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Abstract

With the developments in machine learning, there has been a surge
in interest and results focused on algorithms utilizing predictions, not
least in online algorithms where most new results incorporate the pre-
diction aspect for concrete online problems. While the structural com-
putational hardness of problems with regards to time and space is
quite well developed, not much is known about online problems where
time and space resources are typically not in focus. Some information-
theoretical insights were gained when researchers considered online al-
gorithms with oracle advice, but predictions of uncertain quality is a
very different matter.

We initiate the development of a complexity theory for online prob-
lems with predictions, focusing on binary predictions for minimization
problems. Based on the most generic hard online problem type, string
guessing, we define a family of hierarchies of complexity classes (in-
dexed by pairs of error measures) and develop notions of reductions,
class membership, hardness, and completeness. Our framework con-
tains all the tools one expects to find when working with complexity,
and we illustrate our tools by analyzing problems with different char-
acteristics. In addition, we show that known lower bounds for paging
with predictions apply directly to all hard problems for each class in
the hierarchy based on the canonical pair of error measures.
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grants DFF-0135-00018B and DFF-4283-00079B and in part by the Innovation Fund
Denmark, grant 9142-00001B, Digital Research Centre Denmark, project P40: Online
Algorithms with Predictions
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Our work also implies corresponding complexity classes for classic
online problems without predictions, with the corresponding complete
problems.

1 Introduction

In computational complexity theory, one aims at classifying computational
problems based on their hardness, by relating them via hardness-preserving
mappings, referred to as reductions. Most commonly seen is time and space
complexity, where problems are classified based on how much time or space is
needed to solve the problem. Our primary aim is to classify online minimiza-
tion problems with predictions based on the competitiveness of best possible
deterministic online algorithms for each problem. As a starting point, we
consider minimization problems with binary predictions. Our framework
has recently been extended to maximization problems [8].

An online problem is an optimization problem where the input is revealed to
an online algorithm in a piece-wise fashion in the form of requests. When a
request arrives, an online algorithm must make an irrevocable decision about
the request before the next request arrives. When comparing the quality of
online algorithms, we use the standard competitive analysis framework [36]
(see [12, 29]), where the competitiveness of an online algorithm is computed
by comparing the algorithm’s performance to an offline optimal algorithm’s
performance. Competitive analysis is a framework for worst-case guarantees,
where we say that an algorithm is c-competitive if, asymptotically over all
possible input sequences, its cost is at most a factor c times the cost of the
optimal offline algorithm.

With the increased availability and improved quality of predictions from
machine learning software, efforts to utilize predictions in online algorithms
have increased dramatically [1]. Typically, one studies the competitiveness
of online algorithms that have access to additional information about the
instance through (unreliable) predictions. Ideally, such algorithms should
perform perfectly when the predictions are error-free (the competitiveness in
this case is called the consistency), and perform as well as the best purely
online algorithm when the predictions are erroneous (robustness). There is
also a desire that an algorithm’s competitiveness degrades gracefully from
the consistency to the robustness as the predictions get worse (often referred
to as smoothness). In particular, the performance should not plummet due to
minor errors. To establish smoothness, it is necessary to have some measure
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of how wrong a prediction is. Thus, results of this type are based on some
error measure.

The complexity of algorithms with predictions has also been considered in a
different context, dynamic graph problems [25]. However, Henzinger et al.
study the time complexity of dynamic data structures, whereas we create
complexity classes where the hardness is based on competitiveness.

The basis for our complexity classes is asymmetric string guessing [14, 32, 33],
a generic hard online problem, where each request is simply a prompt for the
algorithm to guess a bit. String guessing has played a fundamental rôle in
what is often referred to as advice complexity [10, 19, 22, 26], where online
algorithms have access to oracle-produced information about the instance
which, in our context, can be considered infallible predictions. Specifically,
we use Online (1, t)-Asymmetric String Guessing with Unknown History and
Predictions (ASGt), which will be our base family of complete problems,
establishing a strict hierarchy based on the parameter, t. The cost of pro-
cessing an input is the number of guesses of 1 plus t times the number of
wrong guesses of 0.

We define complexity classes, Ctη0,η1 , parameterized by t ∈ Z+ ∪ {∞} and
a pair of error measures, (η0, η1), with certain properties. To prove that a
problem, P , is Ctη0,η1-hard, one must show that P is as hard as ASGt, and
to prove membership in Ctη0,η1 , one must show that ASGt is as hard as P . If
both are true, P is Ctη0,η1-complete. The as-hard-as relation is transitive, so
our framework provides all the usual tools: if a subproblem of some problem
is hard, the problem itself is hard, one can reduce from the most convenient
complete problem, etc. Thus, working with our complexity classes is similar
to working with, e.g., NP, MAX-SNP [34], the W-hierarchy [20], and APX [6],
in that hardness results are obtained by proving the existence of special
types of reductions that preserve properties related to hardness. However,
we obtain performance bounds independent of any conjectures.

Deriving lower bounds on the competitiveness of algorithms based on the
hardness of string guessing has been considered before [9, 11, 22], with dif-
ferent objectives. The closest related work is in [14], where one of the base
problems we use in this paper, (1,∞)-Asymmetric String Guessing with Un-
known History, was used as the base problem for the complexity class AOC;
AOC-complete problems are hard online problems with advice. Note that
despite the similarities, working with advice and predictions are quite differ-
ent matters. In advice complexity, the competitive ratio is a function of the
number of advice bits available. Working with predictions, competitiveness
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is a function of the quality, not the quantity, of information about the input.
Thus, results cannot be translated between AOC and the complexity classes
of this paper. Moreover, AOC is only one complexity class, not a hierarchy.

Strong lower bounds in the form of hardness results from our framework can
be seen as indicating the insufficiency of a binary prediction scheme for a
problem. Proving that a problem is Ctη0,η1-hard suggests that one cannot
solve it better than blindly trusting the predictions, when using binary pre-
dictions, giving a rather poor result. Hence, proving that a problem is hard
serves as an argument for needing a richer prediction scheme for the problem,
or possibly a more accurate way of measuring prediction error.

Our main contribution is the framework enabling a complexity theory for
online algorithms with predictions. Using this framework, we prove hard-
ness and class membership results for several problems, including showing
completeness of Online t-Bounded Degree Vertex Cover (VCt) for Ctη0,η1 .
Thus, VCt, or any other complete problem, could be used as the basis for
the complexity classes instead of ASGt. However, we follow the tradition
from advice complexity and use a string guessing problem, ASGt, as its lack
of structure offers simpler proofs. We illustrate the relative hardness of the
problems we investigate in Figure 1. Worth noting is that by choosing the
appropriate pair of error measures, our set-up immediately gives the same
hardness results for purely online problems, that is, for algorithms without
predictions.

2 Preliminaries

In this paper, we consider online problems with predictions, where algorithms
have to make an irrevocable decision for each request, by outputting a bit.1

For any such problem, P , we let IP be the collection of instances of P , and
we let OptP be a fixed optimal algorithm for P . In our notation, an instance
of P is a triple I = (x, x̂, r), consisting of two bitstrings x, x̂ ∈ {0, 1}n, and a
sequence of requests r = ⟨r1, r2, . . . , rn⟩ for P . The bitstring x is an encoding
of OptP ’s solution, and x̂ is a prediction of x. When an algorithm, Alg,
receives the request ri, it also receives the prediction x̂i, to aid its decision,
yi, for ri. What information is contained in each request, ri, and the meaning
of the bits xi, x̂i, and yi, will be specified for each problem. When there can
be no confusion, we write Opt instead of OptP .

1The only exception to this is Paging with Discard Predictions, where the output is a
page (see Section 7).
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Figure 1: A hardness graph based on our complexity hierarchy. The problems
shown are defined in Definitions 3, 28, 41, 32, 34, 38, and 47. Given two
problems P and Q, we write P → Q to indicate that Q is as hard as P (see
Definition 11). If the arrowhead is only outlined, P is not as hard as Q. If the
arrow is dashed, P is as hard as Q in the weak sense (see Definition 44). We
leave out most arrows that can be derived by transitivity. The gray arrows
hold with respect to the pair of error measures (µ0, µ1) (see Definition 2),
and the remaining arrows hold with respect to all pairs of insertion monotone
error measures (see Definition 23).

If P is a graph problem, we consider the vertex-arrival model, the most
standard for online graph problems. Hence, for any graph G = (V,E), each
request ri is a vertex vi ∈ V that is revealed together with all edges of the
form (vj , vi) ∈ E, where j ⩽ i. We only consider simple unweighted graphs.

Given an algorithm, Alg, and an instance, I ∈ IP , we let Alg[I] be Alg’s
solution to I, and Alg(I) be the cost of Alg[I]. Further, given a map
κ : IP → R, we say that κ is sublinear in Opt, or κ ∈ o(Opt), if

∀δ > 0: ∃bδ : ∀I ∈ IP : κ(I) < δ ·Opt(I) + bδ. (1)

In Lemma 53 in Appendix A, we show that if κ, κ′ ∈ o(Opt) and k ⩾ 0,
then κ+ κ′ ∈ o(Opt) and k · κ ∈ o(Opt), where (κ+ κ′)(I) = κ(I) + κ′(I)
and (k · κ)(I) = k · κ(I).

We use the following definition of competitiveness: An algorithm, Alg, for
an online minimization problem without predictions, P , is c-competitive if
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there exists a map κ ∈ o(OptP ), called the additive term, such that for all
instances I = (x, r) ∈ IP ,

Alg(I) ⩽ c ·Opt(I) + κ(I).

This is similar to what is often referred to as the asymptotic competitive
ratio, where one usually requires that lim sup|I|→∞

Alg(I)
Opt(I) ⩽ c. Our for-

mulation is analogous to the definition in [12, 29], except that they require
the additive term to be a constant. Observe that for any constant, k ∈ R,
k ∈ o(Opt).

Next, we extend the definition of competitiveness to online algorithms with
predictions, based on [4]. Here, the competitiveness of an algorithm is writ-
ten as a function of two error measures2, η0 and η1, where ηb is a function
of the incorrectly predicted bits, where the prediction is b. We assume that
0 ⩽ ηb(I) <∞, for all instances I.

Definition 1 Let (η0, η1) be a pair of error measures, let P be an online
minimization problem with predictions, and let Alg be a deterministic online
algorithm for P . If there exist three maps α, β, γ : IP → [0,∞) and a map
κ ∈ o(Opt) such that for all I ∈ IP ,

Alg(I) ⩽ α ·Opt(I) + β · η0(I) + γ · η1(I) + κ(I),

then Alg is (α, β, γ)-competitive with respect to (η0, η1). When (η0, η1) is
clear from the context, we write that Alg is (α, β, γ)-competitive, and when
κ(I) ⩽ 0, for all I ∈ IP , then Alg is strictly (α, β, γ)-competitive. □

Observe that the above definition does not require α, β, and γ to be con-
stants, though it is desirable that they are, especially α which is the consis-
tency. In particular, α, β, and γ are allowed to be functions of the instance,
I ∈ IP , for example of n. In our notation, α, β, and γ’s dependency on I is,
however, kept implicit. Further, observe that any α-competitive algorithm
without predictions is (α, 0, 0)-competitive with respect to any pair of error
measures (η0, η1).

We define a pair of error measures that is equivalent to the pair of error
measures from [4], where µb is the number of wrong predictions of b ∈ {0, 1}.

2We work with separate error measures for predicted 0s and 1s to allow for more
detailed results. Our reductions and structural results would also work if we used only
one error measure. For instance, Theorem 6 implies that FtP is (1, 1)-competitive with
respect to Hamt−1,1(x, x̂) = (t−1) ·µ0(x, x̂)+µ1(x, x̂). However, combining the two error
measures into one, we lose some detail such as the tradeoffs between α, β, and γ given in
Theorem 51.
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Definition 2 For any instance I = (x, x̂, r), (µ0, µ1) is given by

µ0(I) =

n∑
i=1

xi · (1− x̂i) and µ1(I) =

n∑
i=1

(1− xi) · x̂i.

□

3 Asymmetric String Guessing: A Collection of Hard
Problems

Given a bitstring, x, and a t ∈ Z+ ∪ {∞}, the task of an algorithm for
(1, t)-Asymmetric String Guessing (ASGt) is to correctly guess the contents
of x. The cost of a solution is the number of guesses of 1 plus t times the
number of incorrect guesses of 0. When t =∞, the problem corresponds to
the string guessing problem considered in [14].

Definition 3 For any t ∈ Z+ ∪ {∞}, an instance of the problem Online
(1, t)-Asymmetric String Guessing with Unknown History and Predictions
(ASGt) is a triple I = (x, x̂, r), where x = ⟨x1, . . . xn⟩ and x̂ = ⟨x̂1, . . . , x̂n⟩
are bitstrings and r = ⟨r1, . . . , rn⟩ is a sequence of requests. Each request,
ri, is a prompt for the algorithm to output a bit, yi. Together with ri, x̂i
is revealed, but x is only revealed after the last request. Given an instance
I ∈ IASGt of ASGt with t ∈ Z+,

Alg(I) =
n∑

i=1

(yi + t · xi · (1− yi)) , (2)

where yi is Alg’s i’th guess. When t = ∞, we abbreviate ASGt by ASG
and rewrite the objective function as:

Alg(I) =

{∑n
i=1 yi, if

∑n
i=1 xi · (1− yi) = 0

∞, otherwise.

□

For all t ∈ Z+ ∪ {∞}, we may consider ASGt as a purely online problem
by omitting x̂. We briefly state the main results on the competitiveness of
online algorithms for ASGt, with and without predictions. The following
observation is well-known:

Observation 4 ([14]) For any algorithm, Alg, for ASG without predic-
tions, there is no function, f , such that Alg is f(n)-competitive. □
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The observation follows from the fact that if an algorithm, Alg, ever guesses
0, there is an instance where Alg guesses 0 on a true 1, and thus incurs cost
∞. On the other hand, if Alg only guesses 1, there is an instance consisting
of only 0’s, such that Opt will incur cost 0 while the cost of Alg is equal to
the length of the sequence.

Theorem 5 Let t ∈ Z+ and let 0 < ε < 1. Then, for ASGt, the following
hold.

(i) The algorithm that always guesses 0 is t-competitive.

(ii) There is no (t − ε)-competitive deterministic algorithm without pre-
dictions.

(iii) For any pair of error measures (η0, η1), there is no (t−ε, 0, 0)-competitive
deterministic ASGt algorithm with predictions with respect to (η0, η1).

Proof Towards (i): Let Alg be the algorithm that always guesses 0.
Then, for any instance I = (x, r) ∈ IASGt ,

Alg(I) =
n∑

i=1

t · xi = t ·
n∑

i=1

xi = t ·Opt(I).

Towards (ii): Assume there exists a constant 0 < ε < 1, and a determin-
istic online algorithm without predictions, Alg, such that Alg is (t − ε)-
competitive. Then, there exists an additive term, κ ∈ o(Opt), such that,
for all I = (x, r) ∈ IASGt ,

Alg(I) ⩽ (t− ε) ·Opt(I) + κ(I). (3)

Since κ ∈ o(Opt), by Equation (1),

∀δ > 0: ∃bδ : ∀I ∈ IASGt : κ(I) < δ ·Opt(I) + bδ.

Fix δ < ε, and determine bδ.

We define a family {In}n∈Z+ of instances, where, for any n ∈ Z+ and any
i ∈ {1, 2, . . . , n}, the i’th true bit in In = (xn, rn) is

xni =

{
0, if yi = 1,

1, if yi = 0.

where yj is Alg’s j’th guess when run on In, for j = 1, 2, . . . , n. Since Alg
is deterministic, the collection {In}n∈Z+ is well-defined.
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For each i = 1, 2, . . . , n, if yi = 1, then xni = 0, and so Alg incurs cost 1,
and Opt incurs cost 0. On the other hand, if yi = 0, then xni = 1, and so
Alg incurs cost t, and Opt incurs cost 1. Hence, for each n ∈ Z+,

Alg(In) = t ·Opt(In) +
n∑

i=1

(1− xni ). (4)

Combining Equations (3) and (4) we get that

t ·Opt(In) +
n∑

i=1

(1− xni ) ⩽ (t− ε) ·Opt(In) + κ(In).

Hence,

ε ·Opt(In) +
n∑

i=1

(1− xni ) ⩽ κ(In).

Since Opt(In) =
∑n

i=1 x
n
i and ε < 1,

ε ·
n∑

i=1

(xni + (1− xni )) < ε ·Opt(In) +
n∑

i=1

(1− xni ),

and so

ε · n = ε ·
n∑

i=1

(xni + (1− xni )) < κ(In). (5)

Since κ ∈ o(Opt), we get that

ε · n < κ(In) < δ ·Opt(In) + bδ ⩽ δ · n+ bδ

subtract δ · n, then

(ε− δ) · n < bδ

Since δ < ε, we get a contradiction by taking the limit as n→∞.

Towards (iii): This is a direct consequence of (ii). □

Next, we consider ASGt with predictions. An obvious algorithm for ASGt

is Follow-the-Predictions (FtP), which always sets its guess, yi, to the given
prediction, x̂i.
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Theorem 6 Let t ∈ Z+. Then,

(a) for any instance I ∈ IASGt ,

FtP(I) = Opt(I) + (t− 1) · µ0(I) + µ1(I),

(b) for any α, β ∈ R+ with α ⩾ 1 and α + β ⩾ t, FtP is a strictly
(α, β, 1)-competitive algorithm for ASGt with respect to (µ0, µ1).

Proof Towards (a): Let I = (x, x̂, r) ∈ IASGt with n = |I|. Then,

FtP(I) =
n∑

i=1

(x̂i + t · xi · (1− x̂i))

=
n∑

i=1

((xi + (1− xi)) · x̂i) + t ·
n∑

i=1

(xi · (1− x̂i))

=
n∑

i=1

(xi · x̂i) + t ·
n∑

i=1

(xi · (1− x̂i)) +
n∑

i=1

((1− xi) · x̂i)

=
n∑

i=1

xi + (t− 1) ·
n∑

i=1

(xi · (1− x̂i)) +
n∑

i=1

((1− xi) · x̂i)

= Opt(I) + (t− 1) · µ0(I) + µ1(I).

Towards (b): Determine α′, β′ ∈ R+, such that 1 ⩽ α′ ⩽ α, β′ ⩽ β, and
α′ + β′ = t. Observe that such α′ and β′ always exists, since α + β ⩾ t.
Then, for any I ∈ IASGt , we have that

FtP(I) =
n∑

i=1

(x̂i + t · xi · (1− x̂i))

= α′ ·
n∑

i=1

x̂i · (xi + (1− xi)) + t ·
n∑

i=1

xi · (1− x̂i)

− (α′ − 1) ·
n∑

i=1

x̂i · (xi + (1− xi))

= α′ ·
n∑

i=1

x̂i · xi + α′ ·
n∑

i=1

x̂i · (1− xi) + t ·
n∑

i=1

xi · (1− x̂i)

− (α′ − 1) ·
n∑

i=1

x̂i · xi − (α′ − 1) ·
n∑

i=1

x̂i · (1− xi).
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Since α′ ⩾ 1, we have that

FtP(I) ⩽ α′ ·
n∑

i=1

x̂i · xi + t ·
n∑

i=1

xi · (1− x̂i) +
n∑

i=1

x̂i · (1− xi)

= α′ ·
n∑

i=1

x̂i · xi + t ·
n∑

i=1

xi · (1− x̂i) +
n∑

i=1

x̂i · (1− xi)

+ α′ ·
n∑

i=1

xi · (1− x̂i)− α′ ·
n∑

i=1

xi · (1− x̂i)

= α′ ·
n∑

i=1

xi + (t− α′) ·
n∑

i=1

xi · (1− x̂i) +

n∑
i=1

x̂i · (1− xi)

= α′ ·Opt(I) + β′ · µ0(I) + µ1(I)

⩽ α ·Opt(I) + β · µ0(I) + µ1(I).

□

In the following, for any error measures η, we assume that ∞ · η(I) = 0,
whenever η(I) = 0.

Theorem 7 FtP is a strictly (1,∞, 1)-competitive algorithm for ASG with
respect to (µ0, µ1).

Proof Adapt the proof from Theorem 6.(a), using that
∑n

i=1 xix̂i ⩽
∑n

i=1 xi.
□

Observe that the competitive ratio (1,∞, 1) only provides a guarantee when
η1(I) = 0.

In the following corollary, we extend a lower bound on Paging with Discard
Predictions by Antoniadis et al. [4] to, among other problems, ASGt. For
completeness, we state the Theorem here, though in a weak form and without
proof. We strengthen the statement in Theorem 51 in Section 7, where it is
restated and proven in a more general form.

Theorem 8 Let t ∈ Z+. Then, for any (α, β, γ)-competitive algorithm for
ASGt with respect to (µ0, µ1),

(i) α+ β ⩾ t and

(ii) α+ (t− 1) · γ ⩾ t.
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4 A Hierarchy of Complexity Classes

In this section, we formally introduce the complexity classes, prove that they
form a strict hierarchy, and show multiple fundamental structural properties
of the complexity classes.

4.1 Relative Hardness and Reductions

Labeling one problem, Q, as hard as another problem, P , usually means
that no algorithm for Q can be better than a best possible algorithm for
P . However, since there is no total order on the (α, β, γ)-triples capturing
competitiveness, one cannot determine which algorithm is “best possible”
when measuring the quality of algorithms by their competitiveness. Thus,
we require the existence of an (α, β, γ)-competitive Pareto-optimal algorithm
for Q to imply the existence of an (α, β, γ)-competitive algorithm for P :
Recall that an (α, β, γ)-competitive algorithm is called Pareto-optimal for P
if, for any ε > 0, there cannot exist an (α − ε, β, γ), an (α, β − ε, γ), or an
(α, β, γ − ε)-competitive algorithm for P .

Next, we give a negative result on the competitiveness of algorithms for
ASGt with respect to (µ0, µ1), which, together with Theorems 5, 6, and 8
gives a complete classification of all Pareto-optimal algorithms for ASGt.

Lemma 9 Let Alg be an (α, β, γ)-competitive algorithm for ASGt with
respect to (µ0, µ1). If α < t, then γ ⩾ 1.

Proof Assume towards contradiction that Alg is (α, β, γ)-competitive
where α = t− ε and γ < 1, for some ε > 0.

Consider the instance I = (x, x̂), where x̂ = ⟨1n⟩ and xi = 1 − yi, for
i = 1, 2, . . . , n. Observe that x is well-defined since Alg is deterministic.

Now, let Y0 and Y1 be the number of times that Alg sets yi = 0 and yi = 1,
respectively, and observe that n = Y0+Y1. Then, by definition of x, we have

Opt(I) = Y0 and Alg(I) = Y1 + t · Y0 = n+ (t− 1) · Y0.

Since Alg is (t− ε, β, γ)-competitive with additive constant κ ∈ R, we also
have that

Alg(I) ⩽ (t− ε) ·
n∑

i=1

xi + β ·
n∑

i=1

xi · (1− x̂i) + γ ·
n∑

i=1

(1− xi) · x̂i + κ

= (t− ε) · Y0 + γ · Y1 + κ.
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Hence,

n+ (t− 1) · Y0 ⩽ (t− ε) · Y0 + γ · Y1 + κ,

which holds if and only if

ε · Y0 + (1− γ) · Y1 − κ ⩽ 0.

Finally, since 1− γ > 0 as γ < 1 and ε > 0, we get that

min{ε, 1− γ} · n− κ = min{ε, 1− γ} · (Y0 + Y1)− κ

⩽ ε · Y0 + (1− γ) · Y1 − κ.

However, limn→∞min{ε, 1− γ} · n− κ =∞, so we have a contradiction. □

Theorem 10 Let Alg be an (α, β, γ)-competitive algorithm for ASGt.
Then, Alg is Pareto-optimal if and only if

(a) α = t and β = γ = 0, or

(b) α < t, β = t− α, and γ = 1.

Proof (a) ⇒ Pareto-optimal; Assume that Alg is (t, 0, 0)-competitive.
Since neither the second nor the third entry can be improved and there
cannot exist a (t−ε, 0, 0)-competitive algorithm for ASGt by Theorem 5.(iii),
then Alg is Pareto-optimal.

(b) ⇒ Pareto-optimal: Since α + β = t, one cannot improve either α or
β without making the other larger, by Theorem 8. Finally, since α < t then,
by Lemma 9, one cannot improve γ without increasing α.

Pareto-optimal ⇒ (a) or (b): Let Alg be an (α, β, γ)-competitive Pareto-
optimal algorithm. We consider two cases:

Case α ⩾ t: Assume towards contradiction that α > t, β > 0, or γ > 0. By
Theorem 5, there exists an (t, 0, 0)-algorithm, which improves on at least one
of the parameters capturing the competitiveness of Alg, without making the
others worse. Hence, Alg cannot be Pareto-optimal, a contradiction.

Case α < t: Since α < t, then β ⩾ t − α, by Theorem 8, and γ ⩾ 1 by
Lemma 9. □

Definition 11 Let P and Q be two online problems with predictions and
error measures (η0, η1) and (φ0, φ1). We say that Q is (at least) as hard
as P with respect to (φ0, φ1) and (η0, η1), if the existence of an (α, β, γ)-
competitive Pareto-optimal algorithm for Q with respect to (φ0, φ1) implies
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the existence of an (α, β, γ)-competitive algorithm for P with respect to
(η0, η1). If the error measures are clear from the context, we simply say that
Q is as hard as P . If Q is as hard as P , we also say that P is no harder than
Q. □

It is not hard to see that the as-hard-as relation is both reflexive and tran-
sitive, but for completeness we give the proof here.

Lemma 12 The as-hard-as relation is reflexive and transitive.

Proof Reflexivity: Proving reflexivity translates to proving that the ex-
istence of an (α, β, γ)-competitive Pareto-optimal algorithm with respect to
(η0, η1) for P , implies the existence of an (α, β, γ)-competitive algorithm
with respect to (η0, η1) for P , which is a tautology.

Towards transitivity: Let P , W , and Q be online maximization problems
with binary predictions with error measures (η0, η1), (ξ0, ξ1) and (φ0, φ1),
and assume that Q is as hard as W and that W is as hard as P . Let
AlgQ ∈ AQ be an (α, β, γ)-competitive Pareto-optimal algorithm for Q
with respect to (φ0, φ1). Since Q is as hard as W with respect to (φ0, φ1)
and (ξ0, ξ1), the existence of AlgQ implies the existence of an (α, β, γ)-
competitive algorithm with respect to (ξ0, ξ1) for W , say AlgW . If AlgW

is Pareto-optimal, then since W is as hard as P with respect to (ξ0, ξ1)
and (η0, η1), then the existence of AlgW also implies the existence of an
(α, β, γ)-competitive algorithm for P with respect to (η0, η1), and so Q is
as hard as P with respect to (φ0, φ1) and (η0, η1). If, on the other hand,
AlgW is not Pareto-optimal, then, by definition of Pareto-optimality there
exists an (α′, β′, γ′)-competitive Pareto-optimal algorithm, Alg′

W , for W
with respect to (ξ0, ξ1), where α′ ⩽ α, β′ ⩽ β, and γ′ ⩽ γ. Since Alg′

W is
Pareto-optimal, and W is as hard as P with respect to (ξ0, ξ1) and (η0, η1),
then there also exists an (α′, β′, γ′)-competitive algorithm for P with respect
to (η0, η1), say Alg′

P . Since α′ ⩽ α, β′ ⩽ β, and γ′ ⩽ γ, then Alg′
P is also

(α, β, γ)-competitive, and so Q is as hard as P with respect to (φ0, φ1) and
(η0, η1). □

As a tool for proving hardness, we introduce the notion of reductions. A
reduction from a problem, P , to another problem, Q, consists of a mapping
of instances of P to instances of Q and a mapping from algorithms for Q
to algorithms for P , with the requirement that (α, β, γ)-competitive Pareto-
optimal algorithms for Q map to (α, β, γ)-competitive algorithms for P . In
this paper, we use a restricted type of reduction, defined in Definition 13
using the following notation. For any online minimization problem, P , we
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let AP be the set of online algorithms for P .

Definition 13 Let P and Q be online minimization problems with predic-
tions, and let (η0, η1) and (φ0, φ1) be pairs of error measures for the pre-
dictions in P and Q, respectively. Let ρ = (ρa, ρr) be a tuple consisting
of two maps, ρa : AQ → AP and ρr : AQ × IP → IQ. Then, ρ is called
a strict online reduction from P to Q with respect to (η0, η1) and (φ0, φ1),
if there exists a map ka ∈ o(OptP ), called the reduction term of ρ, such
that for each instance IP ∈ IP and each algorithm AlgQ ∈ AQ, letting
AlgP = ρa(AlgQ) and IQ = ρr(AlgQ, IP ),

(O1) AlgP (IP ) ⩽ AlgQ(IQ) + ka(IP ),

(O2) OptQ(IQ) ⩽ OptP (IP ),

(O3) φ0(IQ) ⩽ η0(IP ), and

(O4) φ1(IQ) ⩽ η1(IP ),

For brevity, if such a tuple, ρ, exists, and the pairs (η0, η1) and (φ0, φ1) are
clear from the context, then we say that ρ is a strict online reduction from
P to Q, and, by abuse of notation, write ρ : P

red−→ Q. □

Lemma 14 Let ρ : P
red−→ Q be an online reduction as in Definition 13,

let AlgQ ∈ AQ be an (α, β, γ)-competitive algorithm for Q with respect to
(φ0, φ1), and let AlgP = ρa(AlgQ). Then, AlgP is an (α, β, γ)-competitive
algorithm for P with respect to (η0, η1).

Proof Let κQ ∈ o(OptQ) be the additive term of AlgQ. Then, for any
instance IP ∈ IP of P , letting IQ = ρr(Alg, IP ), we have that

AlgP (IP ) ⩽AlgQ(IQ) + ka(IP ), by (O1)
⩽ α ·OptQ(IQ) + β · φ0(IQ) + γ · φ1(IQ)

+ κQ(IQ) + ka(IP )

⩽ α ·OptP (IP ) + β · η0(IP ) + γ · η1(IP )
+ κQ(IQ) + ka(IP ), by (O2), (O3), and (O4)

= α ·OptP (IP ) + β · η0(IP ) + γ · η1(IP ) + κP (IP ),

where κP = ka + κQ ∈ o(OptP ), since κQ ∈ o(OptQ) and ka ∈ o(OptP )
(see Lemma 54 in Appendix A). Thus, AlgP is (α, β, γ)-competitive with
respect to (η0, η1). □

Observe that Lemma 14 implies that strict online reductions serve the desired
purpose of reductions: If there exists a strict online reduction ρ : P

red−→ Q,
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then Q is as hard as P . When using strict online reductions, we will often
simply use the term reduction.

For the rest of this paper, we only consider reductions where the quality
of predictions is measured using the same pair of error measures for both
problems.

4.2 Defining the Complexity Classes

For any pair, (η0, η1), of error measures and any t ∈ Z+ ∪ {∞}, we define
the complexity classes Ctη0,η1 as the set of minimization problems with binary
predictions that are no harder than ASGt with respect to (η0, η1):

Definition 15 For each t ∈ Z+ ∪ {∞} and each pair of error measures,
(η0, η1), the complexity class Ctη0,η1 is the closure of ASGt under the as-
hard-as relation with respect to (η0, η1). Hence, for an online minimization
problem, P ,

• P ∈ Ctη0,η1 , if ASGt is as hard as P ,

• P is Ctη0,η1-hard, if P is as hard as ASGt, and

• P is Ctη0,η1-complete, if P ∈ Ctη0,η1 and P is Ctη0,η1-hard.

□

Thus, if P and Q are Ctη0,η1-complete problems, then there exists an (α, β, γ)-
competitive algorithm for P if and only if there exists an (α, β, γ)-competitive
algorithm for Q.

Since the as-hard-as relation is reflexive, ASGt is Ctη0,η1-complete for any
pair of error measures, (η0, η1), and any t. Further, due to transitivity:

Lemma 16 Let t ∈ Z+∪{∞} and let (η0, η1) be any pair of error measures.

(a) If P ∈ Ctη0,η1 , and P is as hard as Q, then Q ∈ Ctη0,η1 .

(b) If P is Ctη0,η1-hard, and Q is as hard as P , then Q is Ctη0,η1-hard.

Proof Towards (a): Since P ∈ Ctη0,η1 , ASGt is as hard as P . Since P
is as hard as Q, transitivity implies that ASGt is as hard as Q, and thus
Q ∈ Ctη0,η1 .

Towards (b): Since P is Ctη0,η1-hard, then P is as hard as ASGt. Since Q
is as hard as P , transitivity implies that Q is as hard as ASGt, and thus we
conclude that Q is Ctη0,η1-hard. □
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This lemma implies results concerning special cases of a problem:

Corollary 17 Let t ∈ Z+ ∪ {∞} and let (η0, η1) be any pair of error mea-
sures. Let P and Psub be online minimization problems such that IPsub

⊆ IP .

• If P ∈ Ctη0,η1 , then Psub ∈ Ctη0,η1 , and

• if Psub is Ctη0,η1-hard, then P is Ctη0,η1-hard.

Proof There exists a trivial online reduction ρ : Psub
red−→ P , obtained by

setting ρa(Alg) = Alg and ρr(Alg, I) = I, for all algorithms Alg ∈ AP ,
and all instances I ∈ IPsub

. Hence, this is a consequence of Lemma 16. □

Observe that Lemma 16 implies that any Ctη0,η1-complete problem can be
used as the base problem when defining Ctη0,η1 . For instance, as shown in
Lemmas 29 and 30, the better known Online t-Bounded Degree Vertex Cover
with Predictions is Ctη0,η1-complete with respect to a wide range of pairs of
error measures, and may therefore be used as the basis of these complexity
classes instead of ASGt. However, we chose to define the complexity classes
as the closure of ASGt, due to it being a generic problem that is easily
analysed. Also, after establishing the first Ctη0,η1-hard problems, we may
reduce from any Ctη0,η1-hard problem to prove hardness. Finally, a problem
Q is Ctη0,η1-hard, if and only if Q is as hard as P , for all P ∈ Ctη0,η1 . This is
in line with the structure of other complexity classes such as NP and APX,
where a problem Q is NP-hard, respectively APX-hard, if and only if there
exists a polynomial-time reduction, respectively PTAS-reduction, from any
problem in NP, respectively APX, to Q.

4.3 Establishing the Hierarchy

In this subsection, we show that our complexity classes form a strict hierar-
chy, by showing that ASGt+1 is strictly harder than ASGt.

Lemma 18 For t ∈ Z+ and any pair of error measures, (η0, η1),

(i) ASGt+1 is as hard as ASGt, and

(ii) ASGt is not as hard as ASGt+1.

Proof Towards (i): We give an online reduction from ASGt to ASGt+1.
Let Alg ∈ AASGt+1 and set ρa(Alg) = Alg′ and ρr(Alg, I) = I for any
I = (x, x̂, r) ∈ IASGt , where Alg′ is the algorithm which always guesses
the same as Alg. Further, Alg′ also reveals x to Alg, when it learns the
contents of x.
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Let I = (x, x̂, r) be any instance of ASGt. We verify that this reduction
satisfies conditions (O1)–(O4) from Definition 13. Since ρr(Alg, I) = I, the
conditions (O2)–(O4) are immediate for any pair of error measures (η0, η1).
Towards (O1), denote by y1, y2, . . . , yn the bits guessed by Alg, and therefore
also by Alg′. Then,

Alg(I)−Alg′(I) =

n∑
i=1

(yi + (t+ 1) · (1− yi) · xi)

−
n∑

i=1

(yi + t · (1− yi) · xi)

=

n∑
i=1

(1− yi) · xi ⩾ 0.

(O1) follows.

Towards (ii): Assume that ASGt is as hard as ASGt+1. Then, for any
(α, β, γ)-competitive Pareto-optimal algorithm for ASGt we get an (α, β, γ)-
competitive algorithm for ASGt+1. By Theorem 5, the algorithm that al-
ways guesses 0 is (t, 0, 0)-competitive for ASGt, and since no algorithm for
ASGt can be (t − ε, 0, 0)-competitive by Theorem 5.(iii), this algorithm is
Pareto-optimal. Hence, since ASGt is as hard as ASGt+1 by assumption,
there exist a (t, 0, 0)-competitive algorithm for ASGt+1, which contradicts
Theorem 5.(iii). □

Lemma 19 For any t ∈ Z+ and any pair of error measures (η0, η1), Ctη0,η1 ⊊
Ct+1
η0,η1 .

Proof Let t ∈ Z+ be arbitrary, (η0, η1) be any pair of error measures, and
P ∈ Ctη0,η1 be any problem. Since P ∈ Ctη0,η1 then ASGt is as hard as P .
Since ASGt+1 is as hard as ASGt by Lemma 18, transitivity implies that
ASGt+1 is as hard as P , and so P ∈ Ctη0,η1 . Hence, Ctη0,η1 ⊆ C

t+1
η0,η1 . To see

that Ctη0,η1 ⊊ Ct+1
η0,η1 , observe that ASGt+1 ∈ Ct+1

η0,η1 and ASGt+1 ̸∈ Ctη0,η1 , by
Lemma 18. □

Lemma 20 Let t ∈ Z+ be arbitrary, and let (η0, η1) be any pair of error
measures. Then, for any Ct+1

η0,η1-hard problem, P , P ̸∈ Ctη0,η1 .

Proof Assume towards contradictions that P is Ct+1
η0,η1-hard and P ∈ Ctη0,η1 .

Then, P is as hard as ASGt+1 and ASGt is as hard as P . Thus, due to
transitivity, ASGt is as hard as ASGt+1, contradicting Lemma 18. □

By similar arguments as above, we get the following:
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Lemma 21 For any t ∈ Z+ and any pair of error measures, (η0, η1),

• Ctη0,η1 ⊊ Cη0,η1 , and

• for any Cη0,η1-hard problem, P , P ̸∈ Ctη0,η1 .

Theorem 22 For any pair of error measures (η0, η1), we have a strict hier-
archy of complexity classes:

C1η0,η1 ⊊ C2η0,η1 ⊊ C3η0,η1 ⊊ · · · ⊊ Cη0,η1 .

4.4 Purely Online Algorithms

Observe that our complexity theory extends to a complexity theory for purely
online algorithms as well. In particular, one may consider the complexity
classes, CtZ0,Z1

, based on the pair of error measures (Z0, Z1), given by Z0(I) =
Z1(I) = 0, for any instance I = (x, x̂, r). In this framework, any (α, β, γ)-
competitive algorithm, Alg, for an online minimization problem P , satisfies
that

Alg(I) ⩽ α ·Opt(I) + β · Z0(I) + γ · Z1(I) + ka(I)

= α ·Opt(I) + ka(I),

for all instances I ∈ IP , and so Alg is an α-competitive purely online
algorithm for P . Hence, we obtain a similar complexity theory for purely
online algorithms.

Remark All results in this paper involving problems and complexity classes
also hold for the same problems and classes without predictions.

Remark In Section 7 we discuss a strategy for proving lower bounds for
all Ctη0,η1-hard problems. Using the same strategy, the lower bound from
Theorem 5.(ii) on the competitive ratio of any purely online algorithm for
ASGt extends to a lower bound on the competitiveness of any purely online
algorithm for any CtZ0,Z1

-hard problems.

5 A Template for Online Reductions via Simulation

In this section we introduce a template for creating online reductions from
ASGt to P , implying Ctη0,η1-hardness of P with respect to a collection of
pairs of error measures (η0, η1). To this end, we define a property of pairs of
error measures that is sufficient for the existence of these reductions.
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Definition 23 An error measure η is called insertion monotone if for any
instance I,

η(I ′) ⩽ η(I),

where I ′ is obtained by inserting a finite number of correctly predicted re-
quests into I. □

Thus, an error measure is called insertion monotone if the insertion of a
finite number of correctly predicted bits into the instance does not increase
the error. Clearly µb and Zb are insertion monotone for all b ∈ {0, 1}. We
provide a non-exhaustive list of pairs of insertion monotone error measures
in Appendix B.

We proceed by presenting the construction of the reduction template.

5.1 The Reduction Template

Let P be any problem, and (η0, η1) be any pair of insertion monotone error
measures. We introduce the template for creating strict online reductions of
the form

ρ : ASGt
red−→ P.

First, we define a method for creating an algorithm for ASGt for each pos-
sible algorithm, AlgP ∈ AP , for P .

The algorithm for ASGt which we associate to AlgP is RedAlg(AlgP ),
defined in Algorithm 1. Formally, ρa(·) = RedAlg(·). For this reduction
template, the construction of ρa and ρr are closely related, and so the details
of RedAlg will become clear as we define ρr in depth.

Next, we define the translation of instances of ASGt into instances of P ,
given AlgP .

The translation part of our reduction template requires proving the existence
of two things: a notion of challenge request, and a collection of blocks.

The idea is that it should be as hard to compute the true bit of a challenge
request, as to correctly guess a bit. Whenever RedAlg(AlgP ) has to guess
the next bit of the instance of ASGt, it will create a new challenge request for
P , and then guess the same as AlgP outputs on the challenge request. AlgP

will get the same prediction for the i’th challenge request as RedAlg(AlgP )
gets for its i’th guess.
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Algorithm 1 RedAlg
1: Input: An algorithm AlgP ∈ AP , and an instance (x, x̂, r) for ASGt

2: Output: An instance for P and an algorithm for ASGt

3: i← 1
4: while receiving prompts for guessing bits do
5: Give AlgP the challenge request ci and the prediction x̂′i = x̂i
6: Let y′i be AlgP ’s output for ci
7: Guess/output yi = y′i
8: i← i+ 1
9: Receive x = x1, x2, . . . , xn ▷ Finishes the ASGt instance

10: for j = 1, 2, . . . , n do
11: Give all requests in the block BP (xj , y

′
j , j)

After all bits have been guessed, and AlgP learns the true contents of x,
we include |x| blocks of requests for P . The i’th block should “clean up”
after AlgP ’s response to the i’th challenge request. In particular, the blocks
should ensure that the cost of AlgP is close to the cost of RedAlg(AlgP ),
that the cost of OptP is close to the cost of OptASGt , and that the bit
string encoding OptP ’s solution actually corresponds to an optimal solution
of the instance.

Definition 24 A challenge request is a request for P , for which the true bit
can be either 0 or 1. □

Recall from RedAlg that xi is the i’th true bit from the ASGt instance,
and y′i is AlgP ’s answer to the i’th challenge request.

Definition 25 Given two bits xi, y
′
i ∈ {0, 1} and an integer i ∈ Z+, the

block BP (xi, y
′
i, i), abbreviated B(xi, y

′
i), is a sequence of correctly predicted

requests, rxi,y
′
i = ⟨rxi,y

′
i

1 , r
xi,y

′
i

2 , . . . , r
xi,y

′
i

k ⟩, for P . We let bxi,y
′
i denote the

sequence of bits associated to the requests in B(xi, y
′
i), such that, for each

j = 1, 2, . . . , k, bxi,y
′
i

j is both the true and the predicted bit for r
xi,y

′
i

j . □

Definition 26 Let P be an online problem, and suppose that there exists a
collection of challenge requests, {c′i}i∈Z+ , and a collection of blocks, B(xi, y

′
i),

with xi, y
′
i ∈ {0, 1}, for P . Then, the candidate strict online reduction for

P , is the tuple ρ = (ρa, ρr) consisting of two maps ρa : AP → AASGt and
ρr : AP × IASGt → IP , where, for any algorithm AlgP ∈ AP , and any
instance I = (x, x̂, r), with |I| = n, of ASGt,

• ρa(AlgP ) = RedAlg(AlgP ), and
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• ρr(AlgP , I) = I ′,

where I ′ = (x′, x̂′, r′) is given by

• x′ = ⟨x1, x2, . . . , xn, bx1,y′1 , bx2,y′2 , . . . , bxn,y′n⟩,

• x̂′ = ⟨x̂1, x̂2, . . . , x̂n, bx1,y′1 , bx2,y′2 , . . . , bxn,y′n⟩, and

• r′ = ⟨c1, c2, . . . , cn, rx1,y′1 , rx2,y′2 , . . . , rxn,y′n⟩.

□

By construction, the number of prediction errors (in either direction) in I ′ is
exactly the same as in I. Hence, it is easy to relate the error for the instance
of P to the error of the instance of ASGt, when the pair of error measures,
with respect to which we measure that quality of predictions, are insertion
monotone.

Theorem 27 Consider an online problem, P , let (η0, η1) be a pair of in-
sertion monotone error measures, and let ρ = (ρa, ρr) be a candidate strict
online reduction for P . If, for any AlgP ∈ AP and any instance I ∈ IASGt ,

(i) RedAlg(AlgP )(I) ⩽ AlgP (I
′),

(ii) OptP (I
′) ⩽ OptASGt(I), and

(iii) x′ encodes OptP [I
′],

Then, the candidate online reduction ρ = (ρa, ρr) is a strict online reduction
from ASGt to P .

Proof To see that ρ is an online reduction from ASGt to P preserving
competitiveness with respect to (η0, η1), we verify conditions (O1)–(O4) from
Definition 13.

Firstly, observe that Conditions (i) and (ii) directly imply Conditions (O1)
and (O2) with ka = 0.

Lastly, Conditions (O3) and (O4) follow by (iii). In particular, since x′

encodes OptP [I
′], and since the number of prediction errors in I ′ and in I

is equal, then, by Definition 26, we have that ηb(I
′) ⩽ ηb(I), for b ∈ {0, 1},

since ηb is insertion monotone. □

We use the reduction template multiple times to prove Ctη0,η1-hardness. In
particular, we use the template to show hardness of Vertex Cover (Lemma 29),
k-Minimum-Spill (Theorem 33) and Interval Rejection (Lemma 35).
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6 A List of Ctη0,η1-Hard Problems

Throughout, given a graph G = (V,E), we let deg : V → N be the map
which associates to each vertex v ∈ V its degree, deg(v), and we let ∆(G) =
maxv∈V {deg(v)}.

6.1 Vertex Cover

Given a graph G = (V,E), an algorithm for Vertex Cover finds a subset
V ′ ⊆ V of vertices such that for each edge e = (u, v) ∈ E, u ∈ V ′ or v ∈ V ′.
The cost of the solution is given by the size of V ′, and the goal is to minimize
this cost.

Other work on Vertex Cover includes the following. In the purely online
vertex-arrival model, there exists a t-competitive algorithm for t-Bounded
Degree Vertex Cover, and an impossibility result showing that one cannot
create a (t − ε)-competitive online algorithm for t-Bounded Degree Vertex
Cover, for any ε > 0 [17]. In the offline setting, Minimum Vertex Cover is
MAX-SNP-hard [34], APX-complete [35, 18], and NP-complete [24]. Lastly,
Online Vertex-Arrival Vertex Cover is AOC-complete [14].

We consider an online variant of Vertex Cover with predictions:

Definition 28 Online t-Bounded Degree Vertex Cover with Predictions (VCt)
is a vertex-arrival problem, where input graphs, G, satisfy that ∆(G) ⩽ t.
An algorithm, Alg, outputs yi = 1 to include vi in its vertex cover, and
{vi | xi = 1} is an optimal vertex cover. Given an instance I ∈ IVCt ,

Alg(I) =

{∑n
i=1 yi, if Alg’s output is a vertex cover,

∞, otherwise.

□

The standard unbounded Online Vertex-Arrival Vertex Cover with Predic-
tions is also considered, and is abbreviated VC.

Lemma 29 For any t ∈ Z+, and any pair of insertion monotone error mea-
sures (η0, η1), VCt is Ctη0,η1-hard.

Proof We give a strict online reduction ρ : ASGt → VCt, using the reduc-
tion template from Section 5 (see Figure 2 for an example).

Consider any I = (x, x̂, r) ∈ IASGt and any Alg′ ∈ AVCt . Each challenge
request, ci, is an isolated vertex, vi, with x′i = xi and x̂′i = x̂i. Let y′i be
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1

v2
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v2,1 8

v2,2 9

v2,3 10
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v5,1 11

v5,2 12

v5,3 13

v6

6

v7

7

v7,1 14

Figure 2: The reduction graph with t = 3, x = 0100101, and y′ =
1011001(___)(___)(_), where x2 = x5 = x7 = y7 = 1 and y2 = y5 = 0.
The first seven bits of y′ are the VCt algorithm’s response to the challenge
requests. The algorithm’s response to the requests of the three nonempty
blocks are are simply shown as ’_’, since they do not influence the definition
of the graph. The number next to each vertex corresponds to the order in
which these vertices are revealed.

the output of Alg′ on ci. The ith block, B(xi, y
′
i), is constructed as follows,

with all true and predicted bits equal to 0.

• If xi = 0, then B(xi, yi) is empty. Thus, no optimal solution will
contain vi.

• If xi = y′i = 1, then B(xi, yi) contains one request to a vertex, vi,1,
connected to vi, ensuring that there is an optimal solution containing
vi.

• If xi = 1 and y′i = 0, then B(xi, yi) contains requests to t new vertices,
vi,j , j = 1, 2, . . . , t, each connected to vi, giving Alg′ a cost of t and
ensuring that there is an optimal solution containing vi.

Let ρ = (ρa, ρr) be the candidate strict online reduction from Definition 26,
and let Alg be the algorithm for ASGt the produces the same output as
Alg′ does on the challenge requests, i.e. yi = y′i, 1 ⩽ i ⩽ n. It is not hard
to check that ρ satisfies (i)–(iii) from Theorem 27.

Towards (i): For each request, ri, in r such that xi = 0, Alg and Alg′
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both have a cost of yi = y′i on the ith request. If xi = y′i = 1, both algorithms
have a cost of 1 on the ith request. Finally, if xi = 1 and y′i = 0, then Alg
has a cost of t on ri and Alg′ has a cost of t on B(xi, y

′
i).

Towards (ii) and (iii): The set {vi | x′i = 1} is an optimal solution to the
instance, I ′, of VCt created. Thus, OptVCt(I

′) = OptASGt(I). □

Algorithm 2
1: Input: An algorithm, Alg′ ∈ AASGt , and an instance (x, x̂, r) ∈ IVCt

2: Output: An instance of ASGt and an algorithm for VCt

3: while receiving requests ri do
4: Get prediction x̂i
5: Ask Alg′ to guess the next bit given x̂i, and let yi be its output
6: bi ← false
7: for each newly revealed edge e do
8: Let v be such that e = (vi, v) ▷ vi is the vertex in ri
9: if v is not included in the vertex cover then

10: bi ← true
11: if bi = true then
12: Output 1 ▷ To avoid uncovered edges
13: else
14: Output yi
15: Compute OptVCt((x, x̂, r)) and reveal x to Alg

Lemma 30 For any t ∈ Z+, and any pair of error measures (η0, η1), VCt ∈
Ctη0,η1 .

Proof We define a strict online reduction, ρ : VCt
red−→ ASGt, with reduction

term ka = 0 as follows. Consider any I = (x, x̂, r) ∈ IVCt and any Alg′ ∈
AASGt . We give an instance, I ′ = (x′, x̂′, r′) ∈ IASGt , and an algorithm,
Alg, for handling I using the output of Alg′. For each request, ri, in r,
give x̂′i = x̂i to Alg′ and let y′i be the output of Alg′. If vi has a neighbor
among v1, . . . , vi−1 which is not in the vertex cover constructed so far, Alg
outputs yi = 1. Otherwise, it outputs yi = y′i. We give psuedo-code for Alg
in Algorithm 2. After the last request of I, compute an optimal solution, x,
for I and present x′ = x to Alg′, in order to finish the instance I ′.

Since we let x′ = x and x̂′ = x̂, (O3) and (O4) are trivially satisfied for any
pair of error measures. Moreover, since x′ = x, OptVCt(I) = OptASGt(I

′),
and so (O2) is also satisfied. Hence, it only remains to check Condition (O1):
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We consider the cost of Alg and Alg′ on request ri:

• y′i = yi = 0:

– xi = 0: Both algorithms have a cost of 0.

– xi = 1: Alg′ has a cost of t and Alg has a cost of 0.

• y′i = 0, yi = 1: Alg has a cost of 1.

– xi = 0: Alg′ has a cost of 0.

– xi = 1: Alg′ has a cost of t.

• y′i = yi = 1: Both algorithms have a cost of 1.

Note that Alg has a higher cost than Alg′, only when xi = y′i = 0 and
yi = 1. In this case, the cost of Alg is exactly one higher than that of Alg′.
From yi ̸= y′i, it follows by the definition of Alg that vi has a neighbor, vj ,
j < i, such that yj = y′j = 0. Moreover, xi = 0 implies that xj = 1, since x
encodes a valid vertex cover. Since vj has at most t neighbors, and since the
cost of Alg′ on r′j is t higher than that of Alg on rj , we conclude that the
total cost of Alg is no larger than that of Alg. Hence, (O1) is satisfied. □

Our results about VCt and VC are summarized in Theorem 31. Note that
Items (i) and (iv) follow directly from Lemmas 29 and 30.

Theorem 31 For any t ∈ Z+ and any pairs of insertion monotone error
measures (η0, η1),

(i) VCt is Ctη0,η1-complete,

(ii) VC is Ctη0,η1-hard, and

(iii) VC ̸∈ Ctη0,η1 .

For any t ∈ Z+ and any pair of error measures (η0, η1),

(iv) VCt ∈ Ctη0,η1 ,

(v) VC ∈ Cη0,η1 , and

(vi) VC is not Cη0,η1-hard.

Proof Towards (i): This is a direct consequence of Lemmas 29 and 30.

Towards (ii): Since VCt is a subproblem of VC, Corollary 17 and Lemma 29
implies that VC is as hard as ASGt for all t ∈ Z+.
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Towards (iii): Suppose that ASGt is as hard as VC for some t ∈ Z+.
By (ii) VC is as hard as ASGt+1 and so, by transitivity (see Lemma 12),
ASGt is as hard as ASGt+1, which contradicts Lemma 18.(ii).

Towards (iv): This is a direct consequences of Lemma 30.

Towards (v): We prove the existence of a strict online reduction ρ : VC red−→
ASG. To this end, let Alg′ ∈ AASG be any algorithm, and I = (x, x̂, r) be
any instance of VC. Let I ′ = (x′, x̂′, r′) = ρr(Alg, I), and Alg = ρa(Alg),
where Alg always outputs the same as Alg′, and, when no more vertices
arrive, Alg computes OptVCt [I] and reveals x to Alg′. By construction,
Conditions (O2)–(O4) are trivially satisfied, and so it only remains to check
Condition (O1).

To this end, observe that Alg(I) = Alg′(I ′), if, an only if, whenever Alg
creates an infeasible solution, then Alg′(I ′) = ∞. Hence, suppose that
Alg has created an infeasible solution to instance I. Then, there exists an
uncovered edge (vi, vj). Hence, yi = yj = 0, where yi and yj are the ith and
jth guesses made by Alg′. However, since the edge (vi, vj) is contained in
the underlying graph of I, either vi or vj has been accepted by OptVC, and
so either xi = 1 or xj = 1. Hence, Alg′ has guessed 0 on a true 1, implying
that Alg′(I ′) =∞.

Towards (vi): Let Acc be the following online algorithm for VC. When
receiving a vertex, v, if v has no neighbours, reject v, else, accept v. We
claim that Acc is (n − 1, 0, 0)-competitive, where n = |V |. To this end,
consider any graph, G. If Opt(G) = 0, then G contains no edges, and so
Acc never accepts a vertex, in which case Acc(G) = 0. If, on the other
hand, Opt(G) ⩾ 1, then Acc(G) ⩽ n− 1 since Acc never accepts the first
vertex, and so Acc(G)

Opt(G) ⩽ n−1. Hence, Acc, is (n−1, 0, 0)-competitive. Now,
let Alg be an (α, 0, 0)-competitve Pareto-optimal algorithm for VC, where
α ⩽ n − 1. If VC is as hard as ASG, then the existence of Alg implies
the existence of an (α, 0, 0)-competitive algorithm for ASG, which in turn
implies the existence of an (n−1, 0, 0)-competitive algorithm for ASG. This
contradicts Observation 4. □

6.2 k-Minimum-Spill

Given a graph G = (V,E), the objective of k-Minimum-Spill is to select a
smallest possible subset V1 ⊆ V such that the subgraph of G induced by the
vertices in V \ V1 is k-colorable.
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In compiler construction [5], register allocation plays a significant rôle. It is
often implemented by a liveness analysis, followed by a construction of an
interference graph, which is then colored. The vertices represent variables
(or values) and the edges represent conflicts (values that must be kept at the
same point in time). The goal is to place as many of these values as possible
in registers. Thus, with a fixed number of registers, this is really coloring
with a fixed number of colors. Vertices that cannot be colored are referred to
as spills. Spilled values must be stored in a more expensive manner. Thus,
similar to minimizing faults in Paging, the objective is to minimize spill.

Definition 32 Online k-Minimum-Spill with Predictions (k-Spill) is a vertex-
arrival problem. An algorithm, Alg, outputs yi = 1 to mark vi as a spill
and thus add it to V1, and {vi | xi = 1} is an optimal solution. Given an
instance (x, x̂, r) ∈ Ik-Spill,

Alg(x, x̂, r) =

{∑n
i=1 yi, if V \ V1 is k-colorable,

∞, otherwise.

Throughout, we set V0 = V \ V1. □

For a fixed number of colors, minimizing spill is equivalent to maximizing
the number of colored vertices and this problem is NP-complete [3]. A multi-
objective variant of this problem was studied in [23]. As discussed below,
1-Spill is equivalent to VC.

Theorem 33 For all k, t ∈ Z+, and all pairs of insertion monotone error
measures (η0, η1), k-Spill is Ctη0,η1-hard.

Proof For any solution, y′, to an instance of 1-Spill, the vertices of {vi ∈
V | y′i = 0} form an independent set. Thus, {vi ∈ V | y′i = 1} is a vertex
cover, so 1-Spill is equivalent to VC. Hence, 1-Spill is Ctη0,η1-hard by
Theorem 31.

For k-Spill with k ⩾ 2, we use the reduction template to prove the existence
of a reduction ρ : ASGt

red−→ k-Spill, with respect to (η0, η1) (see Figure 3
for an example). To this end, consider any I = (x, x̂, r) ∈ IASGt and any
Alg′ ∈ Ak-Spill and let I ′ = (x′, x̂′, r′) be the k-Spill-instance created in
the reduction.

For each xi, the corresponding challenge request, ci, with x′i = xi and x̂′i = x̂i.
Let y′i be the response of Alg′ on ci.

For each xi, the corresponding block, B(xi, y
′
i) is defined as follows. All true

and predicted bits are 0. The last vertex, fi, of the block is called a final
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Figure 3: Example of reduction graph with t = 3, k = 3, x = 1001 and
y′ = 0011(10101_)(_)(_)(____). The first four bits of y′ are the k-Spill
algorithm’s response to the four challenge requests, and the bits in parenthe-
sis correspond to its responses to the four blocks. Bits that do not influence
the definition of the graph are simply shown as ’_’. The number next to
each vertex corresponds to the order in which these vertices are revealed.

vertex. If i < n, fi is connected to vi and vi+1, and if i = n, fi is connected
to vi = vn.

• If xi = 0, then B(xi, y
′
i) has a single request containing the final vertex,

fi.

• If xi = y′i = 1, then B(xi, y
′
i) contains k + 1 requests:

– For each j = 1, 2, . . . , k, a vertex, vi,j , connected to vi and to vi,l,
1 ⩽ l < j.

– The final vertex, fi.

• If xi = 1 and y′i = 0, then B(xi, y
′
i) contains the following requests:

(a) Let j = 1. Until Alg′ has added t new vertices to V1:

– A vertex, vi,j , connected to vi and to each vertex in
⋃j−1

l=1 vi,l\
V1. If Alg′ has added more than k vertices to V \ V1 in this
block, only include the edge (vi,l, vi,j) to the first k of these
vertices and go to (c) (this happens only if Alg′ creates an
infeasible solution). Otherwise, increment j.

(b) If {vi} ∪
⋃

j{vi,j} does not contain a (k + 1)-clique:
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– For each j = 1, 2, . . . , k, a vertex, vi,j , connected to vi and to
vi,l, l < j.

(c) The final vertex, fi.

Algorithm 3 Optimal k-coloring of G′

1: Sort the vertices in the order that they are presented to Alg
2: V ′

0 = {vi ∈ V | x′i = 0}
3: Let G′

0 = (V ′
0 , E

′
0) ⊆ G, be the graph induced by V ′

0

4: for all v ∈ V do
5: if v is a challenge request then
6: if v ∈ V ′

0 then
7: Give v color λ1

8: else if v is a final request then
9: Give v color λ2 ▷ Exists since k ⩾ 2

10: else ▷ v is a non-final request in a block
11: C ← {λ1, λ2, . . . , λk}
12: for all edges e ∈ E′

0 incident to v do
13: Let u be such that e = (u, v)
14: if u has received a color then
15: Let λℓ be that color
16: C ← C \ {λℓ}
17: Give v an arbitrary color from C

Having defined a notion of challenge requests and blocks, we let ρ = (ρa, ρr)
be the candidate strict online reduction from ASGt to k-Spill (see Defi-
nition 26). It only remains to check that ρr(Alg′, I) is a valid instance of
k-Spill, for all I ∈ IASGt , and that (i)–(iii) from Theorem 27 are satisfied.

First, we check that Condition (iii) is satisfied. For ease of notation, let G
be the graph defined by I ′, and let G′

0 = (V ′
0 , E

′
0) ⊂ G be the subgraph of G

induced by the vertices in G whose associated bit in x′ is 0. We show that
x′ is an optimal solution in two steps:

(a) We create a valid k-coloring of the vertices in G′
0.

(b) We show that one cannot create a valid k-coloring of a larger subgraph
of G than G′

0.

Towards (a): We create a valid k-coloring of G′
0 in Algorithm 3, and color

the graph from Figure 3 in Figure 4. We let λ1, λ2, . . . , λk denote the avail-
able colors.
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Figure 4: Example of an optimal coloring of the reduction graph from Fig-
ure 3, created using Algorithm 3. The vertices in V \ V ′

0 , are white. All
vertices in V ′

0 , are colored either λ1, λ2, or λ3. The edges in E′
0 are thick,

and the edges in E \ E′
0 are thin.

The challenge requests in G0 receive color λ1, and the final vertices all
receive color λ2. The challenge requests and final requests form a path,
v1, f1, v2, f2, . . . , vn, fn, and the colors of the vertices in this path alternate
between λ1 and λ2, except when a challenge request does not receive a color
because it is not part of G0.

Observe that within G0, all non-final vertices in a block are only adjacent
to other non-final vertices of the same block. Hence, to finish the coloring
of G0, we can consider the non-final vertices of each block separately. Since
there are no non-final vertices in the blocks B(xi, y

′
i) with xi = 0, we only

need to consider blocks with xi = 1.

When xi = y′i = 1, the block B(xi, y
′
i) forms a (k + 1)-clique together with

the vertex vi of the challenge request ci. Since vi is not contained in G0, the
remaining k vertices of the clique can be colored with k colors.

Constructing B(xi, y
′
i) with xi = 1 and y′i = 0, larger and larger cliques are

formed using the vertices that Alg′ has decided to color. However, we never
create a clique of size more than k + 1, and each clique contains the vertex
vi of the challenge request ci which is not contained in G0. Hence, at the
arrival of each vertex, v, in B(xi, y

′
i), v is connected to at most k − 1 other

vertices in G0. Thus, coloring the vertices in the order of arrival, k colors
suffice.

Observe that the only vertices not colored are the challenge requests whose
true bit is 1. Hence, the cost of this solution is

∑n
i=1 xi.
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Towards (b): Since each challenge request with true bit 1 introduces a new
(k + 1)-clique into the instance, at least one vertex has to be deemed not
colorable for each challenge request with true bit 1. Hence, Optk-Spill(I

′) ⩾∑n
i=1 xi, implying that the above solution is optimal. This shows that (iii)

from Theorem 27 is satisfied.

Since OptASGt(I) =
∑n

i=1 xi, for any instance, I, of ASGt, the above also
implies that Optk-Spill(ρr(Alg′, I)) = Opt(I) for all instances I ∈ IASGt

and all Alg′ ∈ Ak-Spill. Hence, (ii) from Theorem 27 is satisfied.

Now, it only remains to check Condition (i). Recall that the ASGt algorithm,
Alg = RedAlg(Alg′), outputs yi = y′i, for each i = 1, 2, . . . , n. We verify
that, for each ri, 1 ⩽ i ⩽ n, the cost incurred by Alg is bounded by the
total cost incurred by Alg′ on ci and B(xi, y

′
i). To this end, we consider any

combination xi and yi. Fir the first three combinations considered, the cost
of Alg on ri is bounded be the cost of Alg′ on ci, meaning that the cost of
Alg′ on B(xi, y

′
i) is irrelevant.

Case xi = yi = 0: In this case, Alg incurs a cost of 0 on ri. Clearly, this
cannot be larger than the cost of Alg′ on ci.

If xi = 0 and yi = 1: In this case, Alg′ and Alg both have a cost of 1.

If xi = yi = 1: Since Alg′ decides not color vi, it incurs a cost of 1, and
since Alg guesses 1, it also incurs cost 1.

If xi = 1 and yi = 0: In this case, Alg guesses 0 on a true 1 and incurs a
cost of t. At the same time, Alg′ deem vi colorable, and so it does not incur
any cost on the challenge request vi. By construction of B(xi, y

′
i), Alg′ is

forced to incur cost at least t, or create an infeasible solution, only using
that it decided to color vi.

Since for each request, ri, the cost of Alg is no larger than that of Alg′ on
ci and B(xi, y

′
i), (ii) from Theorem 27 is satisfied. □

6.3 Interval Rejection

Given a collection of intervals S, an Interval Rejection algorithm finds a
subset S ′ ⊆ S of intervals such that no two intervals in S \ S ′ overlap. The
cost of the solution is given by the size of S ′, and the goal is to minimize
this cost.

In the offline setting, Interval Rejection is solvable in polynomial time, by a
greedy algorithm [28].
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Figure 5: Example reduction for IRt, with t = 3, x = 01001, and y′ =
00011(___)(_). The first five bits of y′ are the IRt algorithm’s responses
to the five challenge request, and the bits in parenthesis correspond to its
responses to the two blocks. Bits that do not influence the definition of the
graph are simply shown as ’_’.

Definition 34 A request, ri, for Online t-Bounded Overlap Interval Rejec-
tion with Predictions (IRt) is an interval Si. Instances for IRt satisfy that
any requested interval, S, overlaps at most t other intervals in the instance,
I. An algorithm, Alg, outputs yi = 1 to include Si into S ′, and {Si | xi = 1}
is an optimal solution. Given an instance I ∈ IIRt ,

Alg(I) =

{∑n
i=1 yi, if no two intervals in S \ S ′ overlap,

∞, otherwise.

□

We also consider Online Interval Rejection with Predictions (IR), where
there is no bound on the number of overlaps.

Lemma 35 For any t ∈ Z+, and any pair of insertion monotone error mea-
sures (η0, η1), IRt is Ctη0,η1-hard.

Proof We prove that IRt is as hard as ASGt by giving a strict online
reduction ρ : ASGt

red−→ IRt. This reduction is essentially identical to the
one from ASGt to VCt from Lemma 29, but we present it for completeness.
In particular, the i’th challenge request is Si = ((i − 1) · t, i · t), the blocks
B(0, 0) and B(0, 1) are empty, the block B(1, 1) contains a single request to
S1
i = Si, and the block B(1, 0) contains t requests, Sj

i , for j = 1, 2, . . . , t,
where Sj

i = ((i − 1) · t + j, (i − 1) · t + j + 1). See Figure 5 for an example
reduction. One may observe that this is an interval representation of the
interval graph created in the reduction from Lemma 29, assuming that the
VCt algorithm outputs the same bits as the IRt algorithm. The remainder
of the analysis resembles that from Lemma 29. □

Lemma 36 For any t ∈ Z+ ∪ {∞}, and any pair of error measures (η0, η1),
IRt ∈ Ctη0,η1 .
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Figure 6: An example reduction from IRt to VCt, for t ⩾ 5. On the left
is the intervals in the instance I for IRt, and on the right is the underlying
graph of the instance ρr(Alg, I), for any algorithm Alg ∈ AVCt .

Proof Let (η0, η1) be any pair of error measures. We prove existence of a
reduction, ρ : IRt

red−→ VCt, with reduction term ka = 0. This, together with
Lemmas 16 and 30, shows that IRt ∈ Ctη0,η1 . We show an example of this
reduction in Figure 6.

To this end, let Alg′ ∈ AVCt be any algorithm, and let I = (x, x̂, r) ∈ IIRt

be any instance of IRt. We define Alg = ρa(Alg′) and I ′ = (x′, x̂′, r′) =
ρr(Alg′, I) as follows: When Alg receives a request, ri, containing an in-
terval, Si, we request a vertex, vi, together with all edges of the form (vj , vi),
for j < i, such that Sj ∩ Si ̸= ∅, with true bit x′i = xi and predicted bit
x̂′i = x̂i. Then, Alg outputs the same for Si as Alg′ does for vi. We give
pseudocode for Alg in Algorithm 4.

By construction, x = x′ and x̂ = x̂′, and so (O3) and (O4) from Definition 13
are satisfied.

Since each interval overlaps at most t other intervals, all vertices in the
underlying graph of I ′ has degree at most t. Hence, to see that I ′ is a valid
instance, it only remains to check that x′ encodes an optimal vertex cover of
the underlying graph.

To this end, observe that the intervals in I constitute an interval representa-
tion of the underlying graph, G′, of I ′. Since a collection of non-overlapping
intervals from I corresponds to an independent set in G′, and since x encodes
an optimal solution to I, the set {vi | x′i = 0} is an optimal independent set
of G′. Hence, {vi | x′i = 1}, the complement of {vi | x′i = 0}, encodes an
optimal vertex cover of G′.
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This shows that I ′ is a valid instance of VCt, that OptIRt(I) = OptVCt(I
′),

and (O2) from Definition 13 is satisfied.

Hence, it remains to check (O1) to verify that ρ is an online reduction.
We give the pseudocode for Alg in Algorithm 4. By constriction, Alg

Algorithm 4
1: Input: an instance, I, for IRt and an algorithm, Alg′, for VCt

2: Output: an instance, I ′, for VCt and an algorithm, Alg, for IRt

3: while receiving requests ri, containing the interval Si do
4: Get prediction x̂i
5: Ei ← ∅
6: for j = 1, 2, . . . , i− 1 do
7: if Sj ∩ Si ̸= ∅ then
8: Ei ← Ei ∪ {(vj , vi)}
9: Request a new vertex vi together with Ei, with predicted bit x̂i, and

let yi be Alg’s output
10: Output yi

produces the output S ′ = {Si | y′i = 1} and Alg′ produced the output
V ′
A = {vi | yi = 1}. By construction, |S ′| = |V ′

A|. Hence, the cost of Alg
on instance I is equal to the cost of Alg′ on instance I ′, for all I ∈ IIRt ,
if and only if whenever Alg creates an infeasible solution, then so does
Alg′. Hence, suppose that Alg creates an infeasible solution on instance I.
Then, there exist two intervals Si, Sj ∈ S \ S ′ such that Si ∩ Sj ̸= ∅. Since
Si, Sj ̸∈ S ′, then yi = yj = 0, and so vi, vj ̸∈ V ′

A. Since Si ∩ Sj ̸= ∅, the edge
(vi, vj) is contained in E′, and so V ′

A is not a vertex cover.

This verifies (O1), and thus finishes the proof. □

Out results about IRt and IR are summarized in Theorem 37. Observe that
Items (i) and (iv) are direct consequences of Lemmas 35 and 36.

Theorem 37 For any t ∈ Z+ and any pair of insertion monotone error
measures (η0, η1),

(i) IRt is Ctη0,η1-complete,

(ii) IR is Ctη0,η1-hard, and

(iii) IR ̸∈ Ctη0,η1 .

For any t ∈ Z+ and any pair of error measures (η0, η1),
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(iv) IRt ∈ Ctη0,η1 ,

(v) IR ∈ Cη0,η1 , and

(vi) IR is not Cη0,η1-hard.

Proof Towards (i): This is a direct consequence of Lemmas 35 and 36.

Towards (ii): Since IRt is a subproblem of IR, this is a direct consequence
of Corollary 17 and Lemma 35.

Towards (iii): Assume that IR ∈ Ctη0,η1 for some t ∈ Z+ and some (η0, η1).
Then ASGt is as hard as IR. Since IR is as hard as ASGt+1 by (ii),
transitivity implies that ASGt is as hard as ASGt+1, which contradicts
Lemma 18.(ii).

Towards (iv): This is a direct consequences of Lemma 36.

Towards (v): Observe that VC is as hard as IR by Lemma 36. Since
VC ∈ Cη0,η1 by Theorem 31.(v), we conclude that IR ∈ Cη0,η1 by transitivity.

Towards (vi): Assume that IR is Cη0,η1-hard. Then, IR is as hard as
ASG. Since VC is as hard as IR, transitivity of the as-hard-as relation (see
Lemma 12) implies that VC is as hard as ASG. This contradicts Theo-
rem 31.(vi). □

6.4 Minimum 2-SAT Deletion

Given a collection of variables, V , and a 2-CNF-SAT formula φ, an algorithm
for Minimum 2-SAT Deletion finds a subset of clauses in φ to delete, in order
to make φ satisfiable [30, 15]. Equivalently, the algorithm must assign a truth
value to all variables, while minimizing the number of unsatisfied clauses in
φ.

This problem was first posted by Mahajan and Raman in [30], who also
proved that Minimum 2-SAT Deletion is NP-complete and W[1]-hard. Later,
Chlebík and Chlebíkova proved that it is also APX-hard [15].

We consider an online variant of 2-SatD in the context of predictions.

Definition 38 A request, ri, for Online Minimum 2-SAT Deletion with Pre-
dictions (2-SatD), contains a variable, vi, and the full contents of all clauses
of the form (vi ∨ vj), (vi ∨ vj), (vi ∨ vj), or (vi ∨ vj), for all j < i. An al-
gorithm, Alg, outputs yi = 1 to set vi = true, and xi encodes an optimal
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truth-value of the variable vi. Given an instance I = (x, x̂, r),

Alg(I) = #{C ∈ φ | C is unsatisfied}

□

In this section, we prove the existence of a reduction ρ : IR→ 2-SatD, that
is based on the following idea. When an algorithm for IR receives an interval
S, we create a new request vS for 2-SatD, which is revealed together with
the clauses:

(vS ∨ vS) ∧

 ∧
S̃:S̃∩S ̸=∅

(vS ∨ vS̃)

 ,

where S̃ is any previously revealed interval. We refer to the clauses of the
form (vS ∨ vS̃) as collision clauses.

Observe that the clause (vS ∨ vS) tempts an algorithm for 2-SatD to set
vi = false, and so output 0, corresponding to not placing S in S ′. The
collision clauses are intended to detect collisions. For any two intervals S
and S̃ with S ∩ S̃ ̸= ∅, we include the collision clause (vS ∨ vS̃) which is
satisfied if, and only if, either vS = true or vS̃ = true, corresponding to
placing at least one of S and S̃ in S ′.

Theorem 39 For any pair of insertion monotone error measures (η0, η1),
and any t ∈ Z+, 2-SatD is Ctη0,η1-hard.

Proof Let (η0, η1) be any pair of error measures. We prove the existence of
a reduction ρ : IR red−→ 2-SatD with reduction term ka = 0. This, together
with Lemmas 12 and 35 establishes the hardness of 2-SatD with respect to
any pair of insertion monotone error measures.

For any instance I = (x, x̂, r) ∈ IIR and any Alg′ ∈ A2-SatD, letting Alg =
ρa(Alg′) and I ′ = (x′, x̂′, r′) = ρr(Alg′, I), we show three things:

(a) Alg(I) ⩽ Alg′(I ′),

(b) OptIR(I) = Opt2-SatD(I
′), and

(c) x′ = x and x̂′ = x̂.

Observe that (a) implies Condition (O1) with ka = 0, (b) implies Condi-
tions (O2), and (c) implies Conditions (O3) and (O4).
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Figure 7: An example reduction from IR to 2-SatD. The above instance
of IR gives rise to the following set of variables and CNF-formula: V =
{vS1 , vS2 , vS3 , vS4 , vS5 , vS6}, and φ = (vS1 ∨ vS1) ∧ (vS2 ∨ vS2) ∧ (vS1 ∨ vS2) ∧
(vS3 ∨ vS3)∧ (vS1 ∨ vS3)∧ (vS2 ∨ vS3)∧ (vS4 ∨ vS4)∧ (vS3 ∨ vS4)∧ (vS5 ∨ vS5)∧
(vS3 ∨ vS5) ∧ (vS4 ∨ vS5) ∧ (vS6 ∨ vS6) ∧ (vS5 ∨ vS6).

The construction of Alg and I ′ are closely related (see Figure 7 for an
example reduction). The pseudocode for Alg is given in Algorithm 5.

For any I = (x, x̂, r) ∈ IIR and any Alg′ ∈ A2-SatD, the instance I ′ =
(x′, x̂′, r′) = ρr(Alg′, I) is given by:

• x′ = x.

• x̂′ = x̂.

• r′ = ⟨r′1, r′2, . . . , r′n⟩, where r′i contains the variable vSi , together with
the clauses:

φSi = (vSi ∨ vSi) ∧

 ∧
Sj : j<i : Sj∩Si ̸=∅

(vSi ∨ vSj )

 .

We verify that x′ encodes an optimal solution to the 2-SatD instance, such
that I ′ is a valid instance, as part of (b). Observe that (c) is clear from the
definition of I ′, and so the error of I ′ is identical to the error of I.

All intervals that an algorithm for IR places in S ′ are referred to as being
rejected by the algorithm. If an interval, S, was not rejected then we say
that S was accepted by the algorithm.

Towards (a): We refer to an interval S which has been rejected by Alg =
ρa(Alg′) in Line 18 of Algorithm 5 even though vS = false as a conflict
interval.

We show that

Alg(I) ⩽ Alg′(I ′), (6)
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Algorithm 5
1: Input: An algorithm Alg′ ∈ A2-SatD, and an IR instance I = (x, x̂, r)
2: Output: An instance of 2-SatD and an algorithm for IR
3: φ← ∅ ▷ An empty CNF-formula for Alg
4: while receiving request ri containing the interval Si do
5: Get prediction x̂i
6: Make a new variable vSi for the 2-SatD instance
7: O ← ∅ ▷ Set of overlapping intervals
8: for j = 1, 2, . . . , i do
9: if Sj ∩ Si ̸= ∅ then

10: O ← O ∪ {Sj}
11: φ← φ ∧ (vSi ∨ vSi) ∧

(∧
S∈O(vSi ∨ vS)

)
12: Request vSi with prediction x̂i, and updated CNF-formula φ, and let

y′i be the output of Alg′

13: b← false
14: for S ∈ O do
15: if S has been accepted then
16: b← true
17: if b = true then
18: Output 1 ▷ Reject Si

19: else
20: Output yi

by showing that the cost that Alg′ incurs is larger than the cost that Alg
incurs for each newly requested interval S in I. To this end, suppose that S
has just been revealed. We continue by splitting into three cases:

(A) S does not intersect any other interval.

(B) S intersects some non-conflict intervals.

(C) S intersects at least one conflict interval.

Case (A): If S does not intersect any other interval then Alg accepts S
if and only if Alg′ sets vS = false. If vS = false, then neither Alg nor
Alg′ incur any cost, as Alg accepts S, and Alg′ satisfies the only newly
revealed clause (vS ∨vS). If, on the other hand, vS = true, then Alg incurs
cost 1 from rejecting S, and Alg′ incurs cost 1 for not satisfying (vS ∨ vS).

Case (B): Denote by {S1, S2, . . . , Sk} the collection of intervals satisfying
that S ∩ Si ̸= ∅, for i = 1, 2, . . . , k. We assume that Si is a non-conflict
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interval, for all i = 1, 2, . . . , k, implying that Si has been rejected by Alg if,
and only if, vSi = true.

If vSi = true for all i = 1, 2, . . . , k, then Alg incurs the same cost as Alg′.
In particular, since vSi = true for all i = 1, 2, . . . , k, we have that (vS∨vSi) =
true for all i = 1, 2, . . . , k, no matter the truth value of vS . Hence, Alg and
Alg′ incur the same cost by a similar analysis as in Case (A), since Alg
outputs the same bit as Alg′.

On the other hand, assume that there exists some i ∈ {1, 2, . . . , k} such that
vSi = false. Since there are no conflict intervals, we know that Si has been
accepted by Alg. Observe that no matter the truth value of vS , Alg will
reject S, by Line 18 in Algorithm 5, and so incur cost 1. Hence it remains to
verify that Alg′ also incur cost at least 1. If Alg′ sets vS = false, then, for
each interval Si with vSi = false, we have that (vSi ∨ vS) = false. Since
there is at least one of these, Alg′ incurs cost at least 1. If, on the other
hand, Alg′ sets vS = true, then (vS ∨vS) = false, and so Alg′ incurs cost
1.

Case (C): Denote by {S1, S2, . . . , Sk} the collection of intervals satisfy-
ing that S ∩ Si ̸= ∅, for i = 1, 2, . . . , k. We assume that there exists a
subset {Si1 , Si2 , . . . , Siℓ} ⊂ {S1, S2, . . . , Sk}, for some 1 ⩽ ℓ ⩽ k, of con-
flict intervals. By definition of conflict intervals, observe that for each Sij ,
vSij

= false, but Sij has been rejected by Alg.

In case all intervals Si, for i = 1, 2, . . . , k, have been rejected by Alg, Alg
will output the same as Alg′. If Alg′ sets vS = false, then Alg accepts
S, and so Alg does not incur any cost. At the same time, Alg′ satisfies
(vS ∨ vS), but there may exist collision clauses that are not satisfied. If, on
the other hand, Alg′ sets vS = true, then Alg rejects S, and so it incurs
cost 1. In this case, Alg′ cannot satisfy (vS ∨ vS), and so it incurs cost at
least one.

On the other hand, if there exists at least one interval Si such that Alg has
accepted Si, it rejects S, by Line 18 in Algorithm 5. In this case, Alg incurs
cost 1, and so we check that Alg′ also incurs cost at least 1.

To this end, suppose that Alg′ sets vS = true. Then, it can not satisfy
(vS ∨ vS) and therefore incurs cost at least 1.

On the other hand, if Alg′ sets vS = false, then (vS ∨ vSij
) will be un-

satisfied for each j = 1, 2, . . . , ℓ. Since ℓ ⩾ 1, Alg′ incurs cost at least
1.
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This proves that Equation (6) is satisfied, which finishes the analysis of (a).

Towards (b): We show that

OptIR(I) = Opt2-SatD(I
′), (7)

and that x′ encodes an optimal solution to the instance I ′.

We do this by creating a solution, O, to the instance I ′, based on the optimal
solution to the instance I, and show that

(1) cost(O) = OptIR(I).

(2) any solution O′ with cost(O′) < cost(O) translates to a solution O′
IR

such that cost(O′
IR) < OptIR(I).

Construction of O: Consider any interval S. If S is accepted by OptIR,
set vS = false and otherwise set vS = true.

Towards (1): Since OptIR does not have intersecting intervals that are
both accepted, all collision clauses are satisfied. Hence, cost(O) equals to
the number of clauses of the form (vS ∨ vS) that are not satisfied. The
number of these corresponds exactly to the number intervals that have been
rejected by OptIR. Hence, cost(O) = OptIR(I).

Towards (2): Observe that for any instance I of IR, cost(O) = OptIR(I) ⩽
n − 1, where n is the number of intervals, as OptIR can always accept at
least one interval.

Assume, that there exists a solution O′ to the instance I ′ such that cost(O′) <
cost(O). Let k be the number of collision clauses that are not satisfied by
O′. Since cost(O′) < cost(O), it follows that k < cost(O) < n.

Until all collision clauses are satisfied, modify O′ as follows. Let C =
(vSi ∨ vSj ) be any unsatisfied collision clause. Since C is unsatisfied, then
vSi = vSj = false. Set vSi = true instead, such that C becomes satisfied,
and (vSi ∨ vSi) becomes unsatisfied. Observe that this change cannot make
the cost of the solution increase, as vSi only occurs negated in the clause
(vSi ∨ vSi). It may, however, make the cost smaller, in case there are other
unsatisfied collision clauses that contain vSi . Since each unsatisfied collision
clause features two variables that are both false, this modified solution is
well-defined.

After at most k repetitions, all collision clauses that were in O′ will be
satisfied, and we therefore have a subset of at most cost(O′) unsatisfied
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clauses of the form (vS ∨ vS). Since all collision clauses are satisfied, these
at most cost(O′) variables imply a solution, O′

IR, to IR in which no two
accepted intervals intersect, satisfying that

cost(O′
IR) ⩽ cost(O′) < cost(O) = OptIR(I).

This finishes (2).

Having established (1) and (2), we have shown that x′ encodes an optimal
solution to I ′, making I ′ a valid instance. Further, this shows that Equa-
tion (7) is satisfied, finishing the analysis of (b).

Having established (A)–(C), ρ = (ρa, ρr) is an online reduction from IR to
2-SatD preserving competitiveness with respect to any pair of error mea-
sures (η0, η1). □

Corollary 40 For all t ∈ Z+, and all pairs of insertion monotone error
measures (η0, η1), 2-SatD ̸∈ Ctη0,η1 .

Proof Assume that 2-SatD ∈ Ctη0,η1 for some t and some pair of error
measures (η0, η1). Then, ASGt is as hard as 2-SatD and, by Theorem 39,
ASGt+1 is as hard as 2-SatD. By transitivity, ASGt is as hard as ASGt+1,
contradicting Lemma 18.(ii). □

6.5 Dominating Set

Given a graph G = (V,E), an algorithm for Dominating Set finds a subset
V ′ ⊆ V of vertices such that for all vertices v ∈ V , v ∈ V ′ or v is adjacent
to a vertex u ∈ V ′. The cost of the solution is given by the size of V ′, and
the goal is to minimize this cost.

Dominating Set was one of Karp’s first 21 NP-complete problems [27], though
he referred to it as the set cover problem. Previous work has concluded that
Dominating Set is W[2]-complete [21] and APX-hard [16]. Further, Online
Dominating Set is studied in [13] and shown to be AOC-complete in [14].

We study an online variant of Dominating Set with predictions.

Definition 41 Online Dominating Set with Predictions (Dom) is a vertex-
arrival problem. An algorithm, Alg, outputs yi = 1 to accept vi into its
dominating set, and {vi | xi = 1} is an optimal dominating set. Given an
instance I ∈ IDom,

Alg(I) =

{∑n
i=1 yi, if Alg’s output is a dominating set,

∞, otherwise.
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Figure 8: Connectified graph.

□

In our reduction from VC to Dom, we need that the instance of VC is
a connected graph. Unlike in an NP-completeness reduction, from VC to
Dom we cannot detect that a vertex is isolated immediately, and simply
not include it in an online reduction. In the following, we give a method
for “connectifying” a (possibly) disconnected graph, while controlling the
size of the optimal vertex cover. This is an easy procedure that has been
considered before [2]. However, we have not found it in refereed works, so for
completeness, we give the argument below. Formally, we let con be the map
which associates to a graph G = (V,E) a connected graph con(G) = (V ′, E′),
where

• V ′ = V ∪ {s1, s2}, and

• E′ = E ∪ {(s1, s2)} ∪ {(v, s1) | v ∈ V }.

See Figure 8 for an example of con(G).

Lemma 42 Let G be any graph.

(i) If G contains a vertex cover of size k, then con(G) contains a vertex
cover of size k + 1.

(ii) If con(G) contains a vertex cover of size k+1, then G contains a vertex
cover of size at most k.

Proof Towards (i): Assume that G contains a vertex cover, C, of size
k. Since E′ = E ∪ {(s1, s2)} ∪ {(v, s1) | v ∈ V }, it follows that all edges
that may not currently be covered have s1 as one of their endpoints. Hence
C ∪ {s1} is a vertex cover of con(G), that has size k + 1.
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Figure 9: Example reduction for dominating set. The vertices with thicker
boundary constitute an optimal vertex cover in the left graph, and the cor-
responding optimal dominating set in the right graph.

Towards (ii): Suppose that con(G) has a vertex cover, C ′, of size k + 1.
Let e ∈ E be any edge. Since e’s endpoints are in V , and thus not s1 nor s2,
the vertex that covers e is contained in C ′ \ {s1, s2}. Hence, C ′ \ {s1, s2} is a
vertex cover for G. Further, C ′ contains either s1 or s2, since (s1, s2) ∈ E′.
Hence, C ′ \ {s1, s2} is a vertex cover of G, and |C ′ \ {s1, s2}| ⩽ |C ′| − 1 = k.

□

Lemma 43 Let C be an optimal vertex cover for G. Then C ∪ {s1} is an
optimal vertex cover for con(G).

Proof Let k = |C|. Then, by Lemma 42, C∪{s1} is a valid vertex cover for
con(G), of size k+1. Assume, towards contradiction, that con(G) contains a
vertex cover, C ′, of size at most k. Then, by Lemma 42, G contains a vertex
cover of size at most k − 1 < k = |C|, contradicting the optimality of C. □

Observe that given a graph G, we can create con(G) online, by first creating
vertices s1 and s2, and then reveal all future vertices, vi, as they are being
revealed for G, together with the edge (s1, v).

To describe our most central result on Dom, we introduce a slightly weaker
notion of hardness:

Definition 44 Let C be a complexity class of online problems with binary
predictions, and let Q be a C -complete problem. Consider an online prob-
lem, P , with binary predictions. If any (α, β, γ)-competitive Pareto-optimal
algorithm for P , with α ∈ o(OptP ), implies the existence of an (α, β, γ)-
competitive algorithm for Q, then P is said to be weakly C-hard. □
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Theorem 45 Let t ∈ Z+, let (η0, η1) be any pair of insertion monotone
error measures. Then Dom is weakly Ctη0,η1-hard.

Proof We show that there exists a tuple ρ = (ρa, ρr) similar to an online
reduction, that satisfies Conditions (O1), (O3), and (O4) from Definition 13,
but not (O2). Instead of (O2), ρ satisfies that for any instance I = (x, x̂, r) ∈
IVC of VC and any algorithm Alg′ ∈ ADom for Dom,

OptDom(ρr(Alg′, I)) ⩽ OptVC(I) + 1. (O2’)

Hence, the reduction we create here does not preserve the competitiveness of
any algorithm for Dom, but only for the algorithms with α ∈ o(OptDom). To
see that this reduction does preserve the competitiveness of algorithms with
α ∈ o(OptDom), let Alg′ ∈ ADom be any (α, β, γ)-competitive algorithm
for Dom with additive term κ ∈ o(OptDom). Then, assuming the existence
of the above reduction ρ satisfying (O1), (O2’), (O3), and (O4), and letting
Alg = ρa(Alg′) and I ′ = ρr(Alg′, I) for any I ∈ IVC,

Alg(I) ⩽Alg′(I ′) + ka(I), by (O1)
⩽ α ·OptDom(I

′) + β · φ0(I
′) + γ · φ1(I

′) + κ(I ′) + ka(I)

⩽ α · (OptVC(I) + 1) + β · η0(I) + γ · η1(I)
+ κ(I ′) + ka(I), by (O2), (O3), and (O4)

= α ·OptVC(I) + β · η0(I) + γ · η1(I) + α+ κ(I ′) + ka(I).

Hence, if α ∈ o(OptDom), we find that α+ κ+ ka ∈ o(OptVC) (by similar
arguments as in Lemma 54 in Appendix A), implying that Alg is (α, β, γ)-
competitive.

To prove the existence of ρ, pick any instance I for VC, with associated
graph G = (V,E), and then create an instance I ′, with associated graph G′,
for Dom based on con(G) as follows:

• Reveal the vertex s1, with true and predicted bit 1.

• Reveal the vertex s2 together with the edge (s1, s2), with true and
predicted bit 0.

• Reveal the vertex s′ together with the edges (s1, s
′) and (s2, s

′), with
true and predicted bit 0.

• When receiving a request vi as part of the VC instance:

(1) Reveal a new vertex vi together with all edges (vj , vi) ∈ E, for
j < i, and the edge (s1, vi). The true bit for vi is xi, and the
predicted bit for vi is x̂i.
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(2) Reveal a new vertex s1,i, together with the edges (s1, s1,i) and
(s1,i, vi), with true and predicted bit 0.

(3) For each edge (vj , vi) ∈ E, for j < i, reveal a new vertex vi,j
together with the edges (vi, vi,j) and (vj , vi,j), with true and pre-
dicted bit 0.

See Figure 9 for an example. Observe that if G contains n vertices and m
edges, then G′ contains 2n+m+3 vertices and 3(n+m+1) edges. In short,
we create the graph con(G) based on G, and then transform con(G) into G′

using the well-known reduction from vertex cover to dominating set [31] that
is often used when proving that dominating set is NP-complete.

By Lemma 42, if x encodes an optimal vertex cover in G, then adding a 1 as
the true bit of s1 and a 0 as the true bit of s2, and not changing the true bit
of any other vertex, this new bit string encodes an optimal vertex cover in
con(G), by Lemma 43. By [31] an optimal vertex cover in con(G) encodes
an optimal dominating set in G′.

Hence, OptDom(I
′) = OptVC(I)+1, for any instance I ∈ IVC. This implies

that Condition (O2’) is satisfied. Further, since we only add correctly pre-
dicted requests, and (η0, η1) is a pair of insertion monotone error measures,
Conditions (O3) and (O4) are also satisfied. Hence, it only remains to check
Condition (O1). To this end, let Alg′ ∈ ADom be any algorithm. Then, the
strategy of ρa(Alg′) is given in Algorithm 6.

By construction of Alg = ρa(Alg′), it accepts the vertex vi if and only if
Alg′ has accepted one of the vertices that have been revealed to Alg′ in
Lines 8–11 in Algorithm 6, by the check in Lines 12–15 in Algorithm 6. That
is, Alg accepts vi if and only if one of the vertices that has been revealed
after vi and before vi+1 as part of the instance of Dom has been accepted
by Alg′, making Alg′ incur cost at least one as well. Observe that vi,j , for
each (vi, vj) ∈ E with j < i, is revealed after vi and before vi+1. Hence, the
cost that Alg incurs is bounded by the cost that Alg′ incurs if and only if
whenever Alg creates an infeasible solution, then so does Alg′.

To this end, assume that there exists an edge e = (vj , vi) ∈ E such that
neither vi nor vj has been accepted by Alg. In this case, neither vi, vj , nor
vi,j has been accepted by Alg′. Since the only vertices adjacent to vi,j in
G′ are vi and vj , then vi,j is not dominated, and so Alg′ has created an
infeasible solution.

This verifies Condition (O1), and so concludes the proof. □
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Algorithm 6
1: Input: An algorithm, Alg′ ∈ ADom, and a VC instance I = (x, x̂, r)
2: Output: An instance of Dom and an algorithm for VC
3: Request s1, with true and predicted bit 1
4: Request s2, together with (s1, s2), with true and predicted bit 0
5: Request s′, together with (s1, s

′) and (s2, s
′), with true and predicted bit

0
6: while receiving requests vi do
7: Get prediction x̂i
8: Request the vertex vi together with all edges (vj , vi) ∈ E, for j < i,

and let y′vi be the output of Alg′

9: Request the vertex s1,i together with the edges (vi, s1,i) and (s1, s1,i),
with true and predicted bit 0, and let y′s1,i be the response of Alg′

10: for (vj , vi) ∈ E with j < i do
11: Request the vertex vi,j together with the edges (vi, vi,j) and (vj , vi,j),

with true and predicted bit 0, and let y′vi,j be the response of Alg′

12: if there exists a true bit in {yvi , ysi} ∪ {yvi,j | (vj , vi) ∈ E with j < i}
then

13: Output 1
14: else
15: Output 0

We summarize our results about Dom in Theorem 46:

Theorem 46 Let t ∈ Z+. For all pairs of insertion monotone error measures
(η0, η1),

(i) Dom is weakly Ctη0,η1-hard

For all pairs of error measures (η0, η1),

(ii) Dom is not Cη0,η1-hard, and

(iii) Dom ∈ Cη0,η1 .

Proof Towards (i): This follows by Theorem 45.

Towards (ii): The algorithm, Acc ∈ ADom, that accepts all vertices is
(n, 0, 0)-competitive, as OptDom has to accept at least one vertex to create
a dominating set. Now, adapt the proof of Theorem 31.(vi).

Towards (iii): Adapt the setup from the proof of Theorem 31.(v), with the
following addition. Observe that Alg′ creates an infeasible solution to Dom
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if there exists a vertex vi such that yi = 0, and yj = 0, for all vertices vj
for which (vi, vj) is contained in the underlying graph of the instance I of
Dom. Since x encodes an optimal dominating set, either xi = 1, or there
exists some j for which (vj , vi) is contained in the underlying graph of I for
which xj = 1, as otherwise vi is not dominated. Hence, Alg ∈ AASG has
guessed 0 on a true 1, and so Alg(x, x̂) =∞. □

7 Establishing Upper and Lower Bounds for Prob-
lems Related to Ctµ0,µ1

In this section, we show a method for proving lower bounds on the compet-
itiveness of all Ctµ0,µ1

-hard problems. In [4], Antoniadis et al. prove strong
lower bounds for online algorithms with predictions for Paging with Discard
Predictions (Pagt), a binary prediction scheme, with respect to (µ0, µ1). In
the next subsection, we recall the definition of the problem Pagt from [4],
and prove the existence of a strict online reduction from Pagt to ASGt,
which extends the lower bounds from [4] to all Ctµ0,µ1

-hard problems and
upper bounds from ASGt to Pagt.

7.1 A Reduction from Paging to ASGt

In Paging, we have a universe, U , of N pages, and a cache of a fixed size,
k < N . An instance of Paging is a sequence r = ⟨r1, r2, . . . , rn⟩ of requests,
where each request holds a page p ∈ U . If p is not in cache (a miss), an
algorithm has to place p in cache, either by evicting a page from cache to
make room for p, or by placing p in an empty slot in the cache, if one exists.
The cost of the algorithm is the number of misses. In the following, we
assume that the cache is empty at the beginning of the sequence; this affects
the analysis by at most an additive constant k.

There is a polynomial time optimal offline Paging algorithm, LFD, which
first fills up its cache and then, when there is a page miss, always evicts the
page from cache whose next request is furthest in the future [7]. Further, it
is well-known that no deterministic online Paging algorithm has a competi-
tive ratio better than k [12, 36]. We study a paging problem with succinct
predictions [4]:

Definition 47 An instance of Paging with Discard Predictions (Pagk) is a
triple I = (x, x̂, r), where r = ⟨r1, r2, . . . , rn⟩ is a sequences of pages from U ,
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and x, x̂ ∈ {0, 1}n are two bitstrings such that

xi =

{
0, if LFD keeps ri in cache until it is requested again,
1, if LFD evicts ri before it is requested again,

and x̂i predicts the value of xi. Following [4], if the page in ri is never
requested again, we set xi = 0 if LFD keeps the page in cache until all
requests has been seen, and xi = 1 otherwise. □

In [4], Antoniadis et al. introduces an unnamed algorithm, that we call
FlushWhenAll0s, for Pagk whose strategy is as follows. Each page in
cache has an associated bit which is the prediction bit associated with the
latest request for p. Whenever a page not in cache is requested, evict a page
from cache whose associated bit is 1, if such a page exists. Otherwise, evict
all pages from cache. We restate a positive result from [4] on the compet-
itiveness of FlushWhenAll0s with respect to the pair of error measures
(µ0, µ1) defined in Definition 2 and use the algorithm to establish a relation
between Paging and ASGt:

Theorem 48 ([4]) For any instance, I = (x, x̂, r) of Pagk,

FlushWhenAll0s(I) ⩽ OptPagk
(I) + (k − 1) · µ0(I) + µ1(I).

That is, FlushWhenAll0s is strictly (1, k−1, 1)-competitive for Pagk with
respect to (µ0, µ1).

We use FlushWhenAll0s to establish a relation between Paging and ASGt:

Theorem 49 For all t ∈ Z+, Pagt ∈ Ctµ0,µ1
.

Proof We define a strict online reduction ρ : Pagt
red−→ ASGt with ka = 0.

To this end, consider any instance, I = (x, x̂, r) ∈ IPagt and any algorithm
Alg′ ∈ AASGt . We construct an instance, I ′ = (x′, x̂′, r′) ∈ ASGt, where x′

consists of x followed by t 1’s, and x̂′ consists of x̂ followed by t 1’s. In this
way, µb(I) = µb(I

′), for b ∈ {0, 1}, so (O3) and (O4) are both satisfied.

Towards (O2): Since the cache is empty from the beginning, OptPagt in-
curs a cost of 1 on each of the first t requests. After this, OptPagt

incurs a cost of 1 on each page whose true bit is 1, by the definition of
discard predictions. Thus,

OptPagt(I) = t+

n∑
i=1

xi. (8)
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Moreover, by definition of I ′, we have that OptASGt(I
′) = t+

∑n
i=1 xi =

OptPagt(I).

Towards (O1): Firstly, by definition of I ′, and letting y′ be the output of
Alg′(I ′),

Alg′(I ′) ⩾
n∑

i=1

(
y′i + t · xi · (1− y′i)

)
+ t. (9)

In particular,
∑n

i=1

(
y′i+ t ·xi · (1− y′i)

)
is the cost of Alg′ on the first

n requests, and t is a lower bound on the cost of Alg′ on the last t
requests.

We give pseudocode for ρ given Alg′ ∈ AASGt and I ∈ IPagt in Algo-
rithm 7. Formally, Alg = ρa(Alg′) runs the algorithm FlushWhenAll0s
from [4] where it uses y′i as the prediction for ri. Hence, letting
y′(n) = ⟨y′1, y′2, . . . , y′n⟩ and Iy′ = (x, y′(n), r)„ we have that Alg(I) =
FlushWhenAll0s(Iy′). Therefore,

Alg(I)

⩽ OptPagt(Iy′) + (t− 1) · µ0(Iy′) + µ1(Iy′), by Theorem 48

= t+
n∑

i=1

xi + (t− 1) ·
n∑

i=1

(1− y′i) · xi +
n∑

i=1

y′i · (1− xi), by (8)

= t+
n∑

i=1

(
t · xi · (1− y′i) + y′i

)
⩽ Alg′(I ′), by (9).

□

Since Pagt ∈ Ctµ0,µ1
, we can extend a collection of lower bounds from Paging

with Discard Predictions by Antoniadis et al. [4] to all Ctµ0,µ1
-hard problems.

However, in [4] the additive terms are restricted to constants rather than
sublinear terms. The next lemma handles this difference.

Lemma 50 Let P be any online minimization problem with binary predic-
tions and let (η0, η1) be a pair of error measures. If Alg ∈ AP is (α, β, γ)-
competitive with respect to (η0, η1) then, for all 0 < δ < α, there exists
bδ ∈ R such that Alg is (α + δ, β, γ)-competitive with respect to (η0, η1)
with additive term bδ.
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Algorithm 7
1: Input: an instance (x, x̂, r) ∈ IPagt and an algorithm, Alg′ ∈ AASGt

2: Output: an instance, (x′, x̂′, r′), of ASGt and a paging strategy for r
3: while receiving requests ri do
4: Get prediction x̂i
5: Ask Alg′ to guess the next bit given x̂′i ← x̂i, and let y′i be its output

6: if ri is not in cache then
7: if there is a page, p, in cache with associated bit 1 then
8: Evict p
9: else

10: Flush the cache
11: Place the page from ri in cache
12: Set the associated bit of ri to y′i
13: for i← 1 to t do
14: Ask Alg′ to guess the next bit given x̂′n+i = 1
15: Compute x← LFD(r) and reveal x′ which is x appended by t 1s to Alg

Proof Since Alg is (α, β, γ)-competitive, there exists κ ∈ o(OptP ) such
that for all I ∈ IP ,

Alg(I) ⩽ α ·OptP (I) + η0(I) + η1(I) + κ(I).

Since κ ∈ o(OptP ), then

∀δ > 0: ∃bδ : ∀I ∈ IP : κ(I) < δ ·OptP (I) + bδ.

Let δ > 0, and compute bδ ∈ R. Then, for any I ∈ IP ,

Alg(I) ⩽ α ·OptP (I) + β · η0(I) + γ · η1(I) + κ(I)

< α ·OptP (I) + β · η0(I) + γ · η1(I) + δ ·OptP (I) + bδ

= (α+ δ) ·OptP (I) + β · η0(I) + γ · η1(I) + bδ.

Hence, Alg is (α+ δ, β, γ)-competitive with the additive term in R. □

Theorem 51 Let t ∈ Z+, and let P be any Ctµ0,µ1
-hard problem. Then, for

any (α, β, γ)-competitive algorithm for P with respect to (µ0, µ1),

(i) α+ β ⩾ t,

(ii) α+ (t− 1) · γ ⩾ t,
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Proof By Theorem 49, ASGt is as hard as Pagt. Since P is Ctµ0,µ1
-hard,

we have that P is as hard as ASGt. Hence, by transitivity of the as-hard-as
relation, P is as hard as Pagt.

For (i), we assume for the sake of contradiction that there is an (α, β, γ)-
competitive algorithm, Alg ∈ AP , with α + β < t. If Alg is not Pareto-
optimal, then there exists an (α′, β′, γ′)-competitive Pareto-optimal algo-
rithm, Alg′ ∈ AP , with α′ ⩽ α, β′ ⩽ β, and γ′ ⩽ γ.

Since P is as hard as Pagt, and Alg′ is Pareto-optimal, we get an (α′, β′, γ′)-
competitive algorithm for Pagt with α′ + β′ ⩽ α + β < t, say Alg′

Pagt
.

Since the additive term of Alg′
Pagt

may be sublinear in OptPagt , pick δ > 0
small enough such that α + β + δ < t. Then, by Lemma 50, Alg′

Pagt

is (α′ + δ, β′, γ′)-competitive with an additive constant. This contradicts
Theorem 1.7 from [4].

Similarly, assuming an (α, β, γ)-competitive algorithm, Alg ∈ AP , with
α+(t−1) ·γ < t, we obtain a contradiction with Theorem 1.7 from [4], thus
proving (ii). □

Finally, we re-prove existing positive results for Pagt (see Remark 3.2 in [4])
using that Pagt ∈ Ctµ0,µ1

:

Theorem 52 For any α, β ∈ R+ with α ⩾ 1 and α+ β ⩾ t, there exists an
(α, β, 1)-competitive algorithm for Pagt with respect to (µ0, µ1).

Proof By Theorem 49 there exists a strict online reduction ρ : Pagt
red−→

ASGt. Moreover, by Theorem 6.(b), there exists an (α, β, 1)-competitive
algorithm for ASGt with respect to (µ0, µ1), for any α, β ∈ R+ with α ⩾
1 and α + β ⩾ t, say Algα,β . Finally, by Lemma 14, the existence of
Algα,β together with the existence of ρ, implies the existence of an (α, β, 1)-
competitive algorithm for Pagt, ρa(Algα,β).

□

8 Concluding Remarks and Future Work

We have defined complexity classes for online minimization problems with
and without binary predictions, and proven that they form a strict hierar-
chy. Further, we showed that our complexity classes have all the structure
one expects from complexity classes. We proved membership, hardness, and
completeness of multiple problems with respect to various pairs of error mea-
sures, using our reduction template as well as other methods. For instance,
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we have shown completeness of Online t-Bounded Degree Vertex Cover and
Online t-Bounded Overlap Interval Rejection. Beyond this, we showed strong
lower bounds for all Ctµ0,µ1

-hard problems, using similar lower bounds from [4]
and a reduction from Paging with Discard Predictions to Asymmetric String
Guessing with Binary Predictions.

Note that our definition of relative hardness also applies to maximization
problems. In a very recent follow-up to the arXiv version of our paper, online
maximization problems with binary predictions are considered and several
maximization problems are shown to be members, hard and complete for
Ctµ0,µ1

[8].

Possible directions for future work include considering randomization and
changing the hardness measure from competitiveness to, e.g., relative worst
order or random order.
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A Some Results on o(Opt)

Lemma 53 Let P be an online minimization problem, κ, κ′ ∈ o(Opt), and
k ⩾ 0. Then,

(i) κ+ κ′ ∈ o(Opt), and

(ii) k · κ ∈ o(Opt),

where (κ+ κ′)(I) = κ(I) + κ′(I) and (k · κ)(I) = k · κ(I).

Proof Since κ ∈ o(Opt), we have that

∀δ > 0: ∃bδ : ∀I ∈ IP : κ(I) < δ ·Opt(I) + bδ. (10)

Since κ′ ∈ o(Opt), we have that

∀δ′ > 0: ∃bδ′ : ∀I ∈ IP : κ′(I) < δ′ ·Opt(I) + bδ′ . (11)

Towards (i): We have to show that

∀δ0 > 0: ∃bδ0 : ∀I ∈ IP : (κ+ κ′)(I) < δ0 ·Opt(I) + bδ0 .

Let δ0 > 0, and set δ = δ′ = δ0
2 . Then there exists two constants bδ and bδ′ .

Set bδ0 = bδ + bδ′ , then

(κ+ κ′)(I) = κ(I) + κ′(I)

⩽
δ0
2
·Opt(I) + bδ +

δ0
2
·Opt(I) + bδ′

= δ0 ·Opt(I) + bδ0 .

Towards (ii): We have to show that

∀δ1 > 0: ∃bδ1 : ∀I ∈ IP : (k · κ)(I) < δ1 ·Opt(I) + bδ1 .

Let δ1 > 0, set δ = δ1
k , and let bδ1 = k · bδ. Then, for any I ∈ IP ,

(k · κ)(I) = k · κ(I) < k · (δ ·Opt(I) + bδ)

= k · δ1
k
·Opt(I) + bδ1 = δ1 ·Opt(I) + bδ1 .

Hence, k · κ ∈ o(Opt). □

Lemma 54 Let P and Q be online minimization problems, and let ρ : P red−→
Q be a strict online reduction with reduction term ka. If κQ ∈ o(OptQ), then
κP ∈ o(OptP ), where, for any Alg ∈ AQ we let κP (IP ) = κQ(ρr(Alg, IP )).
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Proof Since κQ ∈ o(OptQ), then

∀δQ > 0: ∃bδQ : ∀IQ ∈ IQ : κQ(IQ) < δQ ·OptQ(IQ) + bδQ .

Since ko ∈ o(OptP ), then

∀δP > 0: ∃bδP : ∀IP ∈ IP : ko(IP ) < δP ·OptP (IP ) + bδP .

Since ρ : P
red−→ Q is a strict online reduction, (O2) implies that

OptQ(ρr(Alg, IP )) ⩽ OptP (IP ),

for all Alg ∈ AQ and all IP ∈ IP .

To see that κP ∈ o(OptP ), we have to verify that

∀δ > 0: ∃bδ : ∀IP ∈ IP : κP (IP ) < δ ·OptP (IP ) + bδ.

For any δ > 0, let δQ = δ, and let bδ = bδQ . Then, letting IQ = ρr(Alg, IP )
for any Alg ∈ AQ and any IP ∈ IP , we get that

κP (IP ) = κQ(IQ) ⩽ δQ ·OptQ(IQ) + bδQ ⩽ δ ·OptP (IP ) + bδ.

□

B A List of Insertion Monotone Error Measures

For completeness, we include a non-exhaustive list of pairs of insertion mono-
tone error measures.

(IM1) (µ0, µ1) from Definition 2.

(IM2) (Z0, Z1) from Section 4.2.

(IM3) A pair of error measures, (µrel
0 , µrel

1 ), that are an adaptation of the error
measures from Definition 2, taking into account the sequence length,
given by

µrel
b (x, x̂) =

µb(x, x̂)

n
.

(IM4) A weighted variant of (µ0, µ1), denoted (µw
0 , µ

w
1 ), taking into account

how far into the sequence the error occurs, weighting it such that the
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prediction errors are weighted higher if they occur earlier:

µw
0 (x, x̂) =

n∑
i=1

(
n− i

n
· ((1− xi) · x̂i)

)

and µw
1 (x, x̂) =

n∑
i=1

(
n− i

n
· (xi · (1− x̂i))

)
.

(IM5) A pair of error measures, (Lp0,L
p
1), where each error measure is an

adaptation of the Lp-measure, for p ∈ [1,∞), given by:

Lp0(x, x̂) = p

√√√√ n∑
i=1

(1− xi) · |xi − x̂i|p

and Lp1(x, x̂) = p

√√√√ n∑
i=1

xi · |xi − x̂i|p.

(IM6) A pair of error measures (L∞0 ,L∞1 ), where each error measure is an
adaptation of the L∞-measure, given by

L∞0 (x, x̂) = sup
i
{(1− xi) · x̂i}

and L∞1 (x, x̂) = sup
i
{xi · (1− x̂i)}.

Beyond the above list, the sum of insertion monotone error measures is
insertion monotone, the product of two non-negative insertion monotone
error measures is insertion monotone, a constant times an insertion monotone
error measure is insertion monotone.
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