, the intervals are given in
order, based on their leftmost endpoint.

The proof is by induction on the number of intervals in Phase 1. In each step
one such interval is processed. The processing is illustrated in Fig. 1. A step
occurs between two dotted vertical lines. Since A is fair, all intervals from
Phases 1 and 2 are accepted; these intervals are shown above the horizontal
dotted line. During a step, we either extend an interval from Phase 2 or
introduce a new interval for Phase 2, plus define some intervals for Phase
3. The intervals from Phase 3 are rejected by A; these intervals are shown

5 —
{—— — :
o1 1 e :
. . }—%
SRRSO U SN N
: :
; 3 3

a) Invariant and base case.

b) Next interval with e.

S o ceext. S N e’zeext%.
—— é'51 : ——
3 3; 3 :

c) Next interval with previous. d) Next interval on free.

Figure 1: Cases of the proof.

below the horizontal dotted line. After each step, the invariant depicted in
Fig. 1a will hold:

e Every interval from Phase 1 or 2 (except the first two all the way to
the left) with its start station to the left of or on the vertical dotted
line has a unique associated Phase 3 interval.

e The only intervals with start station strictly to the right of the vertical
dotted line are the Phase 1 intervals.

Establishing the base case can be done by giving the Phase 2 interval e =
[1,2] as illustrated in Fig. la. This interval and the Phase 1 interval [1,4]
will be the only ones without associated Phase 3 intervals.

Note that this e interval as well as other Phase 2 intervals to be given later
may be extended during the processing of the next Phase 1 interval. In the
figure, this is marked with an asterisk.

For the induction step, we assume that we have processed up to a certain
station and have been able to maintain the invariant. In processing the
next Phase 1 interval, there are three cases: the interval could be on the
same seat as e (Fig. 1b), on the same seat as the previous Phase 1 interval

(Fig. 1c), or on the third seat (Fig. 1d). In each case, we must reestablish
the invariant six stations further to the right (the next vertical dotted line).

In Fig. 1b, we give a new Phase 2 interval ¢ which should serve as the e
interval in the next step. Note that A will have no choice as to where to
place the interval. Two Phase 3 intervals are defined, one for the Phase 1
interval processed and one for the new €'

In Fig. 1c, we extend the already given e interval. If this e interval is the
first interval of Phase 2, extending the interval might change the algorithm’s
decision as to where to place the interval. Note that this is no problem, since
the only effect of this would be that e and e’ are swapped. Two Phase 3
intervals are defined, one for the Phase 1 interval processed and one for the
new €’. Again, ¢/ will be the new e interval in the next step.

In Fig. 1d, we also extend the e interval, and that interval will also serve
as the e interval in the next step. Thus, only one Phase 3 interval must
be provided for the processed Phase 1 interval. Note that extending the e
interval cannot influence its placement, since only one seat has room for it.

An optimal off-line algorithm can accommodate all requests, since the den-
sity is no more than three between any two stations, which implies that the
clique number of the corresponding interval graph is at most three.

% Phase 1 intervals and, except for the

first of these, one Phase 3 interval for each. Additionally, it gives some
number z > 1 of intervals in Phase 2, and x — 1 Phase 3 intervals for these.
In total, we get the ratio

In summary, the adversary gives

A(I) Mt

OPT(I) k54 (M5 1y 4 p 4 (2 1)

The maximum occurs at £ = 1, so

k+5
Al ! E+11 1 3

OPT(I)_%+(%_1)+1_2k+10_2+k+5'

O

The above result can easily be extended to any k& > 7, by giving the same

sequence and ignoring the last few stations. Let ¢ = kK — 1 (mod 6). The

upper bound is then % + %

Corollary 3.1 The competitive ratio on accommodating sequences for the
fair unit price seat reservation problem with n > 3 seats is at most % +
3n—3 _

W@"'QC)’ where k Z Tandc=k—1 (mod 6)

Proof First we give n — 3 intervals of the type [1, k]. Because of fairness,
both the on-line as well as the optimal off-line algorithm must accept all
n — 3 requests. Now use the above theorem on the remaining three seats.
The ratio becomes

A) F=45 | ¢ 1 (n - 3)
OPT(I) = B=ats | (=D _ 4y 4 44 (2 —1) + (n — 3)
kE+6n—(7+¢) _14_ 3n—3
“2k+6n—(8+2c) 2 2k+6n—(8+2c)

O

The technique of Corollary 3.1 which converts an upper bound for m seats
to an upper bound for n seats (n > m) by adding some large requests in
the beginning of the sequence, can be applied to any sequence. This can be
done both to negative results for deterministic algorithms and to negative
results for randomized algorithms. Thus, the asymptotic competitive ratio
is a monotone non-increasing function of n, if there is no limit on the number
of stations.

3.2 The Case n =2

In this section, the case n = 2 is investigated. However, we note that in
train systems, it is unlikely that a train has a small number of seats. So the
bounds obtained here are probably irrelevant for this application, but they
could be relevant for others such as assigning vacation bungalows.

The following theorem gives an upper bound on the competitive ratio on
accommodating sequences for fair algorithms. This bound approaches % as
k approaches infinity.

Theorem 3.2 Let
3k — 3(k mod 6) — 6
5k — 5(k mod 6) — 18’
3k — 3(k mod 6) + 6
5k — 5(k mod 6) + 6’

when (k mod 6) € {0,1,2};

when (k mod 6) € {3,4,5}.

9

If n = 2, any deterministic fair on-line algorithm for the unit price problem
(k >9) is at most f(k)-competitive, even on accommodating sequences.

Proof The adversary begins with one request for the interval [3s+1, 35+ 3]
for each s = 0,1,---, L%J After these requests are accommodated by
the on-line algorithm, consider for each i = 0,1,---, L%J how the three
requests [6¢+ 1, 6¢+ 3], [6i+4,6:+ 6], and [6i+7,6i+ 9] are accommodated.
Suppose that the intervals [6i+1, 6i+ 3], [6i+4, 6i+6], and [6i+7,6i+9] are
placed on the same seat. Then the adversary proceeds with a request for the
interval [6i+3, 6i+7] and then requests for each of the intervals [6i+2, 6i+4]
and [6i46,6i+8]. The on-line algorithm will accommodate the first request,
but fail to accommodate the last two. In the second case, suppose only two
adjacent intervals (among [6i + 1, 61+ 3], [6¢ +4,6¢ + 6], and [6¢ + 7, 67+ 9])
are placed on the same seat, say [6i + 1,6i + 3] and [67 + 4,67 + 6], then
the adversary proceeds with three requests for the intervals [6i + 2, 67 + 4],
[6¢ + 3,67 + 5], and [6i 4 5, 67 + 8]. The on-line algorithm will accommodate
the first request but fail to accommodate the last two. In the last case, only
the intervals [6i + 1,6¢ + 3] and [6¢ + 7,67 + 9] are placed on the same seat.
Then the adversary proceeds with two requests for the intervals [6i+2, 6i+5]
and [67 + 5, 67 + 8]. The on-line algorithm will fail to accommodate both of
them.

It then follows easily that, even on accommodating sequences, the competi-
tive ratio of the on-line algorithm applied to this sequence of requests is at
most f(k) (k>9). O

A specific on-line algorithm called First-Fit always processes a new request
by placing it on the first seat which is unoccupied for the length of the
journey. The following theorem shows that for n = 2, First-Fit is an asymp-
totically optimal on-line algorithm.

Theorem 3.3 First-Fit for the unit price problem is at least %—competitive
on accommodating sequences, when n = 2.

Proof Consider any set of requests which the optimal off-line algorithm
could accommodate with two seats. Let S be the subset of requests ac-
commodated by First-Fit, and let U denote the subset of unaccommodated
requests. The non-empty intervals between two consecutive requests accom-
modated on some seat (i.e., the durations in which the seat is empty) are

10

called gaps on that seat. Since the sequence is accommodating, every re-
quest in U must have its starting station in a gap, and no two requests in
U can have their starting stations in the same gap. Partition U into U; and
Us, where U; denotes the subset of requests in U with starting station s in
some gap on seat i. Intervals which have their starting station in a gap on
both seats should be placed in Uj.

Sort the requests in U; so that their starting stations are in increasing order,
and consider them one-by-one in this order. For each request r = [s,t] € Us,
let r1 = [s1,t1] denote the request, in S, for the first interval which prevents
accommodating r on seat 2. Then seat 1 must be empty from station sy
to station min{t,¢;}. By the First-Fit rule, we have ¢ < ¢, since otherwise
request r; would be accommodated on seat 1. For the same reason, there
should be some request ro = [s2,t2] € S which is accommodated on seat 1
and t < s9 < t1. We claim that there is no request r' = [¢/,t] € U; whose
starting station s’ is in the gap right before [so,t2]. Otherwise, we would
have ¢’ < s1, which ensures that request 7’ could be accommodated on seat
1. Conceptually, we assign requests r; and ro in S to request r. Notice that
for different r» € Us, the requests r1 and r9 in S are different.

After finishing the requests in Us, we consider the requests in U;. For each
request r = [s,t] € Uy, let r1 = [s1,t1] denote the request, in S, for the first
interval which prevents accommodating r on seat 1. Then seat 2 must be
empty from station s; to station min{t,¢1}. Let ro = [so, t2] denote the last
request that is accommodated on seat 2 before s1. That is, seat 2 is empty
from station ¢9 to station min{t, ¢;}. Obviously, to < s;. Furthermore, there
is no request ' = [s/,t'] € U, such that to < s’ < s1. If there is no request
q € Uy with its starting station in the gap (on seat 2) before so, or there
is no such gap at all, then we assign requests r; and ro to 7. In the case
where there is a gap and there is some request ¢ = [u, v] € Uy with starting
station w in this gap, let g1 and g2 denote the two requests in .S that were
assigned to q. We then reassign requests r1, ¢1 and g2 to requests r and gq.
Notice that for different r, the corresponding ¢ must be different, and the
same requests in S cannot be assigned to different requests from U. Thus,
depending on which case we are dealing with, either two requests in .S are
assigned to one in U, or a group of three requests in .S is assigned to a pair
of requests in U. So the size of U is at most % the size of S, which means
that First-Fit accommodates at least three-fifths of the requests. O

11

4 Randomized Algorithms

In this section, we examine the competitive ratios on accommodating se-
quences for randomized fair on-line algorithms for the unit price problem,
by comparing them with an oblivious adversary. Some results concerning
randomized fair on-line algorithms for the proportional price problem can
be found in [3].

Though the following theorem is about deterministic algorithms, and the
result is worse than Theorem 3.1, it is included in this section because the
structure of the proof allows for an easy transformation to a proof for the
equivalent randomized problem. We believe it is easier to first understand
the deterministic proof, and then verify the transformation in the subsequent
corollary.

Theorem 4.1 Let
Tk — 7(k mod 6) + 6
9k — 9(k mod 6)
14k — 14(k mod 6) — 15
18k — 18(k mod 6) — 27’

, when (k mod 6) € {0,1,2};
f(k) =

when (k mod 6) € {3,4,5}.

Any deterministic fair on-line algorithm for the unit price problem (k > 9)
is at most f(k)-competitive, even on accommodating sequences.

Proof The proof of this theorem is an adversary argument, which is a
more dextrous design based on the idea in the proof of Theorem 1.2 in [6].
Assume that n is divisible by 2. The adversary begins the request sequence
I with § requests for the intervals [3s + 1,3s + 3] for s = 0,1, , L%J
Any fair on-line algorithm A is able to accommodate this set of {%J -2
requests. Suppose that after these requests are accommodated, there are g;
seats which contain both interval [3i + 1, 3i + 3] and interval [3i + 4, 3i + 6],
i=0,1,---, L%J Then there are exactly ¢; seats which are empty from

station 37 4+ 2 to station 37 + 5.

In the following, rather than considering each ¢; at a time (as in [6]), we
consider ¢g;, g2;41 together fori =0,1,--- L%J. Let p; = q2i + q2i+1(< n).
We distinguish between two cases:

e Case 1: p; < %”; and

e Case 2: p; > %”.

12

In the first case p; < %”, the adversary proceeds with 5 requests for the

interval [6i42, 6i+5] and § requests for the interval [6i45,6i+8]. For these
n additional requests, A can accommodate exactly p; of them. Fig. 2a shows
this configuration. The intervals marked with a “1” are the intervals which
are given first, i.e., before deciding on Case 1 or 2. The intervals marked
with a “2” are the ones given afterwards. Thus, for those 2n requests whose
starting station s € [6¢ + 1, 6i + 6], A accommodates n + p; of them.

In the second case p; > %”, the adversary proceeds with 5 requests for the
interval [6i + 3,6i + 7], followed by § requests for interval [6i 4 2,6i + 4]
and § requests for the interval [6i 4 6,67 + 8]. For these 37” additional

requests, A can accommodate exactly 37” — p; of them. Fig. 2b shows this

configuration. Thus, of the 57" requests whose starting station s € [6i +

1,6i 4 6], A accommodates 57" — p; of them.

o111 o111
1, 1 1 1 2
— 1 — 1 — 1 2 N
}#{ }#{ 1 2
—L 1 —2 1 1
}#{ |2,1,2,
2 1 F 2 ilv
} 2 + 2 { }%
a) p; < . b) pi > 5.

Figure 2: Example configurations for the two cases.

In this way, the requests are partitioned into L%J + 1 groups; each of the

first L%j groups consists of either 2n or 57” requests and the last group

consists of either n (if (k mod 6) € {0,1,2}) or 5 (if (k mod 6) € {3,4,5})

requests. For each of the first L%J groups, A can accommodate up to
a fraction g of the requests therein. This leads to the theorem. More

precisely, let S denote the set of indices for which the first case happens,
and let S denote the set of indices for which the second case happens. When
(k mod 6) € {0,1,2}, the ratio of the number of requests accepted by A to
the number of requests accepted by an optimal off-line algorithm is

13

A(I) < T Sies(n+pi) + 5% —pi)
OPT(I) ~ Nt Yies 20+ Yies 3

14 35
< ”+ZieSTn+Zie§T§l _ 1+Zzes 9 +Zz€5’18
TN+ Y2+ Y s S 1+ Y g2+ Y ics 3

1ty kesolemed 8 - 7k _ 7(k mod 6) + 6
- 1+2.w 9k —9(k mod 6)

where the last inequality holds because in general { = ¢ < 1 and a < c

imply that Zi‘g;‘iflg < Z:Zg]:z)) When (k mod 6) € {3,4,5}, the ratio is

AI) 5+ Dies(ntpi) + ZZES'(EW —pi)
OPT(I) — 5 +Zz€S2n+ZzES 5

g + Z%ES lén + 2165’ 3158n — 2 + ZzES 9 + Z :%8
2+22652n+2165 2 2+21652+22€ %

_ i+ P med® 14k — 14(k — 3 — mod6) — 15

= 1 k—3—(k mod 6) _ _
I+2. + 18k — 18(k mod 6) — 27

This completes the proof. O

Corollary 4.1 Let
7k — 7(k mod 6) — 15
9k — 9(k mod 6) — 27’

14k — 14(k mod 6) + 27
18k — 18(k mod 6) + 27’

when (k mod 6) € {0,1,2};
f(k) =

when (k mod 6) € {3,4,5}.

Any randomized fair on-line algorithm for the unit price problem (k > 9) is
at most f(k)-competitive, even on accommodating sequences.

Proof The oblivious adversary behaves similarly to the adversary in the
proof of Theorem 4.1. Instead of using the values p; = g2; + g2;1-1, which are
defined in the proof of Theorem 4.1, the adversary uses the expected values
of p; to define the request sequence. Note that an oblivious adversary does
not know the actual actions of the on-line algorithm. However, it does know

14

the probabilities for the possible actions. Thus, it can compute the expected
values of p;. The oblivious adversary starts with the same sequence as the
adversary in the proof of Theorem 4.1. Then, for each ¢ = 0,1,---, L%J,
it decides on Case 1 or Case 2, depending on the expected values E[p;]
compared with %”. By generating corresponding requests, the linearity of
expectations implies that the expected number of requests accommodated
by the randomized algorithm is at most a fraction f(k) of the total number

of requests. O

Although it is straightforward to show that Theorem 4.1 holds for random-
ized algorithms, too, as shown above, one cannot use the same argument
and show the same for the other theorems.

The most obvious randomized algorithm to consider for this problem is
the one we call Random. When Random receives a new request and there
exists at least one seat that interval could be placed on, Random chooses
randomly among the seats which are possible, giving all possible seats equal
probability. The next two theorems characterize Random’s competitive ratio
on accommodating sequences for n = 2, and show that in this case Random
is nearly optimal.

Theorem 4.2 For n = 2, Random for the unit price problem is at least
%—competitive on accommodating sequences.

Proof Given a request sequence S which could be accommodated with two
seats, consider any optimal placement of the requests in S on two seats.
Based on where they appear in this placement, we now refer to requests as
Seat 1 and Seat 2 requests or intervals.

Based on the Seat 1 requests, we partition the requests into consecutive
groups. We show for each group that, in an amortized sense, the expected
number of requests accepted in that group is at least %.

The naming of the two seats is clearly arbitrary; we use the following num-
bering: Seat 2 is the seat containing the interval with smallest start station
number. If there are two intervals with that same start station, then Seat 2
is the seat containing the longer of these two intervals. (If the two intervals
are identical, they both will be accepted, so they can be ignored and the
next intervals can be used instead.) The other seat is Seat 1.

In general, a group is defined as depicted in Fig. 3. It starts with a Seat 1
request I. If no Seat 1 request K overlaps I and extends beyond it to the

15

right, then the group only includes I and some number z of Seat 1 intervals,
which are contained in the interval I. The next group will be defined by
considering requests that start no earlier than the end station of I and
beginning as with the first group, possibly renaming the seats. This case
gives no problem, so assume that this request K exists.

All of the requests which are subintervals of either I or K are included in
this group, as are I and K. In the following, we assume that there are x > 0
subintervals of I and y > 0 subintervals of K in the request sequence. Thus,
the entire group consists of 2+xz+y requests, all of which are accepted by the
optimal off-line algorithm. It may be the case that there is a Seat 1 request
from the previous group overlapping I. Call that request L. Similarly, the
interval K may overlap a Seat 2 request from the next group (the I interval
from the next group), which we call J here.

S K :
Hoo —
I Y

H

I y
t 1

L z’
—— H

7

J

s
H F————

Figure 3: A group picture.

The proof is a lengthy case analysis based on where the relevant intervals
occur in the request sequence. Since the x + y intervals contained within
I and K are always accepted, the ratio can only become worse if they are
assumed to come before I and K, so we make that assumption. Similarly,
we assume that if L comes before I, then L is accepted, and if J comes
before K, then J is accepted. If L or J do not exist, the group is handled
as if they came after I or K. The case analysis is done in the tables of
Figures 2 and 3. The notation “Iy,Is” indicates that I; occurs before I in
the request sequence. The notation “z’s” indicates that z > 0 and “y’s”
indicates that y > 0. A mark, X, in the table indicates that the given
predicate is true; otherwise it is false. There are thirty-two cases. For each
one, the probability that I is accepted, Prob([), and the probability that
K is accepted, Prob(K), are calculated, and a result, Result, is given. For
the first of the two intervals I and K which is given, the probability of it
being accepted is the probability that no two intervals which come before it
and overlap it are placed on different seats. Since these other intervals are
equally likely to be on Seat 1 as Seat 2, this probability is (%)u_l, where u
is the number of interfering intervals. The probability of acceptance of the
second of I and K is calculated similarly, but by weighting the two possible

16

cases of whether or not the first interval is accepted by the probability that
it is accepted. The “Result”, which is calculated as PrOb(I)J;iI;)JE;K)+x+y, is
the expected fraction of the intervals in that group which are accepted. All
of the results are calculated using those values of x and y which give the
minimum result (see below for how this minimum is defined). In most cases,
setting them equal to 1 gives the minimum. The exceptions are cases 9 and
13 where x = 1 and y = 2; 17 and 21 where x = 2 and y = 1; 10, 18, 22,
and 30 where z = 2; 11, 15, 23 and 27 where y = 2; 25 and 29 where z = 2

and y = 2; 26 where x = 3; and 31 where y = 3.

The amortization is used to handle the problem that the worst case occurs
when both L and J occur before I and K, but this cannot happen for two
consecutive groups. If, for example, a group of type 27 occurs immediately
before a group of type 1, the extra expectation of % from case 27 can be
used to (more than) cover the deficit of % from case 1, so that overall the
expectation is high enough.

Call the groups that fall into the first eight cases (in Table 2) late groups,
since their I and K intervals occur later in the request sequence than the
relevant intervals from the two surrounding groups. Similarly, call the groups
that fall into the last eight cases (in Table 3) early groups, those that fall into
cases 9 through 16 late-early groups, and those that fall into cases 17 through
24 early-late groups. In the “Result” column of Tables 2 and 3, fractions
which are less than % are expressed as %u;;z, where w = 2 + x + y is the
number of intervals in the group. We refer to the value z as the deficit for
the group. Notice that there is never a deficit greater than % of an interval,
and these only occur for late groups. For the early groups, the “Result” is

expressed as %sz, and here the value z is the surplus for the group. All of
the early groups have a surplus of at least i, which more than covers the
deficit of any late group. (Note that when the minimums were calculated,
they were calculated to maximize the deficit or minimize the surplus, rather
than to minimize the expected fraction accepted. It is only groups 25 and
29 where this makes a difference.) Clearly, the first group defined has no
request L, so it is either an early group or an early-late group. Although
one cannot assume that each late group has an early group immediately
preceding it, it is easy to see that for each late group there must be some
some early group before it in the request sequence. The surplus of this early
group can more than cover the deficit of the late group. All of the early-late
and late-early groups are such that the expected fraction of the intervals in
those groups accepted is at least %, so the total expected fraction of intervals

17

accepted is at least %. O

[No.[LI|JK[IK|xs[ys] Prob(I) | Prob(K) [Result]
1| x X X X %m %y — %Hyﬂ %
9 x » » %z - %:BJrl %
3| X X X X 1 %yﬂ %
4] x X X 1 7 %1
5| x X x | 57— %Hyﬂ Y 525
6 X X %erl 1 %
7| X X X 1-— %yﬂ %y %
8 . . %E —1 L x+ %
9] x X X | x %m %y — % v %

10| x X X 5 1 16
11| x X X 1 %y %
12| x X 1 1 1
13 « % %x _ %x-i-y %y—l %
14| x 1o 1 3
15| x| 1-1Y v 1
16 | x 3 1 2

Table 2: Different groups (1-16).

This value of % is, in fact, a very tight lower bound on Random’s competitive
ratio on accommodating sequences when there are n = 2 seats.

Theorem 4.3 Let

1

T = (k= 1) mod 2))

>

f(k) =

For n = 2, Random for the unit price problem (k > 3) is at most f(k)-
competitive on accommodating sequences.

Proof The adversary begins the request sequence I with the interval [1, 2]
followed by the intervals [2i,2i + 2] for i € {1,..., [52|}. If k is odd, it
then gives the request [k — 1, k.

18

[No. [LI[JK|LK |as[ys| Prob() | Prob(X) |Result]
17 X X X %:E—l %y _ %x-l-y %
18 X X %x—l 1_ %x %
19 X X X 1 %y—i—l %
20 X X 1 % %

1ot 12y 1y 31
21 X X | X 3 1_955 L g
22 X »: I - 1
23 X » 1 %y %
24 > : 1 1
25 X % X %m—l %y—l B %I—i-y—l 178;%
5T
26 X X %x—l 1 4;_2
I
27 X X 1 %y 324
§+l
28 % 1) I
29 % « %x—l . %:H-y—l %y—l %g_g
T
30 X %x 1 324
1y—1 E+l
31 X 1 1 jif
32 1) 13

Table 3: Different groups (17-32).

19

Random will place each of these requests, and, since there is no overlap,
they are placed on the first seat with probability %

Now the adversary continues the sequence with [2i + 1,2i + 3] for i €
k—3

{0,..., %=1}

Each interval in this last part of the sequence overlaps exactly two intervals

from earlier and can therefore be accommodated if and only if these two
intervals are placed on the same seat. This happens with probability %

Thus, all requests from the first part of the sequence, and expected about
half of the requests for the last part, are accepted. More precisely we obtain:

Random(7) < k+1—((k—21) mod2) 1. k—l—((k—Ql) mod 2) .
OPT(I) — k— ((k—1) mod 2) ‘

O

The competitive ratio of % on accommodating sequences for Random with
n = 2 seats does not extend to more seats. In general, one can show that
Random’s competitive ratio on accommodating sequences is bounded from
above by approximately 3f = 0.70833.

Theorem 4.4 Even on accommodating sequences, the competitive ratio for

Random is at most %214, for the unit price problem, when k = 2 (mod 4).

Proof Assume that n is divisible by 3. The request sequence [is as follows:

e [1,2] — % times.

o [4s+2,45+ 6] — % times — for s =0, 1,..., &6,

[1,4] — % times.

(45,45 +4] — § times — for s = 1,2,..., %.

o [k—2,k] — % times.

25 + 1,25+ 3] — % times — for s =0,1,..., %_
These will be referred to as the extra intervals.

If First-Fit was applied on this sequence, all %” requests would be accom-

modated. Random will accommodate everything except some of the extra

20

Combinations Expected
[45 — 2,45+ 2] | [4s + 2,45 + 6] | [45 + 6,45+ 10] | [45,4s + 4] | Number
X X X n/27
X X 2n/27
X X 2n/27
X X 2n/27
X 4n/27
X 4n/27
X n/27
X X n/9
X 2n/9
2n /27

Table 4: The expected number of seats with various combinations of the
intervals.

intervals. In what follows, the intervals of length shorter than 4, which are
not extra intervals, will be thought of as if they had length 4 and thus ex-
tended before the first station or after the last. Notice that m extra intervals
of the form [4s+1, 4s+3] will be accepted if and only if exactly m seats which
receive the interval [4s — 2, 4s + 2| also receive the interval [4s 4 2,4s + 6].
Similarly, m extra intervals of the form [4s + 3,4s + 5] will be accepted if
and only if exactly m seats which receive the interval [4s,4s+ 4] also receive
the interval [4s + 4,4s + 8]. Let us consider the types of extra intervals
in pairs ([4s + 1,4s + 3|, [4s + 3,4s + 5]) to calculate the expected number
which are accommodated by Random. Consider all but the last pair of these
extra intervals. The intervals which can interfere with whether or not these
extra intervals are accommodated are those of the forms [4s — 2,4s + 2],
[4s + 2,45 + 6], [4s,4s + 4], [4s + 4,4s + 8]. The only other intervals which
can affect where any of these are placed, relative to each other, are those of
the form [4s+ 6,45+ 10]. When the intervals [4s — 2, 4s + 2] are placed, the
probability for each one that it will have an interval [4s + 2, 45 + 6] immedi-
ately after it is 2. Thus one expects that 1 of the [4s + 1,4s + 3] intervals
will be accepted. The intervals of the form [4s, 4s+44] cannot be on the same
seat as any [4s — 2,4s + 2], or [4s + 2,4s + 6] interval. Table 4 shows the
expected number of seats which will be assigned the various combinations of
the intervals [4s —2,4s+ 2], [4s+ 2,45+ 6], [4s+ 6,45+ 10], and [4s,4s + 4].
An “x” indicates the presence of an interval of that type.

21

The intervals of the form [4s+4, 4s+ 8] can only go where there is neither a
[4s+2,45+ 6] nor a [4s+6,4s+ 10] interval. One can see from Table 4 that
the expected number of seats like this is %". The expected number of them
that have a [4s, 4s + 4] interval is %", So one expects % of the intervals of the
form [4s+3, 45+ 5] to be accommodated. A similar, but simplified argument
gives exactly the same expectations for the last two types of extra intervals.
This gives that the expected number of extra intervals accommodated by

Random is 2(1 + %)% = %”% Hence,
E[Random()] _ 5(*% +5%2) 17k + 14
OPT(I) n 2k

O

For other k, not congruent to 2 modulo 4, and other n > 3, not congruent
to 0 modulo 3, similar results hold. Giving first n mod 3 [1, k] requests,
and then using the same sequence of requests as in the previous proof (and
thus not using the last stations), gives upper bounds of the form %Zi:g for
constants ¢; and co which depend only on the value of £ mod 4.

5 Concluding Remarks

We have shown that any fair deterministic algorithm for the unit price seat
reservation problem has an asymptotic competitive ratio of % on accom-
modating sequences. The most interesting open problem remaining here
is whether or not there exists a randomized algorithm which does better.
In particular, what is the competitive ratio of the algorithm Random on

accommodating sequences? We have shown that it is % when n = 2, and

no more than % for n > 3. However, the best known lower bound on its

performance is still % for n > 3.

Acknowledgments

Eric Bach was supported in part by NSF Grant CCR-9510244.

Joan Boyar would like to thank Faith Fich for interesting discussions regard-
ing the seat reservation problem with n = 2 seats.

Joan Boyar and Kim S. Larsen carried out part of this work while visiting
the Department of Computer Sciences, University of Wisconsin — Madison.

22

They were supported in part by SNF (Denmark), in part by NSF (U.S.)
grant CCR-~9510244, in part by the ESPRIT Long Term Research Programme
of the EU under project number 20244 (ALCOM-IT).

Joan Boyar, Lene M. Favrholdt, and Kim S. Larsen were supported in part
by the IST Programme of the EU under contract number IST-1999-14186
(ALCOM-FT).

Tao Jiang and Guo-Hui Lin were supported in part by NSERC Research
Grant OGP0046613 and a CITO grant.

Tao Jiang was supported in part by a UCR startup grant.

Rob van Stee was supported by the Netherlands Organization for Scientific
Research (NWO), project number SION 612-30-002.

References

[1] B. Awerbuch, Y. Bartal, A. Fiat, S. Leonardi and A. Rosén, On-Line
Competitive Algorithms for Call Admission in Optical Networks, Pro-
ceedings of the 4th Annual Furopean Symposium on Algorithms, Lecture
Notes in Computer Science 1136: 431-444, Springer-Verlag, 1996.

[2] B. Awerbuch, Y. Bartal, A. Fiat and A. Rosén, Competitive Non-
Preemptive Call Control, Proceedings of the 5th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 312-320, ACM Press, 1994.

[3] E. Bach, J. Boyar and K. S. Larsen, The Accommodating Ratio for the
Seat Reservation Problem, PP-1997-25, Department of Mathematics
and Computer Science, University of Southern Denmark, 1997.

[4] E. Bach, J. Boyar, T. Jiang, K. S. Larsen, G.-H. Lin, Better Bounds
on the Accommodating Ratio for the Seat Reservation Problem, Pro-
ceedings of the Sizth Annual International Computing and Combina-
torics Conference, Lecture Notes in Computer Science 1858: 221-231,
Springer-Verlag, 2000.

[5] A.Bar-Noy, R. Canetti, S. Kutten, Y. Mansour and B. Schieber, Band-
width Allocation with Preemption, Proceedings of the 27th Annual
ACM Symposium on Theory of Computing pp. 616625, ACM Press,
1995.

[6] J. Boyar and K. S. Larsen, The Seat Reservation Problem, Algorithmica
25: 403-417, 1999.

23

[7]

J. Boyar, K. S. Larsen and M. N. Nielsen, The Accommodating Func-
tion — a generalization of the competitive ratio, Proceedings of the
Sixth International Workshop on Algorithms and Data Structures, Lec-
ture Notes in Computer Science 1663: 74-79, Springer-Verlag, 1999.
Full paper to appear in SIAM Journal on Computing.

M. C. Carlisle and E. L. Lloyd, On the k-Coloring of Intervals, Advances
in Computing and Information, Lecture Notes in Computer Science 497:
90-101, Springer-Verlag, 1991.

J. A. Garay, L. S. Gopal, S. Kutten, Y. Mansour and M. Yung, Efficient
On-Line Call Control Algorithms, Journal of Algorithms 23: 180-194,
1997.

F. Gavril, Algorithms for Minimum Coloring, Maximum Clique, Mini-
mum Covering by Cliques, and Maximum Independent Set of a Chordal
Graph, SIAM Journal on Computing 1: 180-187, 1972.

T. R. Jensen and B. Toft, Graph Coloring Problems Wiley, 1995.

H. A. Kierstead and W. T. Trotter, Jr., An Extremal Problem in Re-
cursive Combinatorics, Congressus Numerantium 33: 143-153, 1981.

R. J. Lipton and A. Tomkins, On-Line Interval Scheduling, Proceed-
ings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp- 302-311, ACM Press, 1994.

P. Raghavan and E. Upfal, Efficient Routing in All-Optical Networks,
Proceedings of the 26th Annual ACM Symposium on Theory of Com-
puting, pp. 134-143, ACM Press, 1994.

L. van Wassenhove, L. Kroon and M. Salomon, Exact and Approxima-
tion Algorithms for the Operational Fixed Interval Scheduling Problem,
Working paper 92/08/TM, INSEAD, Fontainebleau, France, 1992.

24

