
Algorithmica manuscript No.
(will be inserted by the editor)

A Comparison of Performance Measures for Online
Algorithms

Joan Boyar · Sandy Irani · Kim S. Larsen

Received: date / Accepted: date

Abstract This paper provides a systematic study of several proposed measures for
online algorithms in the context of a specific problem, namely, the two server prob-
lem on three colinear points. Even though the problem is simple, it encapsulates a
core challenge in online algorithms which is to balance greediness and adaptabil-
ity. We examine Competitive Analysis, the Max/Max Ratio, the Random Order Ra-
tio, Bijective Analysis and Relative Worst Order Analysis,and determine how these
measures compare the Greedy Algorithm, Double Coverage, and Lazy Double Cov-
erage, commonly studied algorithms in the context of serverproblems. We find that
by the Max/Max Ratio and Bijective Analysis, Greedy is the best of the three al-
gorithms. Under the other measures, Double Coverage and Lazy Double Coverage
are better, though Relative Worst Order Analysis indicatesthat Greedy is sometimes
better. Only Bijective Analysis and Relative Worst Order Analysis indicate that Lazy
Double Coverage is better than Double Coverage. Our resultsalso provide the first
proof of optimality of an algorithm under Relative Worst Order Analysis.

Keywords Online algorithms· K-server problem· Performance measures

J. Boyar
Department of Mathematics and Computer Science, University ofSouthern Denmark, Campusvej 55, DK-
5230 Odense M, Denmark
Tel.: +45 6550 2338
E-mail: joan@imada.sdu.dk

S. Irani
Department of Computer Science, University of California, Irvine, CA 92697, USA
Tel.: +1 (949) 824-6346
E-mail: irani@ics.uci.edu

K. Larsen
Department of Mathematics and Computer Science, University ofSouthern Denmark, Campusvej 55, DK-
5230 Odense M, Denmark
Tel.: +45 6550 2328
E-mail: kslarsen@imada.sdu.dk

2 Joan Boyar et al.

1 Introduction

Since its introduction by Sleator and Tarjan in 1985 [19], Competitive Analysis has
been the most widely used method for evaluating online algorithms. A problem is said
to beonline if the input to the problem is given a piece at a time, and the algorithm
must commit to parts of the solution over time before the entire input is revealed to
the algorithm.Competitive Analysisevaluates an online algorithm in comparison to
the optimal offline algorithm which receives the input in itsentirety in advance and
has unlimited computational power in determining a solution. Informally speaking,
one considers the worst-case input which maximizes the ratio of the cost of the online
algorithm for that input to the cost of the optimal offline algorithm on that same input.
The maximum ratio achieved is called theCompetitive Ratio. Thus, one factors out
the inherent difficulty of a particular input (for which the offline algorithm is penal-
ized along with the online algorithm) and measures what is lost in making decisions
with partial information and/or limited power.

Despite the popularity of Competitive Analysis, researchers have been well aware
of its deficiencies and have been seeking better alternatives almost since the time that
it came into wide use. (See [10] for a fairly recent survey.) Many of the problems
with Competitive Analysis stem from the fact that it is a worst case measure and fails
to examine the performance of algorithms on instances that would be expected in a
particular application. It has also been observed that Competitive Analysis sometimes
fails to distinguish between algorithms which have very different performance in
practice and intuitively differ in quality.

Over the years, researchers have devised alternatives to Competitive Analysis,
each designed to address one or all of its shortcomings. There are exceptions, but it is
fair to say that many alternatives are application-specific, and very often, the papers in
which they are introduced only present a direct comparison between a new measure
and Competitive Analysis.

This paper is a study of several generally-applicable alternative measures for eval-
uating online algorithms that have been suggested in the literature. We perform this
comparison in the context of a particular problem: the 2-server problem on the line
with three possible request points, nick-named here thebaby server problem. Investi-
gating simplek-server problems to shed light on new ideas has also been donein [3],
for instance.

We focus on three algorithms, GREEDY, DOUBLE COVERAGE (DC) [9], and
LAZY DOUBLE COVERAGE (LDC), and four different analysis techniques (perfor-
mance measures): Bijective Analysis, the Max/Max Ratio, the Random Order Ratio,
and Relative Worst Order Analysis.

In investigating the baby server problem, we find that according to some quality
measures for online algorithms, GREEDY is better than DC and LDC, whereas for
others, DC and LDC are better than GREEDY. In addition, for some measures LDC is
better than DC, while for others they are indistinguishable.

The analysis methods that conclude that DC and LDC are better than GREEDY

are focused on a worst-case sequence for the ratio of an algorithm’s cost compared
to OPT. In the case of GREEDY vs. DC and LDC, this conclusion makes use of the
fact that there exists a family of sequences for which GREEDY’s cost is unboundedly

A Comparison of Performance Measures for Online Algorithms 3

larger than the cost of OPT, whereas for each of DC and LDC, the cost is always at
most a factor of two larger than the cost of OPT.

On the other hand, the measures that conclude that GREEDY is best compare two
algorithms based on the multiset of costs stemming from the set of all sequences of a
fixed length. In the case of GREEDY and LDC, this makes use of the fact that for any
fixed n, both the maximum as well as the average cost of LDC over all sequences of
lengthn are greater than the corresponding values for GREEDY.

Using Relative Worst Order Analysis a more nuanced result isobtained, conclud-
ing that LDC can be at most a factor of two worse than GREEDY, while GREEDY can
be unboundedly worse than LDC.

The analysis methods that distinguish between DC and LDC (Bijective Analysis
and Relative Worst Order Analysis) take advantage of the fact that LDC performs at
least as well as DC on every sequence and performs better on some. The others (Com-
petitive Analysis, the Max/Max Ratio, and the Random Order Ratio) cannot distin-
guish between them, due to the intermediate comparison to OPT, i.e., algorithms are
compared to OPT and then the results of this comparison are compared. On some
sequences where DC and LDC do worst in comparison with OPT, they perform iden-
tically, so these worst case measures conclude that the two algorithms perform iden-
tically overall. This phenomenon occurs in other problems also. For example, some
analysis methods fail to distinguish between the paging algorithms LRU and FWF,
even though the former is clearly better and is at least as good on every sequence.

The simplicity of the baby server problem also enables us to give the first proof
of optimality in Relative Worst Order Analysis: LDC is an optimal algorithm for this
problem.

Though our main focus is the greediness/adaptability issuethat we investigate
through the analyses of GREEDY and LDC over a broad collection of quality mea-
sures, we also include some results about the balance algorithm [18], BAL . Because
of the interest for this server algorithm in the literature,we find it natural to mention
the results for BAL that can be obtained relatively easily within our framework.

2 Preliminaries

In this section, we define the server problem used throughoutthis paper as the ba-
sis for our comparison. We also define the server algorithms used, and the quality
measures which are the subject of this study.

2.1 The Server Problem

Server problems [5] have been the objects of many studies. Inits full generality, one
assumes that some numberk of servers are available in some metric space. Then a
sequence of requests must be treated. A request is simply a point in the metric space,
and ak-server algorithm must move servers in response to the request to ensure that
at least one server is placed on the request point. A cost is associated with any move
of a server (this is usually the distance moved in the given metric space), and the

4 Joan Boyar et al.

objective is to minimize total cost. The initial configuration (location of servers) may
or may not be a part of the problem formulation.

In investigating the strengths and weaknesses of the various measures for the
quality of online algorithms, we define the simplest possible nontrivial server prob-
lem:

Definition 1 The baby server problemis a 2-server problem on the line with three
possible request pointsA, B, andC, in that order from left to right, with distance one
betweenA andB and integral distanced ≥ 2 betweenB andC. The cost of moving
a server is defined to be the distance it is moved. We assume that initially the two
servers are placed onA andC.

As a side remark, we have considered most proofs in this paperin the context of a
non-integral distanced betweenB andC. The main conclusions remain the same, but
many of the proofs become longer and the formulas less readable. In a few places, we
consider variants of LDC, where the right-most server moves at a speeda times faster
than the left-most server. Also in this case we assume thatd/a is integral in order to
highlight the core findings.

All results in the paper pertain to the baby server problem. Even though the prob-
lem is simple, it requires balancing greediness and adaptability which is a central
problem in allk-server settings and many online problems in general. This simple
problem we consider is sufficient to show the non-competitiveness of GREEDY with
respect to Competitive Analysis [5].

2.2 Server Algorithms

First, we define some relevant properties of server algorithms:

Definition 2 A server algorithm is called

– noncrossingif servers never change their relative position on the line.
– lazy [18] if it never moves more than one server in response to a request and it

does not move any servers if the requested point is already occupied by a server.

A server algorithm fulfilling both these properties is called compliant.

Given an algorithm,A, we define the algorithmlazyA, LA, as follows:LA will
maintain avirtual set of servers and their locations as well as the real set of servers
in the metric space. There is a one-to-one correspondence between real servers and
virtual servers. The virtual set will simulate the behaviorof A. The initial server
positions of the virtual and real servers are the same.

When a request arrives, the virtual servers are moved in accordance with algo-
rithm A. After this happens, there will always be at least one virtual server on the
requested point. Then the real servers move to satisfy the request: If there is already
a real server on the requested point, nothing more happens. Otherwise, the real server
corresponding to the virtual server on the requested point moves to the requested
point. If there is more than one virtual server on the requested point, tie-braking rules

A Comparison of Performance Measures for Online Algorithms 5

may be applied. In our case, we will pick the closest server tomove to the requested
point.

Generalk-server problems that are more complicated than the baby server prob-
lem may need more involved tie-breaking rules to be deterministically defined. Note
that as a special case of the above, a virtual move can be of distance zero, while still
leading to a real move of non-zero distance.

In [9], it was observed that for any 2-server algorithm, there exists a noncrossing
algorithm with the same cost on all sequences. In [18], it wasobserved that for an
algorithmA and its lazy versionLA, for any sequenceI of requests,A(I)≥ LA(I)
(we refer to this as thelaziness observation). Note that the laziness observation ap-
plies to the generalk-server problem, so the results that depend only on this observa-
tion can also be generalized beyond the baby server problem.

We define a number of algorithms by specifying their behavioron the next request
point, p. For all algorithms considered here, no moves are made if a server already
occupies the request point (though internal state changes are sometimes made in such
a situation).

GREEDY moves the closest server top. Note that due to the problem formulation,
ties cannot occur (and the server onC is never moved).

If p is in between the two servers, Double Coverage (DC), moves both servers at
the same speed in the direction ofp until at least one server reaches the point. Ifp is
on the same side of both servers, the nearest server moves top.

We definea-DC to work in the same way as DC, except that the right-most server
moves at a speeda ≤ d times faster than the left-most server. We refer to the lazy
version of DC as LDC and the lazy version ofa-DC asa-LDC.

The balance algorithm [18], BAL , makes its decisions based on the total distance
travelled by each server. For each server,s, let ds denote the total distance travelled
by s from the initiation of the algorithm up to the current point in time. On a request,
BAL moves a server, aiming to obtain the smallest possible maxsds valueafter the
move. In case of a tie, BAL moves the server which must move the furthest.

As an example, showing that some care must be taken when defining the lazy
algorithms, consider the following server problem which isslightly more complicated
than the one we consider in the rest of the paper. We illustrate the example in Figure 1.
There are four pointsA = 0, B = 2, C = 6, andD = 11 in use, and three servers,
initially on A, B, andD. We consider the request sequenceCBC, served by LDC.
After the first request toC, we have the configurationA (A), C (C), D (7), where the
server positions are listed from left to right with their virtual positions in parentheses.
At the request toB, it becomesB (B), C (4), D (7). Now, when requestingC again,
note that virtually, the right-most server is closest, but the middle server is actually
onC.

2.3 Quality Measures

In analyzing algorithms for the baby server problem, we consider input sequencesI
of request points. An algorithmA, which treats such a sequence has some cost, which
is the total distance moved by the two servers. This cost is denoted byA(I). SinceI

6 Joan Boyar et al.

0 1 2 3 4 5 6 7 8 9 10 11

A

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

B

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

C

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

D

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

RequestB

RequestC

Initial

Fig. 1 Illustration of the 3-server example. The server positions are given in black and the virtual positions
in gray.

is of finite length, it is clear that there exists an offline algorithm with minimal cost.
By OPT, we refer to such an algorithm and OPT(I) denotes the unique minimal cost
of processingI .

Two of the measures below use permutations of input sequences. If I is an input
sequence of lengthn andσ is a permutation onn elements, then we letσ(I) denoteI
permuted byσ .

All of the measures described below can lead to a conclusion as to which one of
two algorithms is better. In contrast to the others, Bijective Analysis does not quantify
how much better one algorithm is than another.

2.3.1 Competitive Analysis

In Competitive Analysis [13,19,15], we define an algorithmA to bec-competitive if
there exists a constantα such that for all input sequencesI , A(I)≤ cOPT(I)+α.

2.3.2 The Max/Max Ratio

The Max/Max Ratio [4] compares an algorithm’s worst cost forany sequence of
lengthn to OPT’s worst cost for any sequence of lengthn. The Max/Max Ratio of an
algorithmA, wM(A), is M(A)/M(OPT), where

M(A) = limsup
t→∞

max
|I |=t

A(I)/t.

2.3.3 The Random Order Ratio

Kenyon [16] defines the Random Order Ratio to be the worst ratio obtained over
all sequencesI , comparing the expected value of an algorithm,A, with respect to a

A Comparison of Performance Measures for Online Algorithms 7

uniform distribution of all permutations ofI , to the value of OPT on I :

limsup
OPT(I)→∞

Eσ [A(σ(I))]
OPT(I)

The original context for this definition is Bin Packing for which the optimal packing
is the same, regardless of the order in which the items are presented. Therefore, it
does not make sense to take an average over all permutations for OPT. For server
problems, however, the order of requests in the sequence mayvery well change the
cost of OPT, so we compare to OPT’s performance, also on a random permutation of
the input sequence. In addition, taking the limit as OPT(I) → ∞, causes a problem
with analyzing GREEDY on the baby server problem (and presumably other algo-
rithms for other problems), since there is an infinite familyof sequences,In, where
OPT’s cost onIn is the same constant for alln, but GREEDY’s cost grows withn.
Thus, we consider the limit as the length of the sequence goesto infinity, as in an-
other alternative definition of the Random Order Ratio in [14]. The obvious possible
modifications to the Random Order Ratio to include the expectation over OPT are the
following two:

limsup
|I |→∞

Eσ [A(σ(I))]
Eσ [OPT(σ(I))]

limsup
|I |→∞

Eσ

[

A(σ(I))
OPT(σ(I))

]

We prefer the one to the left. In general, these two definitions could give different
results. However, due to the concrete nature of our proofs, the results in this paper
hold independently of which definition is chosen.

2.3.4 Bijective Analysis and Average Analysis

In [1], Bijective and Average Analysis are defined, as methods of comparing two
online algorithms directly. We adapt those definitions to the notation used here. As
with the Max/Max Ratio and Relative Worst Order Analysis, the two algorithms are
not necessarily compared on the same sequence.

In Bijective Analysis, the sequences of a given length are mapped, using a bi-
jection, onto the same set of sequences. The performance of the first algorithm on a
sequence,I , is compared to the performance of the second algorithm on the sequence
I is mapped to. IfIn denotes the set of all input sequences of lengthn, then an online
algorithmA is no worse than an online algorithmB according to Bijective Analysis if
there exists an integern0 ≥ 1 such that for eachn≥ n0, there is a bijectionf : In → In
satisfyingA(I)≤ B(f (I)) for eachI ∈ In. A is strictly better thanB if A is no worse
thanB, and there is no bijection showing thatB is no worse thanA.

Average Analysis can be viewed as a relaxation of Bijective Analysis. An online
algorithmA is no worse than an online algorithmB according to Average Analysis if
there exists an integern0 ≥ 1 such that for eachn≥ n0, ΣI∈InA(I) ≤ ΣI∈InB(I). A is
strictly better thanB if this inequality is strict.

8 Joan Boyar et al.

Measure Value

Competitive Ratio CRA = max
I

A(I)
OPT(I)

Max/Max Ratio MRA =
max|I |=nA(I)

max|I ′ |=n OPT(I ′)

Random Order Ratio RRA = max
I

Eσ
[

A(σ(I))
]

Eσ [OPT(σ(I))]

Relative Worst Order Ratio WRA,B = max
I

maxσ A(σ(I))
maxσ ′ B(σ ′(I))

Table 1 Comparison of those measures which give a ratio.

2.3.5 Relative Worst Order Analysis

Relative Worst Order Analysis was introduced in [6] and extended in [7]. It com-
pares two online algorithms directly. As with the Max/Max Ratio, it compares two
algorithms on their worst sequence in the same part of a partition. The partition is
based on the Random Order Ratio, so that the algorithms are compared on sequences
having the same content, but possibly in different orders.

Definition 3 For any pair of algorithmsA andB, we define

cl(A,B) = sup{c | ∃b: ∀I : AW(I)≥ cBW(I)−b} and

cu(A,B) = inf {c | ∃b: ∀I : AW(I)≤ cBW(I)+b} .

whereAW(I) = maxσ A(σ(I)).
If cl(A,B) ≥ 1 or cu(A,B) ≤ 1, the algorithms are said to becomparableand

the Relative Worst Order RatioWRA,B of algorithmA to algorithmB is defined.
Otherwise, WRA,B is undefined.

If cl(A,B)≥ 1, then WRA,B = cu(A,B), and

if cu(A,B)≤ 1, then WRA,B = cl(A,B) .

If WRA,B < 1, algorithmsA andB are said to becomparable inA’s favor. Similarly,
if WRA,B > 1, the algorithms are said to becomparable inB’s favor.

If at least one of the ratioscu(A,B) andcu(B,A) is finite, then the algorithmsA
andB are called(cu(A,B),cu(B,A))-related.

Algorithms A andB are weakly comparable inA’s favor, 1) if A andB are
comparable inA’s favor, 2) if cu(A,B) is finite andcu(B,A) is infinite, or 3) if
cu(A,B) ∈ o(cu(B,A)).

An informal summary, comparing these measures is given in Table 1. Note that
some details are missing, including the additive constantsfor asymptotic analysis.

A Comparison of Performance Measures for Online Algorithms 9

Measure Favored Algorithm DC vs. LDC

Competitive Ratio LDC identical

Max/Max Ratio GREEDY identical

Random Order Ratio LDC identical

Bijective Analysis GREEDY LDC best

Average Analysis GREEDY LDC best

Relative Worst Order Ratio LDC weakly favored LDC best

Table 2 The second column summarizes the results comparing LDC and GREEDY on the baby server
problem using each of the measures defined. In addition to the information in the column, GREEDY is
uniquely optimal according to Bijective and Average Analysis, and LDC and GREEDY are(2,∞)-related
according to Relative Worst Order Analysis. The third columnlists which measures distinguish between
DC and its lazy variant, LDC.

Table 2 is a summary of the results comparing LDC and GREEDY on the baby
server problem using each of the measures defined. Additionally, it lists the effect of
laziness applied to DC.

3 Competitive Analysis

Thek-server problem has been studied using Competitive Analysis starting in [17].
In [9], it is shown that on the real line, the Competitive Ratios of DC and LDC arek,
which is optimal, and that GREEDY is not competitive. The result in [17], showing
that the Competitive Ratio of BAL is n−1 on a metric space withn points ifk= n−1,
shows that BAL has the same Competitive Ratio of 2 as DC and LDC on the baby
server problem.

4 The Max/Max Ratio

In [4], a concrete example is given with two servers and threenon-colinear points.
It is observed that the Max/Max Ratio favors the greedy algorithm over the balance
algorithm, BAL .

BAL behaves similarly to LDC and identically on LDC’s worst case sequences.
The following theorem shows that the same conclusion is reached when the three
points are on the line.

Theorem 1 GREEDY is better thanDC and LDC on the baby server problem with
respect to the Max/Max Ratio, with wM(DC)

wM(GREEDY) =
wM(LDC)

wM(GREEDY) = 1+ d−1
d+1.

10 Joan Boyar et al.

Proof Given a sequence of lengthn, GREEDY’s maximum cost isn, implying that
M(GREEDY) = 1.

Since OPT is at least as good as GREEDY, its cost is at mostn. Thus,M(OPT)≤ 1.
To obtain a lower bound forM(OPT), we consider request sequences consisting of
repetitions of the sequence((BA)dC)k. In each such repetition, OPT must incur a cost
of at least 2d. Thus, we can boundM(OPT) by M(OPT)≥ 2d

2d+1.
We now determineM(LDC), and the same argument holds forM(DC).
For any positive integern, we define the sequenceIn = ((BA)dBC)pX of length

n, where the length of the alternatingA/B-sequence before theC is 2d+ 1, X is a
possibly empty alternating sequence ofAs andBs starting with aB, |X|= nmod(2d+

2), andp= n−|X|
2d+2 .

First, we claim thatIn is a sequence of lengthn where LDC has the largest average
cost per move. Each move that the right-most server, originally on C, makes costs
d > 1 and the left-most server’s moves cost only one. For every move the right-most
server makes fromC to B, there ared moves by the left-most server fromA to B and
thusd moves back fromB to A. The subsequence(BA)d does this with cost one for
LDC for every move. Since the move after everyC has cost one, it is impossible to
define another sequence with a larger average cost per move.

If |X|< 2d+1, then the server onC does not move again, and LDC(In) = p(2d+

2d)+ |X|= n+ (d−1)(n−|X|)
d+1 .

Otherwise,|X|= 2d+1, the server onC is moved toB, and we obtain LDC(In) =

p(2d+2d)+ |X|+d−1= n+ (d−1)(n−|X|)
d+1 +d−1.

Since we are taking the supremum, we restrict our attention to sequences where

|X|= 0. Thus,M(LDC) =
n+ (d−1)n

d+1
n = 1+ d−1

d+1.
Finally,

wM(GREEDY) =
M(GREEDY)

M(OPT)
=

1
M(OPT)

,

while

wM(LDC) =
M(LDC)

M(OPT)
=

1+ d−1
d+1

M(OPT)
.

SinceM(OPT) is bounded, wM(LDC)
wM(GREEDY) = 1+ d−1

d+1, which is greater than one for
d > 1.

It follows from the proof of this theorem that GREEDY is close to optimal with
respect to the Max/Max Ratio, since the cost of GREEDY divided by the cost of OPT

tends toward one for larged.
Since LDC and DC perform identically on their worst sequences of any given

length, they also have the same Max/Max Ratio.

5 The Random Order Ratio

The Random Order Ratio categorizes DC and LDC as being equally good. The proof
is structured into several lemmas below.

A Comparison of Performance Measures for Online Algorithms 11

In the following, we use the termrun to mean a sequence of the same item in a
longer sequence, and it ismaximalif it cannot be made longer by including a possible
neighboring item. For example, the three maximal runs ofAs inAAABAAAABBAhave
lengths 3, 4, and 1, respectively.

The Random Order Ratio is the worst ratio obtained over all sequences, compar-
ing the expected value of an algorithm over all permutationsof a given sequence to
the expected value of OPT over all permutations of the given sequence. The intuition
in establishing the following result is that if one chooses arandom permutation of a
sequence with many moreAs andBs thanCs, then, with high probability, there will
be sufficiently many switches between requests toAs andBs in between each two
successive occurrences ofCs that both DC and LDC will experience the full penalty
compared to OPT, i.e., after each request toC, they will use one server to serve re-
quests to bothA andB before eventually moving the server fromC to B, where it will
stay until the next request toC.

The two main components in the proof are the following: First, even though we
choose a sequence with many moreAs andBs thanCs, we must prove that with high
probability, there are enough requests between any twoCs. If there are just a small
constant fraction of pairs of successiveCs that do not have enoughAs andBs in
between them, we will not get the Random Order Ratio of two that we are trying to
obtain. Second, even though there are many requests toAs andBs in between two
consecutiveCs, if the As or Bs, respectively, appear as runs too frequently (many
As in a row, followed by manyBs in a row), then there will not be sufficiently many
switches between requests toAs andBs to pull a server fromC to B. Again, we cannot
afford to have this problem occur a constant fraction of the times if we want a ratio
of two.

In the proof, we choose to usen requests toAs as well asBs and⌊logn⌋ requests
to Cs. In addition, we limit the successive requests toAs andBs separately to⌊√n⌋
with high probability. The choice of the functionsn, logn, and

√
n is mostly to work

with familiar functions in the lemmas below. Many other choices of functions would
work, as long as their rates of growth are similar. It is not quite sufficient that they are
different, since we also need to use, for instance, that

√
nlog2n∈ o(n).

We use the notation[n]r , wherer ≤ n, for the expressionn(n−1)(n−2) · · ·(n−
r +1).

The following result is from [8], using the index for the lastterm of the summation
from [2, page 56]. We have substituted in our variable names:

Proposition 1 In a random permutation of n As and n Bs, the probability that the
longest run of As (or Bs) is shorter than r is

P(r) = 1−
(n+1

1

) [n]r
[2n]r

+
(n+1

2

) [n]2r
[2n]2r

−
(n+1

3

) [n]3r
[2n]3r

+ . . .

+(−1)⌊ n
r ⌋
(

n+1
⌊

n
r

⌋

)

[n](⌊ n
r ⌋r)

[2n](⌊ n
r ⌋r)

We first derive a simple lower bound on this probability.

Lemma 1 If r ≥ logn, then in a random permutation of n As and n Bs, the probability
P(r) that the longest run of Bs is shorter than r is at least1− n+1

2r .

12 Joan Boyar et al.

Proof We first prove that the absolute value of the terms in the expression forP(r)
from Proposition 1 are non-increasing. Let 1≤ i ≤

⌊

n
r

⌋

− 1. We consider two suc-
cessive terms and show that the absolute value of the first is at least as large as the
absolute value of the second, provided thatr ≥ logn.

(n+1
i

) [n]ir
[2n]ir

≥
(n+1

i+1

) [n](i+1)r
[2n](i+1)r

m
(n+1

i

) n(n−1)···(n−ir+1)
2n(2n−1)···(2n−ir+1) ≥

(n+1
i+1

) n(n−1)···(n−(i+1)r+1)
2n(2n−1)···(2n−(i+1)r+1)

m
(n+1

i

)

≥
(n+1

i+1

) (n−ir)(n−ir−1)···(n−(i+1)r+1)
(2n−ir)(2n−ir−1)···(2n−(i+1)r+1)

⇑
(n+1)!

i!(n+1−i)! ≥
(n+1)!

(i+1)!(n−i)!

(

n−ir
2n−ir

)ir

⇑
1≥ n−i+1

i+1

(

1
2

)ir

m
2ir ≥ n−i+1

i+1
⇑

r ≥ logn

where the first implication follows from considering the fractions of corresponding
factors from the numerator and denominator and choosing thelargest.

Since we have now shown that the terms are non-increasing, itfollows thatP(r)≥
1−
(n+1

1

) [n]r
[2n]r

, i.e., dropping all but the first two terms. Since, for corresponding fac-

tors in[n]r and[2n]r , we have thatn− j
2n− j ≤ 1

2, we can conclude thatP(r)≥ 1− n+1
2r .

We can use this lemma to show that switches betweenAs andBs occur quite often.

Lemma 2 Let In = AnBn. For anyε > 0, there exists an n0 such that for all n≥ n0,
the probability when selecting a random permutation of In that all maximal runs of
As (or Bs) have lengths at most⌊√n⌋ is at least1− ε.

Proof By Lemma 1, for any givenn, the probability is at least 1− n+1
2⌊

√
n⌋ . Sincen+1∈

o(2
√

n), this probability approaches one for increasing values ofn.

Now we show that when having so fewCs compared toAs andBs, we can be al-
most certain to find a large number ofAs andBs between two successive occurrences
of Cs.

Lemma 3 For anyε > 0, there exists an n0 such that for all n≥ n0, the probability
when selecting a random permutation of In = AnBnC⌊logn⌋ that all maximal runs of
As and Bs (looking at As and Bs as the same item) have length at least(2d+2)⌊√n⌋
is at least1− ε.

Proof We do not distinguish betweenAs andBs here, so we just use that there are a
total of 2n of them, and refer to all of them asXs.

A Comparison of Performance Measures for Online Algorithms 13

To compute the probability, we consider the number of ways theCs can be placed
as dividers into a sequence of 2n Xs, creating⌊logn⌋+1 groups. The standard method
is to consider 2n+ ⌊logn⌋ positions and place theCs in ⌊logn⌋ of these, which can
be done in

(2n+⌊logn⌋
⌊logn⌋

)

ways. Similarly, if we want(2d+2)⌊√n⌋ Xs in each group,

we may reserve these(2d+2)⌊√n⌋(⌊logn⌋+1) Xs and just consider the division of
the remainingXs. Thus, this can be done in

(

2n− (2d+2)⌊√n⌋(⌊logn⌋+1)+ ⌊logn⌋
⌊logn⌋

)

ways.
We now find a lower bound on the probability of there being thismanyAs andBs

betweenCs using the above counting argument:
(

2n− (2d+2)⌊√n⌋(⌊logn⌋+1)+ ⌊logn⌋
⌊logn⌋

)

(

2n+ ⌊logn⌋
⌊logn⌋

)

=
[(2n− (2d+2)⌊√n⌋(⌊logn⌋+1)+ ⌊logn⌋)]⌊logn⌋

[(2n+ ⌊logn⌋)]⌊logn⌋

≥
(

2n− (2d+2)⌊√n⌋(⌊logn⌋+1)+1
2n+1

)⌊logn⌋

=

(

1− (2d+2)⌊√n⌋(⌊logn⌋+1)
2n+1

)⌊logn⌋

where the inequality follows from considering corresponding factors in the numerator
and denominator, and using the smallest fraction of these.

Using the binomial theorem, this last expression can be written

⌊logn⌋
∑
i=0

(⌊logn⌋
i

)(−(2d+2)⌊√n⌋(⌊logn⌋+1)
2n+1

)i

= 1−⌊logn⌋
(

(2d+2)⌊√n⌋(⌊logn⌋+1)
2n+1

)

+T

whereT contains the additional terms of the binomial expansion.
We now argue that the absolute values of successive terms inT decrease for large

enoughn:

(⌊logn⌋
i

)

(

(2d+2)⌊√n⌋(⌊logn⌋+1)
2n+1

)i
>
(⌊logn⌋

i+1

)

(

(2d+2)⌊√n⌋(⌊logn⌋+1)
2n+1

)i+1

m
[⌊logn⌋]i

i! >
[⌊logn⌋]i+1 (2d+2)⌊√n⌋(⌊logn⌋+1)

(i+1)!(2n+1)
m

1> (⌊logn⌋−i)(2d+2)⌊√n⌋(⌊logn⌋+1)
(i+1)(2n+1)

14 Joan Boyar et al.

Since
√

nlog2n∈ o(n), this holds whenn is sufficiently large.
For n large enough, this means thatT ≥ 0 and the probability we are computing

will be bounded from below by 1−⌊logn⌋
(

(2d+2)⌊√n⌋(⌊logn⌋+1)
2n+1

)

.

Again, since
√

nlog2n∈ o(n), the probability approaches one asn increases.

With the use of the lemmas above, we can establish the theorem.

Theorem 2 DC andLDC both have the Random Order Ratio two.

Proof The upper bounds follow directly from the fact that their Competitive Ratios
are two. Thus, if that is the factor on worst case sequences, clearly the expected ratio
cannot be worse, since the averages for these algorithms andOPT is over the same
set of sequences.

For the lower bound, letIn = AnBnC⌊logn⌋. We show below that for anyε > 0,
there exists ann0 so that forn ≥ n0, the probability of DC and LDC incurring a
cost of a factor two more than OPT is at least 1− ε. Given this, if we letA denote
either DC or LDC, for any ε, we can choose ann such thatEσ [A(σ(In))] ≥ (1−
ε)2Eσ [OPT(σ(In))], implying that Eσ [A(σ(In))]

Eσ [OPT(σ(In))]
≥ 2(1− ε). Thus, any claim of a

ratio smaller than two can be disproven by choosing a small enoughε, and this will
give us the result.

By Lemma 3, there exists ann′ so that for alln ≥ n′, the probability that all
maximal runs ofAs andBs have length at least(2d+2)⌊√n⌋ is at least 1− ε

2 .
Considering only theAs andBs, by Lemma 2, there exists ann′′ so that for all

n≥ n′′, the probability that all maximal runs ofAs andBs, respectively, have lengths
at most⌊√n⌋ is at least 1− ε

2 .
Thus, for alln≥ max{n′,n′′}, the probability of having both properties is at least

1− ε, and we argue that in this case, the cost of DC and LDC are a factor two larger
than the cost of OPT.

Since the number ofAs andBs between twoCs is at least(2d+2)⌊√n⌋ and the
length of maximal runs ofAs andBs, respectively, is at most⌊√n⌋, there must at least
2d+2 runs in between two successiveCs, and at least 2d+1 runs if we want to count
from the first run ofBs.

For both algorithms, this is sufficient for the algorithm to move the server from
C to B. DC will have both servers onB after thedth run of Bs has been processed,
whereas for LDC, the right-most server will only virtually be atB at that point, but
will be moved there at the(d+1)st run ofBs.

For eachC, OPT incurs the cost 2d of moving a server fromC to B and back
again, and it incurs costd after the lastC. The online algorithms have the same cost,
plus the additional cost of moving a server back and forth betweenA andB until the
server fromC is moved toB. This additional cost consists of 2d complete moves from
A to B and back.

Asymptotically, the requests after the lastC can be ignored, so this gives the ratio
4d/2d = 2.

We return briefly to the discussion from the end of Section 2.3.3, where we pre-
sented the definition of Random Order Ratio that we are using and an alternative

A Comparison of Performance Measures for Online Algorithms 15

version, and argue that the result above holds for the alternative version as well. The
upper bound comes from Competitive Analysis, which is a sequence-based compar-
ison, so clearly A(σ(I))

OPT(σ(I)) ≤ 2 for any sequence and any permutation. For the lower
bound, the proof above establishes that with probability approaching one for large
enoughn, on a permutationσ chosen uniformly at random, the costs DC(σ(In)) and

LDC(σ(In)) are twice that of OPT(σ(In)). This means thatEσ

[

A(σ(In))
OPT(σ(In))

]

must ap-

proach two forn → ∞. Thus, this result holds for the alternative definition of the
Random Order Ratio as well. A similar argument can be made forthe next and final
theorem of this section.

On another point, the theorem above, saying that LDC and DC are equivalent
according the Random Order Ratio, is an example of where a counter-intuitive result
is partially due to the intermediate comparison to OPT and partially due to the worst-
case element of the measure. This is because on some of the sequences (or rather
multisets, since it considers the expected value on all permutations) where LDC and
DC do worst compared to OPT, their comparison to OPT gives the same ratio. Since
the measure is worst-case over all multisets, the algorithms are deemed equivalent.
We illustrate the problem with the intermediate comparisonto OPT by showing below
how avoiding this comparison could give the result that LDC is better than DC.

If the definition was modified in the most straightforward manner to allow direct
comparison of algorithms, one would first note that for any sequenceI , by the lazi-
ness observation,Eσ [DC(σ(I))] ≥ Eσ [LDC(σ(I))]. Then, one would consider some
families of sequences with relatively large numbers ofCs and show that LDC’s cost
is some constant fraction better than DC’s on random permutations of that sequence.

For example, letI = (CABC)n. Whenever the subsequenceCABCoccurs inσ(I),
DC moves a server fromC towardsB and back again, while moving the other server
from A to B. In contrast, LDC lets the server onC stay there, and has cost two less
than DC.

One can show that the expected number of occurrences ofCABC in σ(I) is at
least n

16 (any constant fraction ofn would illustrate the point) by considering any
of the possible starting locations for this pattern, 1≤ i ≤ 4n− 3, and noting that
the probability that the patternCABC begins there is12 · n

4n−1 · n
4n−2 · 2n−1

4n−3. By the
linearity of expectations, the expected number of occurrences ofCABC is (1

2 · n
4n−1 ·

n
4n−2 · 2n−1

4n−3) · (4n−3) = 1
2 · 1

2 · n2

4n−1 ≥ n
16.

The expected costs of both OPT and LDC on σ(I) are also bounded above and
below by some constants timesn. Thus, LDC’s “modified random order ratio” will be
less than DC’s.

It is easier to compare GREEDY and LDC using the (original) Random Order
Ratio, getting a result very similar to that of Competitive Analysis: LDC is strictly
better than GREEDY.

Theorem 3 DC andLDC are better thanGREEDY on the baby server problem with
regards to the Random Order Ratio.

Proof As noted in the proof of Theorem 2, since the Competitive Ratios of both DC

and LDC are two, their Random Order Ratios are also at most two.

16 Joan Boyar et al.

Consider all permutations of the sequenceIn = (BA)
n
2 . We consider positions

from 1 throughn in these sequences. We again refer to a maximal consecutive subse-
quence consisting entirely of eitherAs orBs as amaximal run.

Given a sequence containingh As andt Bs, one can see from well known results
that the expected number of maximal runs is 1+ 2ht

h+t : In [12, Problem 28, Chapter 9,

Page 240], it is stated that the expected number of runs ofAs is h(t+1)
h+t , so the expected

number of runs ofBs is t(h+1)
h+t . One can see that this holds forAs by considering the

probability that a run ofAs starts at some indexi in the sequence. The probability that
it starts at the beginning of the sequence, at indexi = 1, is the probability that the first
element is anA, h

h+t . The probability that it starts at some indexi > 1 is the probability

that there is aB at indexi − 1 and anA at indexi, t
h+t · h

h+t−1. By the linearity of

expectations, the expected number of runs ofAs is thus h
h+t +∑h+t

i=2
th

(h+t)(h+t−1) =
h(t+1)

h+t . Adding the expectations forAs andBs gives the result 1+ 2ht
h+t . Thus, with

h= t = n
2, we get thatn2 +1 is the expected number of runs.

The cost of GREEDY is equal to the number of runs if the first run is a run ofBs.
Otherwise, the cost is one smaller. Thus, GREEDY’s expected cost on a permutation
of In is n

2 +
1
2.

The cost of OPT for any permutation ofIn is d, since it simply moves the server
from C to B on the first request toB and has no other cost after that.

Thus, the Random Order Ratio is
n
2+

1
2

d , which, asn tends to infinity, is unbounded.

The same argument shows that BAL is better than GREEDY with respect to the
Random Order Ratio.

6 Bijective Analysis

Bijective analysis correctly distinguishes between DC and LDC, indicating that the
latter is the better algorithm. This follows from the following general theorem about
lazy algorithms, and the fact that there are some sequences where one of DC’s servers
repeatedly moves fromC towardsB, but moves back toC before ever reachingB,
while LDC’s server stays onC.

Theorem 4 The lazy version of any algorithm for the baby server problemis at least
as good as the original algorithm according to both Bijective Analysis and Average
Analysis.

Proof By the laziness observation, the identity function,id, is a bijection such that
LA(I) ≤ A(id(I)) for all sequencesI . If an algorithm is better than another algo-
rithm with regards to Bijective Analysis, then it is also better with regards to Average
Analysis [1].

We first show that GREEDY is at least as good as any other lazy algorithm; in-
cluding LDC and BAL .

Theorem 5 GREEDY is at least as good as any other lazy algorithmLAZY for the
baby server problem according to Bijective Analysis.

A Comparison of Performance Measures for Online Algorithms 17

Proof Since GREEDY has cost zero for the sequences consisting of only the pointA
or only the pointC and cost one for the pointB, it is easy to define a bijectionf for
sequences of length one, such that GREEDY(I) ≤ LAZY(f (I)). Suppose that for all
sequences of lengthk we have a bijection,f , from GREEDY’s sequences to LAZY ’s
sequences, such that for each sequenceI of lengthk, GREEDY(I)≤ LAZY(f (I)). To
extend this to lengthk+1, consider the three sequences formed from a sequenceI of
lengthk by adding one of the three requestsA, B, or C to the end ofI , and the three
sequences formed fromf (I) by adding each of these points to the end off (I). At the
end of sequenceI , GREEDY has its two servers on different points, so two of these
new sequences have the same cost for GREEDY as onI and one has cost exactly 1
more. Similarly, LAZY has its two servers on different points at the end off (I), so
two of these new sequences have the same cost for LAZY as onf (I) and one has cost
either 1 ord more. This immediately defines a bijectionf ′ for sequences of length
k+1 where GREEDY(I)≤ LAZY(f ′(I)) for all I of lengthk+1.

Corollary 1 GREEDY is the unique optimal algorithm with regards to Bijective and
Average Analysis.

Proof Note that the proof of Theorem 5 shows that GREEDY is strictly better than
any lazy algorithm which ever moves the server away fromC, so it is better than any
other lazy algorithm with regards to Bijective Analysis. ByTheorem 4, it is better
than any algorithm. Again, since separations with respect to Bijective Analysis also
hold for Average Analysis, the result also holds for AverageAnalysis.

According to Bijective Analysis, there is also a unique worst algorithm among
compliant server algorithms for the baby server problem: Ifp is in between the two
servers, the algorithm moves the server that is furthest away to the request point. If
p is on the same side of both servers, the nearest server moves to p. Again, due to
the problem formulation, ties cannot occur (and the server on A is never moved). The
proof that this algorithm is unique worst is similar to the proof of Theorem 5, but now
with costd for every actual move.

Lemma 4 If a ≤ b, then there exists a bijection

σn : {A,B,C}n →{A,B,C}n

such that a-LDC(I)≤ b-LDC(σn(I)) for all sequences I∈ {A,B,C}n.

Proof We use the bijection from the proof of Theorem 5, showing thatGREEDY is the
unique best algorithm, but specify the bijection completely, as opposed to allowing
some freedom in deciding the mapping in the cases where we areextending by a
request where the algorithms already have a server. Supposethat the bijectionσn is
already defined. Consider a sequenceIn of lengthn and the three possible ways,InA,
InB andInC, of extending it to lengthn+1. Suppose thata-LDC has servers on points
Xa,Ya ∈ {A,B,C} after handling the sequenceIn, andb-LDC has servers on points
Xb,Yb ∈ {A,B,C} after handlingσn(In). Let Za be the point wherea-LDC does not
have a server andZb the point whereb-LDC does not. Thenσn+1(InZa) is defined
to beσn(In)Zb. In addition, since the algorithms are lazy, both algorithms have their

18 Joan Boyar et al.

servers on two different points of the three possible, so there must be at least one
point P where both algorithms have a server. LetUa be the point in{Xa,Ya} \ {P}
andUb be the point in{Xb,Yb} \ {P}. Then,σn+1(InP) is defined to beσn(In)P and
σn+1(InUa) to beσn(In)Ub.

Consider runninga-LDC on a sequenceIn andb-LDC on σn(In) simultaneously.
The sequences are clearly constructed so that, at any point during this simultaneous
execution, both algorithms have servers moving or neither does.

The result follows if we can show thatb-LDC moves away from and back toC at
least as often asa-LDC does. By construction, the two sequences,In andσn(In), will
be identical up to the point whereb-LDC (and possiblya-LDC) moves away fromC
for the first time. In the remaining part of the proof, we arguethat if a-LDC moves
away from and back toC, thenb-LDC will also do so beforea-LDC can do it again.
Thus, the total cost ofb-LDC will be at least that ofa-LDC.

Consider a request causing the slower algorithm,a-LDC, to move a server away
from C.

If b-LDC also moves a server away fromC at this point, both algorithms have
their servers onA andB, and the two sequences continue identically until the faster
algorithm again moves a server away fromC (before or at the same time as the slower
algorithm does).

If b-LDC does not move a server away fromC at this point, since, by construc-
tion, it does make a move, it moves a server fromA to B. Thus, the next time both
algorithms move a server,a-LDC moves fromB to C andb-LDC moves fromB to A.
Then both algorithms have servers onA andC. Sincea-LDC has just moved a server
to C, whereasb-LDC must have made at least one move fromA to B since it placed
a server atC, b-LDC must, as the faster algorithm, make its next move away fromC
strictly beforea-LDC does so. In conclusion, the sequences will be identical until the
faster algorithm,b-LDC, moves a server away fromC.

Theorem 6 According to Bijective Analysis and Average Analysis, slower variants
of LDC are better than faster variants for the baby server problem.

Proof Follows immediately from Lemma 4 and the definition of the measures.

Thus, the closer a variant of LDC is to GREEDY, the better Bijective and Average
Analysis predict that it is.

7 Relative Worst Order Analysis

Similarly to the Random Order Ratio and Bijective Analysis,Relative Worst Order
Analysis correctly distinguishes between DC and LDC, indicating that the latter is
the better algorithm. This follows from the following general theorem about lazy
algorithms, and the fact that there are some sequences whereone of DC’s servers
repeatedly moves fromC towardsB, but moves back toC before ever reachingB,
while LDC’s server stays onC.

Let IA denote a worst ordering of the sequenceI for the algorithmA.

A Comparison of Performance Measures for Online Algorithms 19

Theorem 7 The lazy version of any algorithm for the baby server problemis at least
as good as the original algorithm according to Relative Worst Order Analysis.

Proof This follows from the laziness observation, since for any request sequenceI ,
we have thatLA(ILA)≤ A(ILA)≤ A(IA).

Theorem 8 DC (LDC) andGREEDY are (2,∞)-related and are thus weakly compa-
rable in DC’s (LDC’s) favor for the baby server problem according to Relative Worst
Order Analysis.

Proof We write this proof for DC, but exactly the same holds for LDC. First we
show thatcu(GREEDY,DC) is unbounded. Consider the sequence(BA)

n
2 . As n tends

to infinity, GREEDY’s cost is unbounded, whereas DC’s cost is at most 3d for any
permutation.

Next we turn tocu(DC,GREEDY). Since the Competitive Ratio of DC is 2, for any
sequenceI and some constantb, DC(IDC)≤ 2OPT(IDC)+b≤ 2GREEDY(IDC)+b≤
2GREEDY(IGREEDY)+b. Thus,cu(DC,GREEDY)≤ 2.

For the lower bound, consider a family of sequences

Ip = ((BA)dBC)p.

DC(Ip) = p(4d).
A worst ordering for GREEDY alternatesAs andBs. Since there is no cost for the

Cs and theA/B sequences start and end withBs, GREEDY(σ(Ip)) ≤ p(2d)+1 for
any permutationσ .

Then,cu(DC,GREEDY)≥ p(4d)
p(2d)+1. As p goes to infinity, this approaches 2.

Thus, DC and GREEDY are weakly comparable in DC’s favor.

For clarity in the exposition, we assume thatd
a is integral. By the definition of

a-LDC, a request forB is served by the right-most server if it is within a virtual
distance of no more thana from B and the other server is atA. Thus, when the left-
most server moves and its virtual move is over a distance ofl , then the right-most
server virtually moves a distanceal. When the right-most server moves and its virtual
move is over a distance ofal, then the left-most server virtually moves a distance of
l .

In the results that follow, we frequently look at the worst ordering of an arbitrary
sequence.

Definition 4 The canonical worst orderingof a sequence,I , for an algorithmA is
the sequence produced by allowing the cruel adversary (the one which always lets the
next request be the unique point whereA does not currently have a server) to choose
requests from the multiset defined fromI . This process continues until there are no
requests remaining in the multiset for the point whereA does not have a server. The
remaining points from the multiset are concatenated to the end of this new request
sequence in any order.

The canonical worst ordering of a sequence fora-LDC is as follows.

20 Joan Boyar et al.

Proposition 2 Consider an arbitrary sequence I containing nA As, nB Bs, and nC Cs.
A canonical worst ordering of I for a-LDC is

Ia = ((BA)
d
a BC)paX,

where we assume thatd
a is integral. Here, X is a possibly empty sequence. The first

part of X is an alternating sequence of As and Bs, starting with a B, until there are
not both As and Bs left. Then we continue with all remaining Asor Bs, followed by
all remaining Cs. Finally,

pa = min

{⌊

nA
d
a

⌋

,

⌊

nB
d
a +1

⌋

,nC

}

.

Lemma 5 Assume thatda is integral, and let Ia be the canonical worst ordering of I
for a-LDC. Ia is a worst permutation of I for a-LDC, and the cost for a-LDC on Ia is
ca, where pa(2d

a +2d)≤ ca ≤ pa(2d
a +2d)+2d

a +d.

Proof Consider a request sequence,I . Between any two moves fromB to C, there
must have been a move fromC to B. Consider one such move. Between the last
request toC and this move, the other server must move fromA to B exactly d

a times,
which requires some first request toB in this subsequence, followed by at leastd

a
occurrences of requests toA, each followed by a request toB, the last one causing
the move fromC to B. (Clearly, extra requests toA or B could also occur, either
causing moves or not.) Thus, for every move fromB to C, there must be at least
d
a +1 Bs, d

a As and oneC. Thus, the number of moves fromB to C is bounded from
above bypa. There can be at most one more move fromC to B than fromB to C. If
such a move occurs, there are no moreCs after that in the sequence. Therefore, the
sequences defined above give the maximal number of moves of distanced possible.
More As or Bs in any alternatingA/B-sequence would not cause additional moves
(of either distance one ord), since each extra point requested would already have a
server. FewerAs orBs between twoCs would eliminate the move away fromC before
it was requested again. Thus, the canonical worst ordering is a worst ordering ofI .

Within each of thepa repetitions of(BABA...BC), each of the requests forA and
all but the last request forB cause a move of distance one, and the last two requests
each cause a move of distanced, giving the lower bound onca. Within X, each of
the first 2d

a requests could possibly cause a move of distance one, and this could be
followed by a move of distanced. After that, no more moves occur. Thus, adding
costs to the lower bound gives the upper bound onca.

Theorem 9 If a ≤ b, andd
a and d

b are integral, then a-LDC and b-LDC are

(

1+ 1
a

1+ 1
b

,
b+1
a+1

)

-related

for the baby server problem according to Relative Worst Order Analysis.

A Comparison of Performance Measures for Online Algorithms 21

Proof By Lemma 5, in consideringa-LDC’s performance in comparison with the
performance ofb-LDC, the asymptotic ratio depends only on the valuespa andpb de-
fined for the canonical worst orderingsIa andIb for a-LDC andb-LDC, respectively.
Sincea≤ b, the largest value ofpa

pb
occurs whenpa = nC, since moreCs would allow

more moves of distanced by b-LDC. Since the contribution ofX to a-LDC’s cost can
be considered to be a constant, we may assume thatnA = nC

d
a andnB = nC

(

d
a +1

)

.
When consideringb-LDC’s canonical worst ordering of this sequence, all theCs

will be used in the initial part. By Lemma 5, we obtain the following ratio, for some
constantc:

(2d
a +2d)nC

(2d
b +2d)nC+c

=
(1

a +1)nC

(1
b +1)nC+ c

2d

Similarly, a sequence giving the largest value ofpb
pa

will have pb =

⌊

nA
d
b

⌋

, since

moreAs would allowa-LDC to have a largerpa. Since the contribution ofX to b-LDC

can be considered to be a constant, we may assume thatnA = nC
d
b , nB = nC

(

d
b +1

)

,
andpb = nC.

Now, when consideringa-LDC’s worst permutation of this sequence, the number
of periods,pa, is restricted by the number ofAs. Since each period hasd

a As, pa =
⌊

nA
d
a

⌋

=

⌊

nC
d
b

d
a

⌋

. After this, there are a constant number ofAs remaining, giving rise

to a constant additional costc′.
Thus, the ratio is the following:

(2d
b +2d)nC

(2d
a +2d)

⌊

nC
a
b

⌋

+c′
=

(1
b +1)nC

(1
a +1)

⌊

nC
a
b

⌋

+ c′
2d

=
(1+b)nC

(1+a)nC+c′′
,

for some constantc′′. Considering the two ratios relatingb-LDC’s anda-LDC’s worst
permutations asymptotically asnC goes to infinity, we obtain thata-LDC andb-LDC

are

(

1+ 1
a

1+ 1
b
, b+1

a+1

)

-related.

Although with the original definition of relatedness in Relative Worst Order Anal-
ysis, the values are not interpreted further, one could use the concept ofbetter per-
formance(see [11]) from Relative Interval Analysis to compare two algorithms using
Relative Worst Order Analysis. Using the previous result, we show that LDC has bet-
ter performance thanb-LDC for b 6= 1. Again, for clarity, we consider integral cases
in the following result.

Theorem 10 The following holds for the baby server problem evaluated according
to Relative Worst Order Analysis:

For b> 1 such thatdb is integral,LDC and b-LDC are (r, rb)-related for some r
and rb where1< r < rb.

For a< 1 such thatda is integral, a-LDC andLDC are (ra, r)-related for some ra
and r where1< r < ra.

22 Joan Boyar et al.

Proof By Theorem 9,a-LDC andb-LDC are

(

1+ 1
a

1+ 1
b
, b+1

a+1

)

-related.

To see that
1+ 1

a
1+ 1

b
< b+1

a+1 when 1= a < b, note that this holds if and only if(1+
1
a)(a+ 1) = 4 < (1+ 1

b)(b+ 1), which clearly holds forb > 1. Hence, if LDC and
b-LDC are(c1,c2)-related, thenc1 < c2.

To see that
1+ 1

a
1+ 1

b
> b+1

a+1 whena < b = 1, note that this holds if and only if(1+
1
a)(a+1)> 4= (1+ 1

b)(b+1). This clearly holds fora< 1. Thus,a-LDC and LDC

are(c1,c2)-related, wherec1 > c2.

The algorithmsa-LDC and 1
a -LDC are in some sense of equal quality:

Corollary 2 If d
a and d

b are integral and b= 1
a, then a-LDC and b-LDC are (b,b)-

related

Theorem 10 shows that LDC is in some sense optimal among thea-LDC algo-
rithms. We now set out to prove that LDC is an optimal algorithm in the following
sense: there is no other algorithmA such that LDC andA are comparable andA is
strictly better or such that LDC andA are weakly comparable inA’s favor.

We emphasize that comparisons using Relative Worst Order Analysis does not
give rise to a total ordering so there could be more than one optimal algorithm, and
two different optimal algorithms could be incomparable. Ifanother algorithm should
be strictly better than LDC, then it must be strictly better on some infinite family of
sequences and at least as good (up to an additive constant) onall other sequences.
The proof below is based on showing that no algorithm can fulfill both of these two
conditions.

Theorem 11 LDC is optimal for the baby server problem according to RelativeWorst
Order Analysis.

Proof In order for LDC andA to be comparable inA’s favor,A has to be comparable
to LDC and perform more than an additive constant better on some infinite family of
sequences.

Assume that there exists a family of sequencesS1,S2, . . . such that for any positive
c there exists ani such that LDCW(Si)≥ AW(Si)+c. Then we prove that there exists
another family of sequencesS′1,S

′
2, . . . such that for any positivec′ there exists ani

such thatAW(S′i)≥ LDCW(S′i)+c′.
This establishes that ifA performs more than a constant better on its worst permu-

tations of some family of sequences than LDC does on its worst permutations, then
there exists a family where LDC has a similar advantage overA, which implies that
the algorithms are not comparable.

Now assume that we are given a constantc. Since we must find a value greater
than any constant to establish the result, we may assume without loss of generality
thatc is large enough that 3dc≥ 3d+1

d−1 (3d)+3d.
Consider a sequenceS from the familyS1,S2, . . . such that LDCW(S)≥ AW(S)+

3dc. From S we create a memberS′ of the family S′1,S
′
2, . . . such thatAW(S′) ≥

LDCW(S′)+c.

A Comparison of Performance Measures for Online Algorithms 23

The idea behind the construction is to have the cruel adversary againstA choose
requests from the multiset defined fromS as in the definition of canonical worst
orderings. This process continues until the cruel adversary has used all of either the
As,Bs, orCs in the multiset, resulting in a sequenceS′. If the remaining requests from
the multiset are concatenated toS′ in any order, this creates a permutation ofS. The
performance ofA on this permutation must be at least as good as its performance on
its worst ordering ofS.

We now consider the performance of LDC andA on S′ and show that LDC is
strictly better.

Let n′A, n′B, andn′C denote the number ofAs,Bs, andCs inS′, respectively.

Let p= min
{⌊

n′A
d

⌋

,
⌊

n′B
d+1

⌋

,n′C
}

.

By Lemma 5, the cost of LDC on its canonical worst ordering ofS′ is at most
p(4d)+3d.

The cost ofA is 2dn′C +n′A+n′B−n′C, since every time there is a request forC,
this is because a server in the step before moved away fromC. These two moves
combined have a cost of 2d. Every request to anA or aB has cost one, except for the
request toB immediately followed by a request toC, which has already been counted
in the 2dn′C term. A similar argument shows that LDC’s cost is bounded from above
by the same term.

Assume first that
n′A
d =

n′B
d+1 = n′C. ThenS′ can be permuted so that it is a prefix of

LDC’s canonical worst ordering onS (see Lemma 5 witha= 1). Since, by construc-
tion, we have run out of eitherAs,Bs, orCs (that is, one type is missing fromSminus
S′ as multisets), LDC’s cost on its worst ordering ofS is at most its cost on its worst
ordering onS′ plus 3d. Thus, LDCW(S) ≥ AW(S)+ c does not hold in this case, so
we may assume that these values are not all equal.

We compare LDC’s canonical worst orderings ofS andS′. For both sequences,
the form is as in Lemma 5, witha = 1. Thus, forS′ the form is((BA)dBC)pX, and
for S, it is ((BA)dBC)p+lY for some nonnegative integerl . The sequenceX must
contain all of theAs, all of theBs or all of theCs contained in((BA)dBC)l , since
after this the cruel adversary has run out of something. Thus, it must contain at least
ld As, l(d+ 1) Bs or l Cs. The extra cost that LDC has overA on S is at most its
cost on((BA)dBC)lY minus costld for theAs, Bs orCs contained inX, so at most
l(2d+2d)+3d− ld = 3dl+3d. Thus, LDCW(S)−AW(S)≤ 3dl+3d.

Since we could assume that not all of
n′A
d , n′B

d+1, andn′C were equal, we have the
following cases:

Casen′A > dp: LDC’s cost onS′ is at most the cost ofA minus(n′A−dp) plus 3d.
Casen′B > (d+1)p: LDC’s cost onS′ is at most the cost ofA minus(n′B− (d+

1)p) plus 3d.
Casen′C > p: LDC’s cost onS′ is at most the cost ofA minus(2d−1)(n′C − p)

plus 1.
Thus,AW(S′)−LDCW(S′)≥ dl−3d.
From the choice ofc, the definition of theSi family, and the bound on the differ-

ence between the two algorithms onS, we find that

3d+1
d−1

(3d)+3d ≤ 3dc≤ LDCW(S)−AW(S)≤ 3dl+3d

24 Joan Boyar et al.

Thus,l ≥ 3d+1
d−1 , which implies the following:

l ≥ 3d+1
d−1

⇔ ld−3d ≥ l +1 ⇔ ld−3d ≥ 3dl+3d
3d

Now,

AW(S′)−LDCW(S′)≥ ld−3d ≥ 3dl+3d
3d

≥ 3dc
3d

= c.

Finally, to show that LDC andA are not weakly comparable inA’s favor, we
show thatcu(LDC,A) is bounded. Since the Competitive Ratio of LDC is 2, for
any algorithmA and any sequenceI , there is a constantb such that LDC(ILDC) ≤
2OPT(ILDC)+b≤ 2A(ILDC)+b≤ 2A(IA)+b. Thus,cu(LDC,A)≤ 2.

Considering the request sequence as constructed by the cruel adversary against
some algorithmA, it consists of a first part, where the cruel adversary keeps request-
ing unoccupied points, and a second part which are all remaining requests. The proof
of optimality depends on LDC performing as well as any algorithm on the first part,
and having constant cost on the second part. Since the first part consists of subse-
quences whereA at some point has a server pulled away fromC and then right back
again, it is easy to see that if the distribution ofAs,Bs, andCs in those subsequences
is different from the distribution in a canonical worst ordering for LDC, LDC will sim-
ply do better. On the second part, if there are only requests to two points, LDC will
have its two servers on those two points permanently after a cost of at most 3d. Thus,
similar proofs will show thata-LDC and BAL are also optimal algorithms, whereas
GREEDY is not.

In the definitions of LDC and BAL given in Section 2, different decisions are
made as to which server to use in cases of ties. In LDC the server which is really
closer is moved in the case of a tie (with regard to virtual distances from the point
requested). The rationale behind this is that the server which would have the least
cost is moved. In BAL the server which is further away is moved to the point. The
rationale behind this is that, sinced> 1, when there is a tie, the total cost for the closer
server is already significantly higher than the total cost for the other, so moving the
server which is further away evens out how much total cost they have. With these
tie-breaking decisions, the two algorithms behave very similarly.

Theorem 12 LDC andBAL are equivalent for the baby server problem according to
Relative Worst Order Analysis.

Proof Consider any request sequenceI . LDC’s canonical worst ordering has a prefix
of the form((BA)dBC)k, while BAL ’s canonical worst ordering has a prefix of the
form

(BA)⌊ d
2⌋BC((BA)dBC)k′ ,

such that the remaining parts have constant costs. These prefixes of LDC’s and BAL ’s
canonical worst orderings ofI are identical, except for the constant cost sequence
that BAL starts with. This also leads to a small constant cost difference at the end.
Thus, their performance on their respective worst orderings will be identical up to an
additive constant.

A Comparison of Performance Measures for Online Algorithms 25

8 Concluding Remarks

The purpose of quality measures is to give information for use in practice, to choose
the best algorithm for a particular application. What properties should such quality
measures have?

First, it may be desirable that if one algorithm does at leastas well as another
on every sequence, then the measure decides in favor of the better algorithm. This
is especially desirable if the better algorithm does significantly better on important
sequences. Bijective Analysis and Relative Worst Order Analysis have this property,
but Competitive Analysis, the Max/Max Ratio, and the RandomOrder Ratio do not.
This was seen here in the lazy vs. non-lazy version of Double Coverage for the baby
server problem (and the more general metrick-server problem). Similar results have
been presented previously for the paging problem—LRU vs. FWF and look-ahead vs.
no look-ahead. See [7] for these results under Relative Worst Order Analysis and [1]
for Bijective Analysis. It appears that analysis techniques that avoid a comparison to
OPT have an advantage in this respect.

Secondly, it may be desirable that, if one algorithm does unboundedly worse than
another on some important families of sequences, the quality measure reflects this.
For the baby server problem, GREEDY is unboundedly worse than LDC on all families
of sequences which consist mainly of alternating requests to the closest two points.
This is reflected in Competitive Analysis, the Random Order Ratio, and Relative
Worst Order Analysis, but not by the Max/Max Ratio or Bijective Analysis. Similarly,
according to Bijective Analysis, LIFO and LRU are equivalent for paging, but LRU is
often significantly better than LIFO, which keeps the firstk−1 pages it sees in cache
forever. In both of these cases, Relative Worst Order Analysis says that the algorithms
are weakly comparable in favor of the “better” algorithm.

Another desirable property would be ease of computation formany different
problems, as with Competitive Analysis and Relative Worst Order Analysis. It is not
clear that the Random Order Ratio or Bijective Analysis havethis property.

In this paper, we have initiated a systematic comparison of quality measures for
online algorithms. We hope this will inspire researchers tosimilarly investigate a
range of online problems to enable the community to draw stronger conclusions on
the relative strengths of the different measures.

Acknowledgements The first and third author were supported in part by the DanishCouncil for Indepen-
dent Research, Natural Sciences. Part of this work was carried out while these authors were visiting the
University of California, Irvine, and the University of Waterloo, Canada. The second author was supported
in part by NSF Grants CCR-0514082 and CCF-0916181.

The authors would like to thank Christian Kudahl for callingtheir attention to two oversights in a
previous version of this paper, one in the definition of the lazy version of an algorithm, and another in the
modified definition of the Random Order Ratio.

A preliminary version of this paper appeared in11th International Algorithms and Data Structures
Symposium (WADS 2009), volume 5664 ofLecture Notes in Computer Science, pages 119–130, Springer,
2009.

26 Joan Boyar et al.

References

1. Angelopoulos, S., Dorrigiv, R., Ĺopez-Ortiz, A.: On the separation and equivalence of pagingstrate-
gies. In: 18th ACM-SIAM Symposium on Discrete Algorithms, pp.229–237 (2007)

2. Balakrishnan, N., Koutras, M.V.: Runs and Scans with Applications. John Wiley & Sons, Inc. (2002)
3. Bein, W.W., Iwama, K., Kawahara, J.: Randomized competitiveanalysis for two-server problems. In:

16th Annual European Symposium on Algorithms,Lecture Notes in Computer Science, vol. 5193, pp.
161–172. Springer (2008)

4. Ben-David, S., Borodin, A.: A new measure for the study of on-line algorithms. Algorithmica11(1),
73–91 (1994)

5. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University
Press (1998)

6. Boyar, J., Favrholdt, L.M.: The relative worst order ratio for on-line algorithms. ACM Transactions
on Algorithms3(2) (2007). Article No. 22

7. Boyar, J., Favrholdt, L.M., Larsen, K.S.: The relative worst order ratio applied to paging. Journal of
Computer and System Sciences73(5), 818–843 (2007)

8. Burr, E.J., Cane, G.: Longest run of consecutive observatons having a specified attribute. Biometrika
48(3/4), 461–465 (1961)

9. Chrobak, M., Karloff, H.J., Payne, T.H., Vishwanathan, S.: New results on server problems. SIAM
Journal on Discrete Mathematics4(2), 172–181 (1991)

10. Dorrigiv, R., Ĺopez-Ortiz, A.: A survey of performance measures for on-line algorithms. SIGACT
News36(3), 67–81 (2005)

11. Dorrigiv, R., Ĺopez-Ortiz, A., Munro, J.I.: On the relative dominance of paging algorithms. Theoret-
ical Computer Science410(38–40), 3694–3701 (2009)

12. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1, 3rd edn. John Wiley &
Sons, Inc., New York (1968)

13. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Systems Technical Journal45,
1563–1581 (1966)

14. Jr., E.G.C., Csirik, J., Ŕonyai, L., Zsb́an, A.: Random-order bin packing. Discrete Applied Mathemat-
ics 156(14), 2810–2816 (2008)

15. Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy caching. Algorithmica
3, 79–119 (1988)

16. Kenyon, C.: Best-fit bin-packing with random order. In: 7th Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 359–364 (1996)

17. Manasse, M.S., McGeoch, L.A., Sleator, D.D.: Competitive algorithms for on-line problems. In: 20th
Annual ACM Symposium on the Theory of Computing, pp. 322–333 (1988)

18. Manasse, M.S., McGeoch, L.A., Sleator, D.D.: Competitive algorithms for server problems. Journal
of Algorithms11(2), 208–230 (1990)

19. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of listupdate and paging rules. Communications of
the ACM28(2), 202–208 (1985)

